Available online at http://scik.org
Adv. Inequal. Appl. 2018, 2018:14
https://doi.org/10.28919/aia/3776
ISSN: 2050-7461

ON MULTIPLICATIVE ZAGREB INDICES OF TWO NEW OPERATIONS OF GRAPHS

A. BHARALI
Department of Mathematics, Dibrugarh University, Assam 786004, India

Copyright © 2018 A. Bharali. This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Recently, Wang et al. (2017) introduced two new operations of graphs. In this paper the upper bounds of the multiplicative Zagreb indices of the two newly proposed operations of graphs are derived.

Keywords: multiplicative Zagreb indices; graph operations.
2010 AMS Subject Classification: 05C05, 05C90, 05C07.

1. Introduction

Throughout the paper we consider only simple finite graphs. $V(G)$ and $E(G)$ are respectively the set of vertices and set of edges of a graph G. The degree of a vertex $u \in V(G)$ is denoted by $d_{G}(u)$, if their is no confusion we simply write it as $d(u)$. Two vertices u and v are called adjacent if there is an edge connecting them. The connecting edge is usually denoted by $u v$. Any unexplained graph theoretic symbols and definitions may be found in [16].

[^0]Topological indices are the numerical values which are associated with a graph structure. These graph invariants are utilized for modeling information of molecules in structural chemistry and biology. Over the years many topological indices are proposed and studied based on degree, distance and other parameters of graph. Some of them may be found in [5, 7]. Historically Zagreb indices can be considered as the first degree-based topological indices, which came into picture during the study of total π-electron energy of alternant hydrocarbons by Gutman and Trinajstić in 1972 [9]. Since these indices were coined, various studies related to different aspects of these indices are reported, for detail see the papers $[4,6,8,12,17]$ and the references therein.

The first and second Zagreb indices of a graph G are defined as

$$
\begin{aligned}
& M_{1}(G)=\sum_{u \in V(G)} d_{G}^{2}(u)=\sum_{u v \in E(G)}\left(d_{G}(u)+d_{G}(v)\right), \\
& M_{2}(G)=\sum_{u v \in E(G)} d_{G}(u) d_{G}(v)
\end{aligned}
$$

The multiplicative versions of these Zagreb indices are proposed by Todeschini et al., in [14] and latter named as "Multiplicative Zagreb indices" by Gutman [10]. These indices can be defined as follows.

$$
\begin{aligned}
& \prod_{1}(G)=\prod_{u \in V(G)} d_{G}^{2}(u) \\
& \prod_{2}(G)=\prod_{u v \in E(G)} d_{G}(u) d_{G}(v) .
\end{aligned}
$$

Graph operations play a very important role in chemical graph theory, as some chemically interesting graphs can be obtained by different graph operations on some general or particular graphs. Like many other topological indices, studies related to Multiplicative Zagreb indices and coindices of various graph operations [1, 2, 3, 13].

In this paper we consider two new operations of graphs proposed by Wang et al. in [15] and derive the upper bounds on the multiplicative Zagreb indices of the two newly proposed operations of graphs. The rest of the paper is organized as follows. In section 2 we reproduce the two graph operations under consideration. In section 3 main results are presented.

2. Two new graph operations and some preliminaries

In this section we first reproduce the definitions of the two newly defined operations of graphs [15] and then some standard results are included.

The Cartesian product of graphs G and H, denoted by $G \square H$, is the graph with vertex set $V(G) \square V(H)=\{(a, v): a \in V(G), v \in V(H)\}$, and (a, v) is adjacent to (b, w) whenever $a=b$ and $(v, w) \in E(H)$, or $v=w$ and $(a, b) \in E(G)$. More detail on Cartesian product and some other operations of graphs may be found in [11]. In 2017, Wang et al., proposed the following two operations of graphs and also studied their adjacency spectrum. We reproduce the figure in [15] to make the discussion self expository.

$K_{2} \rrbracket_{4}\left(C_{4} \square P_{3}\right)$

$\left(C_{4} \square K_{2}\right) \Pi_{4}\left(C_{4} \square P_{3}\right)$

Figure 1. Two new operations

Definition 2.1. Let $G_{1 i}=G_{1}$ and $G_{2 i}=G_{2}(1 \leq i \leq k)$ be k copies of graphs G_{1} and G_{2}, respectively, $G_{j}(j=3,4)$ is an arbitrary graph.

- The first operation $G_{1} \square_{k}\left(G_{3} \square G_{2}\right)$ of G_{1}, G_{2} and G_{3} is obtained by making the Cartesian product of two graphs G_{3} and G_{2}, thus produces k copies $G_{2 i}(1 \leq i \leq k)$ of G_{2}, then makes k joins $G_{1 i} \vee G_{2 i}, i=1,2, \ldots, k$.
- The second operation $\left(G_{4} \square G_{1}\right) \varpi_{k}\left(G_{3} \square G_{2}\right)$ of G_{1}, G_{2}, G_{3} and G_{4} is obtained by making the Cartesian product of two graphs G_{3} and G_{2}, produces k copies $G_{2 i}(1 \leq i \leq k)$ of G_{2} and making the Cartesian product of two graphs G_{4} and G_{1}, produces k copies $G_{1 i}$ $(1 \leq i \leq k)$ of G_{1}, then makes k joins $G_{1 i} \vee G_{2 i}, i=1,2, \ldots, k$.

Now we propose the following lemma which can easily be proved from the definition 2.1 of the two graph operations.

Lemma 2.1. Let G_{1}, G_{2}, G_{3} and G_{4} be four graphs with $\left|V\left(G_{i}\right)\right|=n_{i},\left|E\left(G_{i}\right)\right|=m_{i}$ where $i=1,2,3,4$. Then,

$$
d_{\left(G_{1} \varpi_{k}\left(G_{3} \square G_{2}\right)\right)}(u)=\left\{\begin{array}{l}
d_{G_{1}}(u)+n_{2} \quad \text { if } \quad u \in V\left(G_{1}\right) \\
d_{G_{3}}\left(u_{3}\right)+d_{G_{2}}\left(u_{2}\right)+n_{1} \quad \text { if } \quad u=\left(u_{3}, u_{2}\right) \in V\left(G_{3} \square G_{2}\right)
\end{array}\right.
$$

and

$$
d_{\left(\left(G_{4} \square G_{1}\right) \varpi_{k}\left(G_{3} \square G_{2}\right)\right)}(u)=\left\{\begin{array}{lll}
d_{G_{4}}\left(u_{4}\right)+d_{G_{1}}\left(u_{1}\right)+n_{2} & \text { if } & u=\left(u_{4}, u_{1}\right) \in V\left(G_{4} \square G_{1}\right) \\
d_{G_{3}}\left(u_{3}\right)+d_{G_{2}}\left(u_{2}\right)+n_{1} & \text { if } & u=\left(u_{3}, u_{2}\right) \in V\left(G_{3} \square G_{2}\right) .
\end{array}\right.
$$

For an example we consider $G_{1}=K_{2}, G_{2}=P_{2}$ and $G_{3}=G_{4}=C_{4}$ and hence obtain the graphs $K_{2} \square_{4}\left(C_{4} \square P_{3}\right)$ and $\left(C_{4} \times K_{2}\right) \square_{4}\left(C_{4} \square P_{3}\right)$, which are shown in figure 1. It is clear from the definitions of the two operations that $\left|E\left(G_{1} \square_{k}\left(G_{3} \square G_{2}\right)\right)\right|=k\left(m_{1}+m_{2}+n_{1} n_{2}\right)+n_{2} m_{3}$, $\left|E\left(\left(G_{4} \square G_{1}\right) \varpi_{k}\left(G_{3} \square G_{2}\right)\right)\right|=k\left(m_{1}+n_{1} n_{2}+m_{2}\right)+n_{1} m_{4}+m_{3} n_{2}$ and $\left|V\left(G_{1} \square_{k}\left(G_{3} \square G_{2}\right)\right)\right|=$ $\left|V\left(\left(G_{4} \square G_{1}\right) \square_{k}\left(G_{3} \square G_{2}\right)\right)\right|=k\left(n_{1}+n_{2}\right)$. Also it is to be exclusively mentioned that $\left|V\left(G_{3}\right)\right|=$ $\left|V\left(G_{4}\right)\right|=k$ but $G_{3} \neq G_{4}$ in general.

Here we highlight a standard lemma and two known results without proof. These results will be expedited in the coming section.

Lemma 2.2. (AM-GM Inequality) Let $x_{1}, x_{2}, \ldots, x_{n}$ be nonnegative numbers. Then

$$
\frac{x_{1}+x_{2}+\ldots+x_{n}}{n} \geq \sqrt[n]{x_{1} x_{2} \ldots x_{n}}
$$

where equality holds iff all the x_{i} 's all equal.
Theorem 2.1. [12] Let $G_{1}, G_{2}, \ldots, G_{n}$ be graphs with $V_{i}=V\left(G_{i}\right)$ and $E_{i}=E\left(G_{i}\right), 1 \leq i \leq n$, and $V=V\left(\square_{i=1}^{n} G_{i}\right)$. Then $M_{1}\left(\square_{i=1}^{n} G_{i}\right)=|V| \sum_{i=1}^{n} \frac{M_{1}\left(G_{i}\right)}{\left|V_{i}\right|}+4|V| \sum_{i \neq j, j=1}^{n} \frac{\left|E_{i}\right|\left|E_{j}\right|}{\left|V_{i}\right|\left|V_{j}\right|}$.

Theorem 2.2. [12] Let $G_{1}, G_{2}, \ldots, G_{n}$ be graphs with $V_{i}=V\left(G_{i}\right)$ and $E_{i}=E\left(G_{i}\right), 1 \leq i \leq n$, and $V=V\left(\square_{i=1}^{n} G_{i}\right)$ and $E=E\left(\square_{i=1}^{n} G_{i}\right)$. Then $M_{2}\left(\square_{i=1}^{n} G_{i}\right)=|V| \sum_{i=1}^{n}\left(\frac{M_{2}\left(G_{i}\right)}{\left|V_{i}\right|}+3 M_{1}\left(G_{i}\right)\left(\frac{|E|}{\left|V_{i}\right|}-\right.\right.$ $\left.\left.\frac{|V|\left|E_{i}\right|}{\left|V_{i}\right|^{2}}\right)\right)+4|V| \sum_{i, j, k=1 i \neq j, i \neq k, j \neq k}^{n} \frac{\left|E_{i}\right|\left|E_{j}\right|\left|E_{k}\right|}{\left|V_{i}\right|\left|V_{j}\right|\left|V_{k}\right|}$.

3. Main Results

Theorem 2.3. Let G_{1}, G_{2} and G_{3} be graphs with $\left|V_{i}\right|=\left|V\left(G_{i}\right)\right|=n_{i},\left|E_{i}\right|=\left|E\left(G_{i}\right)\right|=m_{i}$, $1 \leq i \leq 3$ and $n_{3}=k$. Then

$$
\begin{aligned}
\prod_{1}\left(G_{1} \varpi_{k}\left(G_{3} \square G_{2}\right)\right) & \leq\left(\frac{M_{1}\left(G_{1}\right)+4 n_{2} m_{1}+n_{2}^{2} n_{1}}{n_{1}}\right)^{n_{1} k} \\
& \times\left(\frac{k M_{1}\left(G_{2}\right)+n_{2} M_{1}\left(G_{3}\right)+8 m_{2} m_{3}+n_{1}^{2} n_{2} k+4 n_{1} k m_{2}+4 n_{1} n_{2} m_{3}}{n_{2} k}\right)^{n_{2} k},
\end{aligned}
$$

and

$$
\begin{aligned}
\prod_{2}\left(G_{1} \varpi_{k}\left(G_{3} \square G_{2}\right)\right) & \leq\left(\frac{n_{2} M_{1}\left(G_{1}\right)+M_{2}\left(G_{1}\right)+n_{2}^{2} m_{1}}{m_{1}}\right)^{m_{1} k} \times\left(\frac{\gamma_{1}}{n_{1} n_{2} k}\right)^{n_{1} n_{2} k} \\
& \times\left(\frac{\left(3 m_{3}+n_{1} k\right) M_{1}\left(G_{2}\right)+\left(3 m_{2}+n_{1} n_{2}\right) M_{1}\left(G_{3}\right)+k M_{2}\left(G_{2}\right)+n_{2} M_{2}\left(G_{3}\right)+\gamma_{2}}{\beta}\right)^{\beta}
\end{aligned}
$$

where $\gamma_{1}=8 n_{1} m_{2} m_{3}+n_{1}^{2} n_{2} m_{3}+n_{1}^{2} k m_{2}, \gamma_{2}=\left(n_{2} m_{3}+k m_{2}\right)\left(4 m_{1}+2 n_{1} n_{2}\right)+k\left(n_{1}^{2} n_{2}^{2}+2 m_{1} n_{1} n_{2}\right)$ and $\beta=k m_{2}+n_{2} m_{3}$. Moreover equalities hold iff all G_{1}, G_{2} and G_{3} are regular graphs.

Proof. Since the set of vertices of $G_{1} \square_{k}\left(G_{3} \square G_{2}\right)$ can be divided into two categories viz., $u \in V\left(G_{1}\right)$ and $u \in V\left(G_{3} \square G_{2}\right)$, so we have

$$
\begin{align*}
\prod_{1}\left(G_{1} \square_{k}\left(G_{3} \square G_{2}\right)\right) & =\prod_{u \in V\left(G_{1} \varpi_{k}\left(G_{3} \square G_{2}\right)\right)} d_{G_{1}}^{2} \varpi_{k}\left(G_{3} \square G_{2}\right) \\
& =\left(\prod_{u \in V\left(G_{1}\right)} d_{G_{1}}^{2} \varpi_{k}\left(G_{3} \square G_{2}\right)\right. \tag{1}\\
1 & (u))^{k} \times \prod_{u=\left(u_{3}, u_{2}\right) \in V\left(G_{3} \square G_{2}\right)} d_{G_{1}}^{2} \varpi_{k}\left(G_{3} \square G_{2}\right) \\
& (u) .
\end{align*}
$$

Using lemma 2.1, expression (1) can be written as

$$
\begin{aligned}
\prod_{1}\left(G_{1} \varpi_{k}\left(G_{3} \square G_{2}\right)\right)= & \left(\prod_{u \in V\left(G_{1}\right)}\left(d_{G_{1}}(u)+n_{2}\right)^{2}\right)^{k} \times \\
& \left.\prod_{u=\left(u_{3}, u_{2}\right) \in V\left(G_{3} \square G_{2}\right)}\left(d_{G_{3}}\left(u_{3}\right)+d_{G_{2}}\left(u_{1}\right)+n_{1}\right)\right)^{2} .
\end{aligned}
$$

As $d_{G_{3} \square G_{2}}\left(u_{3}, u_{2}\right)=d_{G_{3}}\left(u_{3}\right)+d_{G_{3}}\left(u_{2}\right)$ the last expression is

$$
\begin{equation*}
=\left(\prod_{u \in V\left(G_{1}\right)}\left(d_{G_{1}}(u)+n_{2}\right)^{2}\right)^{k} \times \prod_{u \in V\left(G_{3} \square G_{2}\right)}\left(d_{G_{3} \square G_{2}}(u)+n_{1}\right)^{2} \tag{2}
\end{equation*}
$$

and by lemma 2.2 we can write expression (2) as

$$
\begin{align*}
\prod_{1}\left(G_{1} \varpi_{k}\left(G_{3} \square G_{2}\right)\right) & \leq\left(\frac{\sum_{u \in V\left(G_{1}\right)}\left(d_{G_{1}}^{2}(u)+2 n_{2} d_{G_{1}}(u)+n_{2}^{2}\right)}{n_{1}}\right)^{n_{1} k} \\
& \times\left(\frac{\sum_{u \in V\left(G_{3} \square G_{2}\right)}\left(d_{G_{3} \square G_{2}}^{2}(u)+2 n_{1} d_{G_{3} \square G_{2}}(u)+n_{1}^{2}\right.}{n_{2} k}\right)^{n_{2} k} . \tag{3}
\end{align*}
$$

Now

$$
\begin{equation*}
\sum_{u \in V\left(G_{1}\right)}\left(d_{G_{1}}^{2}(u)+2 n_{2} d_{G_{1}}(u)+n_{2}^{2}\right)=M_{1}\left(G_{1}\right)+4 n_{2} m_{1}+n_{2}^{2} n_{1}, \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{u \in V\left(G_{3} \square G_{2}\right)}\left(d_{G_{3} \square G_{2}}^{2}(u)+2 n_{1} d_{G_{3} \square G_{2}}(u)+n_{1}^{2}\right)=M_{1}\left(G_{3} \square G_{2}\right)+n_{1}^{2} n_{2} k+4 n_{1}\left|E\left(G_{3} \square G_{2}\right)\right| . \tag{5}
\end{equation*}
$$

Using theorem 2.1 and the fact that $\left|E\left(G_{3} \square G_{2}\right)\right|=k m_{2}+n_{2} m_{3}$, we write the expression (5) as

$$
\sum_{u \in V\left(G_{3} \square G_{2}\right)}\left(d_{G_{3} \square G_{2}}^{2}(u)+2 n_{1} d_{G_{3} \square G_{2}}(u)+n_{1}^{2}\right)=n_{2} M_{1}\left(G_{3}\right)+k M_{1}\left(G_{2}\right)+8 m_{2} m_{3}+n_{1}^{2} n_{2} k
$$

$$
\begin{equation*}
+4 n_{1} k m_{2}+4 n_{1} n_{2} m_{3} . \tag{6}
\end{equation*}
$$

From (3), (4) and (6), we have the first inequality.
Moreover equality holds iff

$$
\begin{align*}
& d_{G_{1}}^{2}\left(u_{i}\right)+2 n_{2} d_{G_{1}}\left(u_{i}\right)+n_{2}^{2}=d_{G_{1}}^{2}\left(u_{j}\right)+2 n_{2} d_{G_{1}}\left(u_{j}\right)+n_{2}^{2}\left(u_{i}, u_{j} \in V\left(G_{1}\right)\right) \\
& \quad \Longrightarrow\left(d_{G_{1}}\left(u_{i}\right)-d_{G_{1}}\left(u_{j}\right)\right)\left(d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{j}\right)+2 n_{2}\right)=0 \tag{7}
\end{align*}
$$

and

$$
\begin{aligned}
& \quad d_{G_{3} \square G_{2}}^{2}(u)+2 n_{1} d_{G_{3} \square G_{2}}(u)+n_{1}^{2}=d_{G_{3} \square G_{2}}^{2}\left(u^{\prime}\right)+2 n_{1} d_{G_{3} \square G_{2}}\left(u^{\prime}\right)+n_{1}^{2}\left(u, u^{\prime} \in V\left(G_{3} \square G_{2}\right)\right) \\
& (8) \quad \Longrightarrow\left(d_{G_{3} \square G_{2}}(u)-d_{G_{3} \square G_{2}}\left(u^{\prime}\right)\right)\left(d_{G_{3} \square G_{2}}(u)+d_{G_{3} \square G_{2}}\left(u^{\prime}\right)+2 n_{1}\right)=0 .
\end{aligned}
$$

So from (7) and (8), we can conclude that equality holds iff both G_{1} and $G_{3} \square G_{2}$ are regular. Since the set of edges of $G_{1} \square_{k}\left(G_{3} \square G_{2}\right)$ can again be divided into three categories viz., $u v \in E\left(G_{1}\right), u v \in E\left(G_{3} \square G_{2}\right)$, and $u v \in E\left(G_{1} \square_{k}\left(G_{3} \square G_{2}\right)\right)$ s.t. $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{3} \square G_{2}\right)$, so we have

$$
\begin{align*}
\prod_{2}\left(G_{1} \square_{k}\left(G_{3} \square G_{2}\right)\right) & =\left(\prod_{u v \in E\left(G_{1}\right)}\left(d_{G_{1}}(u)+n_{2}\right)\left(d_{G_{1}}(v)+n_{2}\right)\right)^{k} \\
& \times \prod_{u v \in E\left(G_{3} \square G_{2}\right)}\left(d_{G_{3} \square G_{2}}(u)+n_{1}\right)\left(d_{G_{3} \square G_{2}}(v)+n_{1}\right) \\
& \times \prod_{u v \in E\left(G_{1} \square_{k}\left(G_{3} \square G_{2}\right), u \in V\left(G_{1}\right) \text { and } v \in V\left(G_{3} \square G_{2}\right)\right.}\left(d_{G_{1}}(u)+n_{2}\right)\left(d_{G_{3} \square G_{2}}(v)+n_{1}\right) \tag{9}
\end{align*}
$$

Again using lemma 2.1, expression (9) can be written as

$$
\begin{align*}
\prod_{2}\left(G_{1} \square_{k}\left(G_{3} \square G_{2}\right)\right) & \leq\left(\frac{\sum_{u v \in E\left(G_{1}\right)}\left(d_{G_{1}}(u)+n_{2}\right)\left(d_{G_{1}}(v)+n_{2}\right)}{m_{1}}\right)^{m_{1} k} \\
& \times\left(\frac{\sum_{u v \in E\left(G_{3} \square G_{2}\right)}\left(d_{G_{3} \square G_{2}}(u)+n_{1}\right)\left(d_{G_{3} \square G_{2}}(v)+n_{1}\right)}{k m_{2}+n_{2} m_{3}}\right)^{k m_{2}+n_{2} m_{3}} \\
& \times\left(\frac{\sum_{u v \in E\left(G_{1} \square_{k}\left(G_{3} \square G_{2}\right)\right.}\left(d_{G_{1}}(u)+n_{2}\right)\left(d_{G_{3} \square G_{2}}(v)+n_{1}\right)}{n_{1} n_{2} k}\right)^{n_{1} n_{2} k} \tag{10}
\end{align*}
$$

Now

$$
\begin{equation*}
\sum_{u v \in E\left(G_{1}\right)}\left(d_{G_{1}}(u)+n_{2}\right)\left(d_{G_{1}}(v)+n_{2}\right)=k\left(M_{2}\left(G_{1}\right)+n_{2} M_{1}\left(G_{1}\right)+n_{2}^{2} m_{1}\right) \tag{11}
\end{equation*}
$$

also using theorem 2.1 and theorem 2.2, we have
$\sum_{u v \in E\left(G_{3} \square G_{2}\right)}\left(d_{G_{3} \square G_{2}}(u)+n_{1}\right)\left(d_{G_{3} \square G_{2}}(v)+n_{1}\right)$

$$
\begin{align*}
& =k M_{2}\left(G_{2}\right)+n_{2} M_{2}\left(G_{3}\right)+\left(3 m_{3}+n_{1} k\right) M_{1}\left(G_{2}\right)+\left(3 m_{2}+n_{1} n_{2}\right) M_{1}\left(G_{3}\right) \\
& +8 n_{1} m_{2} m_{3}+n_{1}^{2} n_{2} m_{3}+n_{1}^{2} k m_{2} \tag{12}
\end{align*}
$$

and

$$
\begin{align*}
\sum_{u v \in E\left(G_{1} \square_{k}\left(G_{3} \square G_{2}\right)\right.}\left(d_{G_{1}}(u)+n_{2}\right)\left(d_{G_{3} \square G_{2}}(v)+n_{1}\right)= & \left(n_{2} m_{3}+k m_{2}\right)\left(4 m_{1}+2 n_{1} n_{2}\right) \\
& +k\left(n_{1}^{2} n_{2}^{2}+2 m_{1} n_{1} n_{2}\right) . \tag{13}
\end{align*}
$$

Using (11), (12), (13) in (10), we have the second inequality.
From lemma 2.2 for connected graphs G_{1}, G_{2} and G_{3} equality holds iff

$$
\left(d_{G_{1}}(u)+n_{2}\right)\left(d_{G_{1}}(v)+n_{2}\right)=\left(d_{G_{1}}(u)+n_{2}\right)\left(d_{G_{1}}\left(v^{\prime}\right)+n_{2}\right)\left(\text { for any } u v, u v^{\prime} \in E\left(G_{1}\right)\right),
$$

for any $u v, u v^{\prime} \in E\left(G_{3} \square G_{2}\right)$,

$$
\left.d_{G_{3} \square G_{2}}(u)+n_{1}\right)\left(d_{G_{3} \square G_{2}}(v)+n_{1}=d_{G_{3} \square G_{2}}(u)+n_{1}\right)\left(d_{G_{3} \square G_{2}}\left(v^{\prime}\right)+n_{1},\right.
$$

and for any $u v, u v^{\prime} \in E\left(G_{1} \square_{k}\left(G_{3} \square G_{2}\right), u \in V\left(G_{1}\right)\right.$ and $v, v^{\prime} \in V\left(G_{3} \square G_{2}\right)$,

$$
\left.d_{G_{1}}(u)+n_{2}\right)\left(d_{G_{3} \square G_{2}}(v)+n_{1}=d_{G_{1}}(u)+n_{2}\right)\left(d_{G_{3} \square G_{2}}\left(v^{\prime}\right)+n_{1} .\right.
$$

Hence equality holds in the second inequality iff all the graphs G_{1}, G_{2} and G_{3} are connected regular graphs.

Theorem 2.4. Let G_{1}, G_{2}, G_{3} and G_{4} be graphs with $\left|V_{i}\right|=\left|V\left(G_{i}\right)\right|=n_{i},\left|E_{i}\right|=\left|E\left(G_{i}\right)\right|=m_{i}$, $1 \leq i \leq 3$ and $n_{3}=k=n_{4}$. Then

$$
\begin{aligned}
\prod_{1}\left(\left(G_{4} \square G_{1}\right) \varpi_{k}\left(G_{3} \square G_{2}\right)\right) & \leq\left(\frac{k M_{1}\left(G_{1}\right)+n_{1} M_{1}\left(G_{4}\right)+8 m_{1} m_{4}+4 n_{2}\left(k m_{1}+n_{1} m_{4}\right)+n_{2}^{2} k n_{1}}{n_{1} k}\right)^{n_{1} k} \\
& \times\left(\frac{k M_{1}\left(G_{2}\right)+n_{2} M_{1}\left(G_{3}\right)+8 m_{2} m_{3}+4 n_{1}\left(k m_{2}+n_{2} m_{3}\right)+n_{1}^{2} k n_{2}}{n_{2} k}\right)^{n_{2} k},
\end{aligned}
$$

and

$$
\begin{aligned}
& \Pi_{2}\left(\left(G_{4} \square G_{1}\right) \varpi_{k}\left(G_{3} \square G_{2}\right)\right) \\
& \leq\left(\frac{k M_{2}\left(G_{1}\right)+n_{1} M_{2}\left(G_{4}\right)+3 m_{4} M_{1}\left(G_{1}\right)+3 m_{1} M_{1}\left(G_{4}\right)+n_{2}\left(k M_{1}\left(G_{1}\right)+n_{1} M_{1}\left(G_{4}\right)+\delta_{14}\right)}{m_{1} k+m_{4} n_{1}}\right)^{m_{1} k+m_{4} n_{1}} \\
&\left(\frac{k M_{2}\left(G_{2}\right)+n_{2} M_{2}\left(G_{3}\right)+3 m_{3} M_{1}\left(G_{2}\right)+3 m_{2} M_{1}\left(G_{3}\right)+n_{1}\left(k M_{1}\left(G_{2}\right)+n_{2} M_{1}\left(G_{3}\right)+\delta_{23}\right)}{m_{2} k+m_{3} n_{2}}\right)^{m_{2} k+m_{3} n_{2}} \\
& \times\left(\frac{\gamma_{2}+n_{1} n_{2} \sum_{i=1}^{k} d_{G_{4}}\left(u_{4}^{i}\right) d_{G_{3}}\left(v_{3}^{i}\right)}{n_{1} n_{2} k}\right)^{n_{1} n_{2} k}
\end{aligned}
$$

where $u_{4}^{i} \in V\left(G_{4}\right), v_{3}^{i} \in V\left(G_{3}\right)$ and for fixed $i,\left(u_{4}^{i}, u_{1}\right)$ is adjacent to $\left(v_{3}^{i}, v_{2}\right)$ for any $u_{1} \in V\left(G_{1}\right)$, $v_{2} \in V\left(G_{2}\right)$ and $\delta_{p q}=8 m_{p} m_{q}+n_{p} n_{2} m_{q}+k n_{q} m_{p}, \quad \gamma_{2}=4 n_{1} m_{2} m_{4}+2 n_{1}^{2} n_{2} m_{4}+4 n_{2} m_{1} m_{3}+$ $4 m_{1} m_{2} k+2 k n_{1} m_{1} n_{2}+2 n_{1} n_{2}^{2} m_{3}+2 k n_{1} n_{2} m_{2}+k n_{1}^{2} n_{2}^{2}$. Moreover equalities hold iff all G_{1}, G_{2}, G_{3} and G_{4} are regular graphs.

Proof. There are three two types of vertices present in $\left(G_{4} \square G_{1}\right) \square_{k}\left(G_{3} \square G_{2}\right)$, they are $u \in$ $G_{4} \square G_{1}$ and $u \in G_{3} \square G_{2}$.

$$
\begin{align*}
\prod_{1}\left(\left(G_{4} \square G_{1}\right) \varpi_{k}\left(G_{3} \square G_{2}\right)\right) & =\prod_{u \in V\left(\left(G_{4} \square G_{1}\right) \varpi_{k}\left(G_{3} \square G_{2}\right)\right)} d_{\left(G_{4} \square G_{1}\right) \rrbracket_{k}\left(G_{3} \square G_{2}\right)}^{2}(u) \\
& =\prod_{u=\left(u_{3}, u_{2}\right) \in V\left(G_{3} \square G_{2}\right)} d_{\left(G_{4} \square G_{1}\right) \rrbracket_{k}\left(G_{3} \square G_{2}\right)}^{2}(u) \\
& \times \prod_{u=\left(u_{4}, u_{1}\right) \in V\left(G_{3} \square G_{2}\right)} d_{\left(G_{4} \square G_{1}\right) \varpi_{k}\left(G_{3} \square G_{2}\right)}^{2}(u), \tag{14}
\end{align*}
$$

using lemma 2.1 and 2.2 , we can write (14) as

$$
\begin{align*}
\prod_{1}\left(\left(G_{4} \square G_{1}\right) \varpi_{k}\left(G_{3} \square G_{2}\right)\right) & \leq\left(\frac{\sum_{u \in V\left(G_{4} \square G_{1}\right)}\left(d_{\left(G_{4} \square G_{1}\right)}(u)+n_{2}\right)^{2}}{n_{1} k}\right)^{n_{1} k} \\
& \times\left(\frac{\sum_{u \in V\left(G_{3} \square G_{2}\right)}\left(d_{\left(G_{3} \square G_{2}\right)}(u)+n_{1}\right)^{2}}{n_{2} k}\right)^{n_{2} k} . \tag{15}
\end{align*}
$$

Now

$$
\begin{aligned}
\sum_{u \in V\left(G_{4} \square G_{1}\right)}\left(d_{\left(G_{4} \square G_{1}\right)}(u)+n_{2}\right)^{2} & =k M_{1}\left(G_{1}\right)+n_{1} M_{1}\left(G_{4}\right)+8 m_{1} m_{4}+4 n_{2}\left(k m_{1}+n_{1} m_{4}\right) \\
& +n_{2}^{2} k n_{1},
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{u \in V\left(G_{3} \square G_{2}\right)}\left(d_{\left(G_{3} \square G_{2}\right)}(u)+n_{1}\right)^{2} & =k M_{1}\left(G_{2}\right)+n_{2} M_{1}\left(G_{3}\right)+8 m_{2} m_{3}+4 n_{1}\left(k m_{2}+n_{2} m_{3}\right) \\
& +n_{1}^{2} k n_{2} .
\end{aligned}
$$

Hence we have the first inequality of the theorem.
For equality we must have

$$
\begin{equation*}
\left(d_{\left(G_{4} \square G_{1}\right)}(u)+n_{2}\right)^{2}=\left(d_{\left(G_{4} \square G_{1}\right)}(v)+n_{2}\right)^{2} \quad\left(\text { for any } u v \in E\left(G_{4} \square G_{1}\right)\right), \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(d_{\left(G_{3} \square G_{2}\right)}(u)+n_{1}\right)^{2}=\left(d_{\left(G_{3} \square G_{2}\right)}(v)+n_{1}\right)^{2} \quad\left(\text { for any } u v \in E\left(G_{3} \square G_{2}\right)\right) . \tag{17}
\end{equation*}
$$

From (16) and (17) it is easy to show that the equality holds iff all the graphs G_{1}, G_{2}, G_{3} and G_{4} are regular.

Now the set of edges of $\left(G_{4} \square G_{1}\right) \square_{k}\left(G_{3} \square G_{2}\right)$ can again classified into three categories viz., $u v \in E\left(G_{4} \square G_{1}\right), u v \in E\left(G_{3} \square G_{2}\right)$, and $u v \in E\left(\left(G_{4} \square G_{1}\right) \square_{k}\left(G_{3} \square G_{2}\right)\right)$ where $u \in V\left(G_{4} \square G_{1}\right)$, $v \in V\left(G_{3} \square G_{2}\right)$. Hence we have

$$
\begin{align*}
& \prod_{1}\left(\left(G_{4} \square G_{1}\right) \varpi_{k}\left(G_{3} \square G_{2}\right)\right)=\prod_{u v \in E\left(G_{4} \square G_{1}\right)}\left(d_{\left(G_{4} \square G_{1}\right)}(u)+n_{2}\right)\left(d_{\left(G_{4} \square G_{1}\right)}(v)+n_{2}\right) \\
& \\
& \times \prod_{u v \in E\left(G_{3} \square G_{2}\right)}\left(d_{\left(G_{3} \square G_{2}\right)}(u)+n_{1}\right)\left(d_{\left(G_{3} \square G_{2}\right)}(v)+n_{1}\right) \tag{18}\\
& 8) \quad \times \prod_{u v \in E\left(\left(G_{4} \square G_{1}\right) \varpi_{k}\left(G_{3} \square G_{2}\right)\right.}\left(d_{\left(G_{4} \square G_{1}\right)}(u)+n_{2}\right)\left(d_{\left(G_{3} \square G_{2}\right)}(v)+n_{1}\right)
\end{align*}
$$

Again using lemma 2.2, we have

$$
\begin{align*}
\prod_{1}\left(\left(G_{4} \square G_{1}\right) \varpi_{k}\left(G_{3} \square G_{2}\right)\right) & \leq\left(\frac{\sum_{u v \in E\left(G_{4} \square G_{1}\right)}\left(d_{\left(G_{4} \square G_{1}\right)}(u)+n_{2}\right)\left(d_{\left(G_{4} \square G_{1}\right)}(v)+n_{2}\right)}{n_{1} m_{4}+k m_{1}}\right)^{n_{1} m_{4}+k m_{1}} \\
& \times\left(\frac{\sum_{u v \in E\left(G_{3} \square G_{2}\right)}\left(d_{\left(G_{3} \square G_{2}\right)}(u)+n_{1}\right)\left(d_{\left(G_{3} \square G_{2}\right)}(v)+n_{1}\right)}{n_{2} m_{3}+m_{2} k}\right)^{n_{2} m_{3}+m_{2} k} \\
& \times\left(\frac{\sum_{u v \in E\left(\left(G_{4} \square G_{1}\right) \varpi_{k}\left(G_{3} \square G_{2}\right)\right.}\left(d_{\left(G_{4} \square G_{1}\right)}(u)+n_{2}\right)\left(d_{\left(G_{3} \square G_{2}\right)}(v)+n_{1}\right)}{k n_{1} n_{2}}\right)^{k n_{1} n_{2}} . \tag{19}
\end{align*}
$$

Hence we have the second inequality of the theorem from the following expressions.

$$
\begin{aligned}
\sum_{u v \in E\left(G_{4} \square G_{1}\right)}\left(d_{\left(G_{4} \square G_{1}\right)}(u)+n_{2}\right)\left(d_{\left(G_{4} \square G_{1}\right)}(v)+n_{2}\right)= & k M_{2}\left(G_{1}\right)+n_{1} M_{2}\left(G_{4}\right)+3 m_{4} M_{1}\left(G_{1}\right) \\
& +3 m_{1} M_{1}\left(G_{4}\right)+n_{2}\left(k M_{1}\left(G_{1}\right)+n_{1} M_{1}\left(G_{4}\right)\right. \\
& \left.+8 m_{1} m_{4}+n_{1} n_{2} m_{4}+k m_{1}\right),
\end{aligned}
$$

$$
\begin{aligned}
\sum_{u v \in E\left(G_{3} \square G_{2}\right)}\left(d_{\left(G_{3} \square G_{2}\right)}(u)+n_{1}\right)\left(d_{\left(G_{3} \square G_{2}\right)}(v)+n_{1}\right)= & k M_{2}\left(G_{2}\right)+n_{2} M_{2}\left(G_{3}\right)+3 m_{3} M_{1}\left(G_{2}\right) \\
& +3 m_{2} M_{1}\left(G_{3}\right)+n_{2}\left(k M_{1}\left(G_{2}\right)+n_{1} M_{1}\left(G_{3}\right)\right. \\
& \left.+8 m_{2} m_{3}+n_{1} n_{2} m_{3}+k m_{2}\right),
\end{aligned}
$$

and finally let $u \in V\left(G_{4} \square G_{1}\right)$ and $v \in V\left(G_{3} \square G_{2}\right)$ s.t. $u=\left(u_{4}^{i}, u_{1}\right), v=\left(v_{3}^{i}, v_{2}\right)$, where $V\left(G_{3}\right)=$ $\left\{u_{3}^{1}, u_{3}^{2}, \ldots, u_{3}^{k}\right\}$ and $V\left(G_{4}\right)=\left\{v_{4}^{1}, v_{4}^{2}, \ldots, v_{4}^{k}\right\}$. Also for fixed i, u is adjacent to v for all $u_{1} \in V\left(G_{1}\right)$ and $v_{2} \in V\left(G_{2}\right)$. Then we have

$$
\begin{aligned}
\sum_{u v \in E\left(\left(G_{4} \square G_{1}\right) \mid \varpi_{k}\left(G_{3} \square G_{2}\right)\right)} d(u) d(v)= & \sum_{i=1}^{k} \sum_{u_{2} \in V\left(G_{2}\right)} \sum_{v_{1} \in V\left(G_{1}\right)}\left(d_{G_{3}}\left(u_{3}^{i}\right)+d_{G_{2}}\left(u_{2}\right)+n_{1}\right)\left(d_{G_{4}}\left(u_{4}^{i}\right)+\right. \\
& \left.d_{G_{1}}\left(v_{1}\right)+n_{2}\right) \\
= & 4 n_{1} m_{2} m_{4}+2 n_{1}^{2} n_{2} m_{4}+4 n_{2} m_{1} m_{3}+4 m_{1} m_{2} k+2 k n_{1} m_{1} n_{2} \\
+ & 2 n_{1} n_{2}^{2} m_{3}+2 k n_{1} n_{2} m_{2}+k n_{1}^{2} n_{2}^{2}+n_{1} n_{2} \sum_{i=1}^{k} d_{G_{4}}\left(u_{4}^{i}\right) d_{G_{3}}\left(v_{3}^{i}\right) .
\end{aligned}
$$

For equality of the second result in the theorem, we must have for any $u v u v^{\prime} \in E\left(G_{4} \square G_{1}\right)$

$$
\begin{equation*}
\left(d_{\left(G_{4} \square G_{1}\right)}(u)+n_{2}\right)\left(d_{\left(G_{4} \square G_{1}\right)}(v)+n_{2}\right)=\left(d_{\left(G_{4} \square G_{1}\right)}(u)+n_{2}\right)\left(d_{\left(G_{4} \square G_{1}\right)}\left(v^{\prime}\right)+n_{2}\right), \tag{20}
\end{equation*}
$$

and for any $u v u v^{\prime} \in E\left(G_{3} \square G_{2}\right)$

$$
\begin{equation*}
\left(d_{\left(G_{3} \square G_{2}\right)}(u)+n_{1}\right)\left(d_{\left(G_{3} \square G_{2}\right)}(v)+n_{1}\right)=\left(d_{\left(G_{3} \square G_{2}\right)}(u)+n_{1}\right)\left(d_{\left(G_{3} \square G_{2}\right)}\left(v^{\prime}\right)+n_{1}\right) \tag{21}
\end{equation*}
$$

From expression (20) and (21), we can easily see that equality holds iff all the graphs G_{1}, G_{2}, G_{3} and G_{4} are regular.

Conflict of Interests

The authors declare that there is no conflict of interests.

REFERENCES

[1] Basavanagoud, B., et al., Multiplicative Zagreb Indices of Generalized Transformation Graphs, Bull. Soc. Math., Banja Luaka 7 (2016), 173-179.
[2] Basavanagoud, B., Patil, S., Multiplicative Zagreb Indices and Coindices of Some Derived Graphs, Opuscula Math. 36 (3) (2016), 287-299.
[3] Das, K. C., et al., The multiplicative Zagreb indices of graph operations, J. Inequal. Appl. 2013 (2013), Article ID 90.
[4] Deng, H., Saralab, D., Ayyaswamy, S.K., Balachandran, S., The Zagreb indices of four operations on graphs, Appl. Math. Comput. 275 (2016), 422-431.
[5] Diudea, M. V., Gutman, I., Wiener-Type Topological Indices, Croat. Chem. Acta 71 (1) (1998), 21-51.
[6] Fonseca, C.M.d., Stevanovic, D., Further Properties of the Second Zagreb Index, MATCH Commun. Math. Comput. Chem. 72 (2014), 655-668.
[7] Gutman, I., Degree-Based Topological Indices, Croat. Chem. Acta 86 (4) (2013), 351-361.
[8] Gutman, I., Das, K. C., The First Zagreb Index 30 Years After, MATCH Commun. Math. Comput. Chem. 50 (2004), 83-92.
[9] Gutman, I., Trinajstić, N., Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (4) (1972), 535-538.
[10] Gutman, I., Multiplicative Zagreb indices of trees. Bull. Soc. Math. Banja Luka 18 (2011), 17-23.
[11] Hammack, R., Imrich, W., Klavžar, S., Handbook of products graphs, CRC Press, 2011.
[12] Khalifeh, M. H., Yousefi-Azari, H., Ashrafi, A. R., The first and second Zagreb indices of some graph operations, Discr. Appl. Math. 157 (2009), 804-811.
[13] Nacaroglu, Y., Maden, A. D., The Multiplicative Zagreb Coindices of graph operations, Utilitas Mathematica 102 (2017), 19-38.
[14] Todeschini, R., Ballabio, D., Consonni, V., Novel molecular descriptors based on functions of new vertex degrees. In Gutman, I, Furtula, B (eds.) Novel Molecular Structure Descriptors - Theory and Applications I, 73-100. Univ. Kragujevac, Kragujevac (2010).
[15] Wang, D., Hou, Y., Tang, Z., The adjacency spectrum of two new operations of graphs, AKCE Int. J. Graphs Combin. In Press (2017).
[16] West, D. B., Introduction to graph theory, Prentice Hall India, 2002.
[17] Zhou, B., Gutman, I., Further properties of Zagreb indices, MATCH Commun. Math. Comput. Chem. 54 (2005), 233-239.

[^0]: E-mail address: a.bharali@dibru.ac.in
 Received June 24, 2017

