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1. INTRODUCTION 

As a generalization of metric spaces B.C.Dhage [1,2] introduced D- metric spaces. Later many 

researchers proved many of their results are not valid. As a probable modification to D- metric 

spaces, Shaban Sedghi, Nabi Shobe and Haiyun Zhou [4] introduced D*- metric spaces. In 2006, 

Zead Mustafa and Brailey Sims [6] have initiated G- metric spaces, while Shaban Sedghi, Nabi 

Shobe and Abdelkrim Aliouche [5] considered S-mertic spaces in 2012. Of these three 

generalizations, the S-metric space generated interest in researchers. The notion of commutativity 

is generalized by Gerald Jungck [3] by initiating compatibility. 
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 The purpose of this paper is to prove a common fixed point theorem for two self maps of an S-

metric space with rational inequality. 

 

2. PRELIMINARIES 

Definition 2.1 [5]:  Let X  be a non empty set. By an S −metric we mean a function  
3: [0, )S X →   which satisfies the following conditions for all , , ,x y z w X  

  (a)  ( , , ) 0S x y z   

  (b)  ( , , ) 0S x y z =  if and only if x y z= = . 

  (c)  ( , , ) ( , , ) ( , , ) ( , , )S x y z S x x w S y y w S z z w + +   

    Also, the pair ( , )X S  is called a S -metric space.  

Example 2.2: Let X =  and 3: [0, )S →   be defined by ( , , ) 2S x y z y z x y z= + − + −  

for all , ,x y z X , then ( , )X S  is a S- metric space.  

Remark 2.3:It was shown in ( [ 5], Lemma 2.5) that ( , , ) ( , , )S x x y S y y x=  for all ,x y X . 

Definition 2.4: Let ( , )X S  be a S −metric space. A sequence{ }nx  in X  is said to Convergent,  

if there is a x X such that ( , , ) 0n nS x x x →  as n → ; that is, for each 0  ,there exists a 

0n    such that for all  0n n  ,we have ( , , )n nS x x x    and we write in this case that 

lim n
n

x x
→

= . 

Definition 2.5: Let ( , )X S  be a S −metric space. A sequence  { }nx  in X  is said to be a 

Cauchy sequence, if for each 0  , there exists a 0n   such that ( , , )n n mS x x x   for 

each 0,n m n . 
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It is easy to see that (in fact proved in [5], Lemma 2.10 and Lemma 2.11), if { }nx
 
converges to 

x  in ( , )X S  then x  is unique  and { }nx  is a Cauchy sequence in ( , )X S . However, a 

Cauchy sequence in ( , )X S  need not be convergent as shown in the following example 

Example 2.6 : Let (0,1]X =   and ( , , )S x y z x y y z z x= − + − + −  for , ,x y z X , so that 

( , )X S  is a S −metric space. Taking
1

nx
n

=  for 1,2,3,...n =  then  
1 1

( , , ) 2n n mS x x x
n m

= −  

so that   ( , , ) 0n n mS x x x → as ,n m→  proving that { }nx  is a Cauchy sequence in ( , )X S  but 

{ }nx  does not converge to any point in X   

Definition 2.7:  Let ( , )X S  be an S - metric space. If there exists sequences { }nx and { }ny  in 

X such that lim n
n

x x
→

=
 
and lim n

n
y y

→
=

 
then lim ( , , ) ( , , )n n n

n
S x x y S x x y

→
= . Then we say that 

( , , )S x y z  is continuous in x  and y . 

Definition 2.8 : If g and f  are selfmaps of a S  - metric space ( , )X S  such that for every 

sequence { }nx
 
in X with lim limn n

n n
gx fx t

→ →
= =

 
for some t X  we have

lim ( , , ) 0n n n
n

S gfx gfx fgx
→

=  then g and f  are said to be compatible. 

Trivially commuting self maps of a S -metric space are compatible but not conversely. As an 

example we have the following. 

Example 2.9: Let [0,1]X =  with ( , , )S x y z x y y z z x= − + − + −  for , ,x y z X . Then S

is a S - metric on X . Define : , :g X X f X X→ → by
2

2

x
gx = and 

2

3

x
fx =   for .x X   

we now prove that ,g f  are compatible.  
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Let { }nx be a sequence in X with lim limn n
n n

gx fx t
→ →

= =  for some .t X Then 

2 2

lim lim
2 3

n n

n n

x x
t

→ →
= =  so that 3 2t t=  which shows that 0t = . Also since 

4

18

n
n

x
gfx =  and then we 

have 
4 4 4 4

lim ( , , ) lim , , lim 0
18 18 12 18

n n n n
n n n

n n n

x x x x
S gfx gfx fgx S

→ → →

 
= = = 

 
  

Showing that ( , )g f  is a pair of compatible self maps. But 
1

(1)
18

gf =  and  
1

(1)
12

fg =  

proves  that (1) (1)gf fg   showing that that g and f  are not commutative 

Definition 2.10: Let g and f  be self maps of a S −metric space such that ( ) ( ).g X f X  For 

any 0 ,x X  if { }nx  is a sequence in X such  that 1n nfx gx −=  for 0n  . Then { }nx  is 

called an associated sequence of 0x  relative to the two self maps g and f . 

 

3. MAIN RESULTS 

Before stating main Theorem, we prove an essential Lemma.   

Lemma 3.1: Let f  and g  be compatible self maps of an S-metric space . Suppose 

lim limn n
n n

fx gx x
→ →

= =   for some  and some sequence  in , then lim n
n

gfx fx
→

=  if  

f  is continuous. 

Proof: suppose f   and g   are compatible mappings and    for some 

. Then 

(3.1.1)  

since  f  is continuous and 
 
as  we have 

(3.1.2)  . 

From (3.1.1) and (3.1.2) we get 

 which imply . 

( , )X S

x X { }nx X

lim limn n
n n

fx gx x
→ →

= =

x X

lim ( , , ) 0n n n
n

S fgx fgx gfx
→

=

ngx x→ n →

lim n
n

fgx fx
→

=

lim ( , , ) 0n
n

S fx fx gfx
→

= lim n
n

gfx fx
→

=
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 Proving the lemma. 

Theorem 3.2.  Let  and g  be self maps of a 𝑆-metric space  satisfying 

 (i)  

 (ii)  

 for all  where  , 0, 1    +   

 (iii) one  of   and g  is continuous 

 (iv)  and g  are compatible 

 (v) an associated sequence  of a point  relative to the self maps   and      

g  is such that  converges to  for some point , 

 Then  is the common fixed point of   and g . 

Proof:  From (v), the associated sequence  of  relative to the  selfmaps   and g  

such that  for and  as  it follows that  as  

 Case(i): If   is continuous, then  we have by  Lemma 3.1 that 

(3.2.1)  
 

 

 and also 

(3.2.2)  

 Now from (ii) we get 

2 2 2 2

1
1 2 2

1

2 2

1

( , , )[1 ( , , )]
( , , )

1 ( , , )

[ ( , , )]

n n n n n n
n n n

n n n

n n n

S f x f x gx S f x f x gfx
S gfx gfx gx

S f x f x fx

S f x f x fx

−
−

−

−

+


+

+

 

Where , 0, 1    +   

on letting in the above inequality and using (3.2.1) and (3.2.2), we get 

f ( , )X S

( ) ( )g X f X

( , , )[1 ( , , )]
( , , ) ( , , )

1 ( , , )

S fx fx gy S fx fx gx
S gx gx gy S fx fx fy

S fx fx fy




+
 +

+

,x y X

f

f

{ }nx 0x X f

{ }nfx t t X

t f

{ }nx 0x f

1n nfx gx −= 1n 
nfx t→ n → ngx t→ n →

f

lim n
n

gfx ft
→

=

2lim .n
n

f x ft
→

=

n →
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( , , )[1 ( , , )]
( , , ) ( , , )

1 ( , , )

S ft ft t S ft ft ft
S ft ft t S ft ft t

S ft ft t




+
 +

+
 

 i.e    
( , , )

( , , ) ( , , )
1 ( , , )

S ft ft t
S ft ft t S ft ft t

S ft ft t


 +

+
  

          ( , , ) ( ) ( , , )S ft ft t S ft ft t  +  

 which implies  and hence   

 Also from (ii), we get 

 1
1 1

1

( , , )[1 ( , , )]
( , , ) ( , , )

1 ( , , )

n
n n

n

S ft ft gx S ft ft gt
S gt gt gx S ft ft fx

S ft ft fx


−

− −

−

+
 +

+
 

 where , 0, 1    +   

 Letting  in the above inequality, we obtain 

  

since  , we get   which implies  , showing that   is a common fixed 

point of f  and g . 

Case(ii) : Now suppose that g  is a continuous , then we have by Lemma 3.1 , that 

(3.2.3)  

(3.2.4)  

 Now from (ii), we get 

(3.2.5) 

2
2 2 1

1

1

1

( , , )[1 ( , , )]
( , , )

1 ( , , )

[ ( , , )]

n n n n n n
n n n

n n n

n n n

S fgx fgx gx S fgx fgx g x
S g x g x gx

S fgx fgx fx

S fgx fgx fx

−
−

−

−

+


+

+

 

 where , 0, 1    +    

on letting  in the above inequality and using (3.2.3) and (3.2.4), we get 

( , , ) 0S ft ft t = ft t=

n →

( , , )[1 ( , , )]
( , , ) ( , , )

1 ( , , )

S ft ft t S ft ft t
S gt gt t S ft ft t

S ft ft t




+
 +

+

ft t= ( , , ) 0S gt gt t = gt t= t

lim n
n

fgx gt
→

=

2lim n
n

g x gt
→

=

n →
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( , , )[1 ( , , )]
( , , ) ( , , )

1 ( , , )

( ) ( , , )

S gt gt t S gt gt gt
S gt gt t S gt gt t

S gt gt t

S gt gt t




 

+
 +

+

 +

 

 which implies ( , , ) 0S gt gt t =  and hence gt t=  

 (since , ) 

 From (i), we can find  such that . Now from (ii) we have 

 

2
2 2 ( , , )[1 ( , , )]

( , , )
1 ( , , )

[ ( , , )]

n n n n n
n n

n n

n n

S fgx fgx gw S fgx fgx g x
S g x g x gw

S fgx fgx fw

S fgx fgx fw

+


+

+

 

 where , 0, 1    +    

Letting  in the above inequality and using (3.2.3) and (3.2.4), we obtain 

  

 since , we obtain 

  

 That is,  

 which implies that since  

 thus  

 Now put  for  then  and  as   since 

  and  are compatible 

  giving   which implies that  

since  we get  and since , it follows that , showing that  

is a common fixed point of f  and g . 

1 + 
1

1 ( , , ) 1 1
1 ( , , )

S gt gt t
S gt gt t

+   
+

w X gt fw=

n →

( , , )[1 ( , , )]
( , , ) ( , , )

1 ( , , )

S gt gt gw S gt gt gt
S gt gt gw S gt gt fw

S gt gt fw




+
 +

+

t gt fw= =

( , , )(1)
( , , ) .

1

S gt gt gw
S gt gt gw




( , , ) . ( , , )S gt gt gw S gt gt gw

gt gw= (0,1)

.t gt gw fw= = =

ny w= 0,1,2,3...n = nfy fw→ ngy gw→ n →

fw gw= ,f g

lim ( , , ) 0n n n
n

S fgx fgx gfx
→

= ( , , ) 0S fgw fgw gfw = fgw gfw=

fw gw t= = ft gt= gt t= ft gt t= = t
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 Finally to prove the uniqueness of common fixed point f  and g .  

Suppose  and  for some. ,u v X  

From (ii) , we get 

  

 where , 0, 1    +    

 

       

 which implies that   since   and hence  , proving the 

theorem completely. 

3.3  Example: Let   and   for all  

and 
 , 

then   is a  -metric space. Define   and  

by  ,   for all   Then  , clearly  , 

so that   and   are compatible. Also an associated sequence of   relative to the self 

maps and  is given by  for  and since  is a constant sequence converging 

to ‘0’, which is a point in  taking     then  and  satisfy the inequality (ii).  

Thus the conditions (iii) and (v) of Theorem 3.2 are satisfied.  

Hence by Theorem 3.2, ‘0’ is the unique common fixed point of and . 

 

 

 

 

u fu gu= = v fv gv= =

( , , )[1 ( , , )]
( , , ) ( , , ) ( , , )

1 ( , , )

S fu fu gv S fu fu gu
S u u v S gu gu gv S fu fu fv

S fu fu fv




+
=  +

+

. ( , , )[1 ( , , )]
( , , ) ( , , )

1 ( , , )

S u u v S u u u
S u u v S u u v

S u u v




+
 +

+

[ ] ( , , )

1 ( , , )

S u u v

S u u v

 +
=

+

( , , ) 0S u u v =
( , , )

1
1 ( , , )

S u u v

S u u v


+
u v=

[0,1)X = ( , , ) ( , ) ( , ) ( , )S x y z d x y d x z d y z= + + , ,x y z X

( , )d x y x y= − ( , )X S S :f X X→ :g X X→

( )f x x= ( )
2

x
g x = x X

1
( ) [0, ) [0,1) ( )

2
g X f X=  = fg gf=

f g
0 0x =

f g 0nx = 0n  { }nfx

X
1

0,
2

 = = f g

f g



9 

S-METRIC SPACE WITH RATIONAL INEQUALITY 

REFERENCES 

[1] Dhage B.C, Generalized metric spaces and mappings with fixed point, Bull. Calcutta. Math. Soc. 84(4)(1992), 

329-336. 

[2] Dhage B.C, A common fixed point principle in D-metric spaces, Bull. Calcutta. Math. Soc 91, 6(1999), 475-480. 

[3] Jungck Gerald, Compatible mappings and common fixed points. Int. J. Math. Math. Soc. 9(1986),771-779. 

[4] Shaban Sedghi., Nabi Shobe., Haiyun Zhou, A common fixed point theorem in - metric spaces, Fixed point 

Theory App. (2007)2007, 027906. 

[5] Shaban Sedghi., Nabi Shobe., Abdelkrim Aliouche, A generalization of  fixed point theorems in  metric 

spaces , Mat. Vesnik 64(3)(2012), 258-266. 

[6] Zead Mustafa., Brailey sims, A new approach to generalized metric spaces, J. Nonlinear Conv. Anal. 7(2)(2006), 

289-297. 

 

*D

S −


