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Abstract. In this paper we establish the stability of an iterative algorithm for a countable family of quasi-

contractive operators in an arbitrary Banach space in a more general form.
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1. Preliminaries

Let X be a Banach space. T a selfmap of X . Let yn+1 = f (T,yn) be some iteration procedure.

Suppose that F(T ), the fixed point set of T , is nonempty and that xn converges to a point

p ∈ F(T ). Let {xn} ⊂ X be bounded, and define εn = ‖yn+1, f (T,yn)‖. If limεn = 0 implies

that limyn = p, then the iteration procedure yn+1 = f (T,yn) is said to be T -stable or stable with

respect to T .

Harder and Hicks [4] showed how such sequences {xn} could arise in practice and the impor-

tance of investigating the stability of various iteration procedures for certain classes of nonlinear

mappings. It was remarked by Massa (Math. Reviews 90a(1990), no. 54109a, 54H25) that the
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discussion about stability is very rich in examples. In [5], some applications of stability results

to first order differential equations are discussed. Stability results for several iteration proce-

dures for certain classes of nonlinear mappings have been established in recent papers by many

authors (see, for example, A. M. Harder [4] [5], A. M. Harder and T. L. Hicks[6], M. O. Osilike

[7] [8] [9] [10] [11] [12], and B.E.Rhoades [13]).

Ravi P. Agarwal, Yeol Je Cho, Jun Li, and Nan Jing Huang [3] prove a stability result of

an Ishikawa type iteration procedure for a couple of quasi-contractive mappings in q-uniformly

smooth Banach spaces.

We shall prove a stability result of an iteration procedure for a countable family of quasi-

contractions in an arbitrary Banach space.

Let X be a Banach space and {Tk}∞
k=1 a countable family of selfmap of X , satisfying there

exist 0≤ h < 1 such that

‖Tix−Tjy‖ ≤ hmax{‖x− y‖,‖x−Tix‖,‖x−Tjy‖,‖y−Tjy‖,‖y−Tix‖}

for all i, j. Then we call {Tk}∞
k=1 a countable family of quasi-contractions.

Define the iteration procedure for {Tk}∞
k=1 as follows:

yn =
1

n−1

n−1

∑
k=1

Tkyn−1

Let F({Tk}∞
k=1) denote the common fixed point set of {Tk}∞

k=1. Suppose {Tk}∞
k=1 is nonempty

and yn converges to a point p ∈ F({Tk}∞
k=1). Let {xn} ⊂ X be bounded, and define εn =

‖xn − 1
n−1 ∑

n−1
k=1 Tkxn−1‖. If limεn = 0 implies that limxn = p, then the iteration procedure

yn =
1

n−1 ∑
n−1
k=1 Tkyn−1 is said to be stable with respect to {Tk}∞

k=1.

We shall prove yn =
1

n−1 ∑
n−1
k=1 Tkyn−1 is stable with respect to {Tk}∞

k=1 in a more general form.

We need the following lemmas in order to prove our main theorem.

Lemma 1. [2] Let {xn},{εn} be nonnegative sequences satisfying xn+1 ≤ hxn + εn for all n ∈

N,0≤ h < 1, limεn = 0. Then limxn = 0.

Lemma 2. Let {Tk}∞
k=1 be a countable family of quasi-contractions, then

‖Tix− p‖ ≤ h
1−h

‖x− p‖
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Proof.

‖Tix− p‖ ≤ hmax{‖x− p‖,‖x−Tix‖,‖x−Ti p‖,‖p−Tix‖,‖p−Ti p‖}

≤ hmax{‖x− p‖,‖x−Tix‖,‖x− p‖,‖p−Tix‖,0}

= hmax{‖x− p‖,‖x−Tix‖,‖x− p‖,‖p−Tix‖}

Hence ‖Tix− p‖ ≤ h‖x− p‖ or ‖Tix− p‖ ≤ h‖x−Tix‖ or ‖Tix− p‖ ≤ h‖p−Tix‖.

If ‖Tix− p‖ ≤ h‖x− p‖, it is clear

‖Tix− p‖ ≤ h‖x− p‖ ≤ h
1−h

‖x− p‖.

If ‖Tix− p‖ ≤ h‖p−Tix‖, then

‖Tix− p‖= 0≤ h
1−h

‖x− p‖

If ‖Tix− p‖ ≤ h‖x−Tix‖, then

‖x−Tix‖ ≤ ‖Tix− p‖+‖x− p‖ ≤ h‖x−Tix‖+‖x− p‖.

Hence, ‖Tix− p‖ ≤ h
1−h‖x− p‖. �

Lemma 3. Let {Tk}∞
k=1 be a countable family of quasi-contractions, then {Tk}∞

k=1 have a unique

common fixed point.

Proof. For each i, it follows from Ciric [1] that Ti has a unique fixed point pi. It is sufficient to

prove pi = p j, for all i, j.

‖pi− p j‖= ‖Ti pi−Tj p j‖

≤ hmax{‖pi− p j‖,0,‖pi− p j‖,0,‖p j− pi‖}= h‖pi− p j‖

So, ‖pi− p j‖= 0 and pi = p j. The proof is completed. �
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2. Main results

Theorem 1. Let X be a Banach space, {Tk}∞
k=1 a countable family of quasi-contractions. Let

{xn} ⊂ X be bounded, and define εn = ‖xn− 1
n−1 ∑

n−1
k=1 Tkxn−1‖. Assume limεn = 0. Define pn

to be the diameter of {xk : k ≥ n}
⋃
{Tlxk : k ≥ n, l ≥ 1}; i.e., pn = δ ({xk : k ≥ n}

⋃
{Tlxk : k ≥

n, l ≥ 1}). Then lim pn = 0.

Proof. First, we show pn is bounded. Since {xn} is bounded, there exist M > 0 such that

‖xn‖ ≤M. It follows from Lemma 2 that |Tlxk− p‖ ≤ h
1−h‖xk− p‖, for all l,k. Thus, |Tlxk‖ ≤

h
1−h(‖xk‖+ ‖p‖)+ ‖p‖ ≤ h

1−h(M + ‖p‖)+ ‖p‖, for all l,k. So it is easy to see pn is bounded

and pn ≤ pn−1.

Define δn = sup{εk}∞
k=n, then limδn = 0 since limεn = 0. Next, we show pn ≤ hpn−2 +2δn.

∀i, j ≥ n,

‖Tkxi−Tlx j‖ ≤ hmax{‖xi− y j‖,‖xi−Tlx j‖,‖xi−Tkxi‖,

‖x j−Tkxi‖,‖x j−Tlx j‖} ≤ hpn

‖xi−Tlx j‖ ≤ ‖xi−
1

i−1

i−1

∑
k=1

Tkxi−1‖+‖
1

i−1

i−1

∑
k=1

Tkxi−1−Tlx j‖

≤ εi +‖
1

i−1

i−1

∑
k=1

(Tkxi−1−Tlx j)‖

≤ εi +
1

i−1

i−1

∑
k=1
‖Tkxi−1−Tlx j‖

≤ εi +
1

i−1

i−1

∑
k=1

hpn−1

= εi +hpn−1

≤ δn +hpn−1

‖xi− x j‖ ≤ ‖xi−
1

i−1

i−1

∑
k=1

Tkxi−1‖+‖
1

i−1

i−1

∑
k=1

Tkxi−1− x j‖
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≤ εi +‖
1

i−1

i−1

∑
k=1

(Tkxi−1− x j)‖

≤ εi +
1

i−1

i−1

∑
k=1
‖Tkxi−1− x j‖

≤ εi +
1

i−1

i−1

∑
k=1

(δn +hpn−2)

= εi +δn +hpn−2

≤ 2δn +hpn−2

So, δ ({xk : k ≥ n}
⋃
{Tlxk : k ≥ n, l ≥ 1})≤ 2δn +hpn−2, i.e., pn ≤ hpn−2 +2δn.

Let ak = p2k, then p2k ≤ hp2k−2 +2δ2k implies ak ≤ hak−1 +2δk. It follows from Lemma 1

that limak = 0, i.e., lim p2k = 0.

Let bk = p2k+1, then p2k+1 ≤ hp2k−1 + 2δ2k+1 implies bk ≤ hbk−1 + 2δk. It follows from

Lemma 1 that limbk = 0, i.e., lim p2k+1 = 0.

Hence lim pn = 0. �

As a corollary, we establish the stability of the iteration procedure yn =
1

n−1 ∑
n−1
k=1 Tkyn−1 with

respect to a countable family of quasi-contractions {Tk}∞
k=1.

Theorem 2. Let X be a Banach space, {Tk}∞
k=1 a countable family of quasi-contractions. Then

the iteration procedure for {Tk}∞
k=1 defined as

yn =
1

n−1

n−1

∑
k=1

Tkyn−1

is stable with respect to {Tk}∞
k=1.

Proof.

‖xn− p‖ ≤ ‖xn−
1

n−1

n−1

∑
k=1

Tkxn−1‖+‖
1

n−1

n−1

∑
k=1

Tkxn−1− p‖

≤ εn +
1

n−1

n−1

∑
k=1
‖Tkxn−1−T p‖
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But

‖Tkxn−1−Tk p‖ ≤ hmax{‖xn−1− p‖,‖xn−1−Tkxn−1‖,‖Tkxn−1− p‖}

So,

‖Tkxn−1−Tk p‖ ≤ hmax{‖xn−1− p‖,‖xn−1−Tkxn−1‖}

≤ h(‖xn−1− p‖+‖xn−1−Tkxn−1‖)

≤ h‖xn−1− p‖+hpn−1)

substituting it into the first inequality, we obtain

‖xn− p‖ ≤ εn +
1

n−1

n−1

∑
k=1
‖Tkxn−1−Tk p‖

≤ εn +
1

n−1

n−1

∑
k=1

(h‖xn−1− p‖+hpn−1)

= εn +h‖xn−1− p‖+hpn−1

Noting that 0 ≤ h < 1, limεn = 0 with addition lim pn = 0, by Theorem 1. It follows from

Lemma 1 that lim‖xn− p‖= 0, i.e., limxn = p. �
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