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1. Introduction

In this section we give a brief overview of known results which pertain to the main

results of this paper.

In recent years the following two-sided inequality for trigonometric functions

(1) (cosϕ)1/3 <
sinϕ

ϕ
<

2 + cosϕ

3
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(0 < |ϕ| < π

2
) has attracted attention of several researchers. The left inequality in (1)

have been proven by Adamović and Mitrinović (see [8]), while the second one is due to

Cusa and Huygens (see [5, 23]).

The counterpart of (1) for hyperbolic functions reads as follows

(2) (coshx)1/3 <
sinhx

x
<

2 + cosh x

3

(x 6= 0). The left inequality in (2) has been obtained by Lazarević (see, e.g. [8]) while the

right one has been established in [21].

For a recent development in theory of inequalities related to (1) and (2) the interested

reader is referred to [10], [12], [11], [15], [21], [22] and the references therein.

The following inequality

(3)

(
sinϕ

ϕ

)2

+
tanϕ

ϕ
> 2

(0 < |ϕ| < π
2
) is due to Wilker [24]. Several Wilker type inequalities appear in mathe-

matical literature. For more details see [11, 14, 21, 25, 26] and the references therein. A

hyperbolic counterpart of Wilker’s inequality

(4)

(
sinhx

x

)2

+
tanh x

x
> 2

(x 6= 0) has been established by L. Zhu [27]. See also [28] and [21]).

Another inequality which recently has been studied extensively is due to Huygens [5]

(5) 2
sinϕ

ϕ
+

tanϕ

ϕ
> 3

(0 < |ϕ| < π
2
). Huygens inequality for the hyperbolic functions

(6) 2
sinhx

x
+

tanh x

x
> 3

(x 6= 0) was established by Neuman and Sándor in [21].

For generalizations and refinements of inequalities (3) - (6) the interested reader is

referred to [25], [14], [16], [21] and the references therein.

This paper is a continuation of author’s investigations reported in [11,14,15,17,22]. In

Section 2 we give definitions of some bivariate means which will be used in the sequel.
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Refinements of inequalities (1) and (2) are established in Section 3. In Section 4 we give

generalizations of the Wilker and Huygens type inequalities.

2. Definitions of Some Means of Two Variables

In what follows the letters x and y will stand for the positive and unequal numbers.

The power mean of order t, the logarithmic and the identric means of x and y will be

denoted by At, L, and I, respectively. Recall that (see [2])

(7) At ≡ At(x, y) =


(
xt + yt

2
)1/t if t 6= 0,

√
xy if t = 0,

(8)

L ≡ L(x, y) =
x− y

lnx− ln y
,

I ≡ I(x, y) = e−1
(xx
yy
) 1

x−y .

The Schwab-Borchardt mean SB(x, y) ≡ SB is defined as follows (see [1]), [3])

(9) SB(x, y) =



√
y2 − x2

cos−1(x/y)
if x < y,√

x2 − y2

cosh−1(x/y)
if y < x,

x if x = y.

Mean SB is non-symmetric, homogeneous of degree 1 and strictly increasing in each

variable.

Simple bounds for the Schwab - Borchardt mean have been obtained in [18]

(10) (xy2)1/3 < SB(x, y) <
x+ 2y

3
.

For the later use let us record the following inequality [18]:

(11) x < SB(y, x) < SB(x, y) < y

which holds true provided x < y. More inequalities for the Schwab - Borchardt mean can

be found in [13] and [19].
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We will also use the Heronian mean of order ω > 0 of x and y:

(12) Hω(x, y) ≡ Hω =
2A+ ωG

2 + ω

(see [6]). It is clear that the function ω → Hω is strictly decreasing on its domain.

3. Refinements of Inequalities (1) and (2)

The goal of this section is to establish several inequalities which provide refinements

and extensions of inequalities (1) and (2).

We will use the following chain of inequalities

(13) (xy2)1/3 < (ySB(y, x))1/2 < SB(x, y) <
1

2
(y + SB(y, x)) <

x+ 2y

3
.

The first inequality in (13) is obtained by application of the left inequality in (10) to the

second member of (13) while the second one is established in [19, Theorem 3.1]. The third

inequality in (13) is established in [4] while the last one is obtained by application of the

right inequality in (10) to the fourth member of (13).

The first result of this section is contained in the following.

Theorem 1. Let 0 < |ϕ| < π

2
. Then

(14)

(cosϕ)1/3 < (cosϕ
sinϕ

ϕ
)1/4 <

( sinϕ

tanh −1(sinϕ)

)1/2
<
[1
2

(
cosϕ+

sinϕ

ϕ

)]1/2
<
(1 + 2 cosϕ

3

)1/2
<
(1 + cosϕ

2

)2/3
<

sinϕ

ϕ
.

Proof. The first four inequalities in (14) can be obtained using (13) with x = 1, y = cosϕ

and two formulas

(15) SB(cosϕ, 1) =
sinϕ

ϕ
, SB(1, cosϕ) =

sinϕ

tanh −1(sinϕ)

which follow easily from (7). The fifth inequality in (14) is derived in [17] while the last

one has been established in [21]. �
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Corollary 2. Let x 6= 0. Then the following inequalities

(16)

(coshx)1/3 < (
sinhx

sin−1(tanh x)
)1/2 <

sinhx

x

<
1

2

(
1 +

sinhx

sin−1(tanh x)

)
<

2 + cosh x

3

<
(1 + cosh x

2

)4/3
(coshx)−1/3

<
( tanh x

sin−1(tanh x)

)2
coshx

are valid.

Proof. In order to establish inequalities (16) we substitute in (14) sinϕ = tanh x, cosϕ =

sech x, and ϕ = sin−1(tanh x). Next raising each member of the resulting chain of

inequalities to the power of 2 and finally multiplying all terms by coshx, we obtain, after

a little algebra, the desired result. �

We close this section with another chain of inequalities involving hyperbolic functions.

They provide a refinement and extensions of the second inequality in (2).

Theorem 3. Let x 6= 0. Then

(17)

sinhx

x
< (cosh

x

3
)3 <

2 coshx+ λ

2 + λ
<
(

cosh
2x

3

)3/2
< exp(x coth x− 1) <

2 coshx+ ω

2 + ω

< coshx,

provided 1 ≤ λ ≤ 4 and 0 < ω ≤ e− 2.

Proof. In order to establish the first inequality in (17) we utilize Lin’s inequality [7]:

L < A1/3 (see also [9]). Letting

(18) (x, y) := (ex, e−x)

we obtain, using (7) and (8), L = sinhx/x and A1/3 = (cosh(x/3))3. Hence the desired

follows. For the proof of the second inequality in (17) we put x := 3x in the second and

third members of the inequality in question and write it as 2 cosh 3x−(2+λ)(coshx)3+λ >

0. Using the triple argument formula cosh 3x = 4 cosh3 x − 3 coshx we write the last
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inequality as (6−λ)c3−6c+λ > 0, where we have used c = coshx for the sake of brevity.

A straightforward algebra allow us to write the last inequality as

(c− 1)[(6− λ)c2 + (6− λ)c− λ] > 0.

It is easy to verify that the quadratic polynomial inside the square brackets is a strictly

increasing function if c > 1 and λ is the same as assumed. For the proof of the remaining

inequalities in (17) we shall utilize the following chain of inequalities for means [20]:

(19) H1 < A2/3 < I < Hω < A.

Using (12), (7), and (8), with x and y as defined in (18), we obtain the assertion. �

If λ = 4, then the third member of (17) becomes the third member of (2).

4. Wilker and Huygens Type Inequalities

In this section we shall establish inequalities which have similar structures as the in-

equalities (3) - (6).

Throughout the sequel the letters u and v will stand for two positive numbers which

satisfy the following conditions

min(u, v) < 1 < max(u, v),(20)

1 < uαvβ,(21)

and

1 <
α

α + β

1

u
+

β

α + β

1

v
,(22)

where the last two inequalities must be satisfied for some positive numbers α and β.

In the proofs of the main results of this section we will utilize the following result [16]:

Theorem A. Let λ > 0 and µ > 0. If u < 1 < v, then

(23) 1 <
λ

λ+ µ
up +

µ

λ+ µ
vq
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if either

(24) q > 0 and p ≤ q
αµ

βλ

or if

(25) p ≤ q ≤ −1 and βλ ≥ αµ.

If v < 1 < u, then the inequality (23) holds true if either

(26) p > 0 and q ≤ p
βλ

αµ

or if

(27) q ≤ p ≤ −1 and αµ ≥ βλ.

Before we will formulate and prove the main results of this section let us define

u =
SB(x, y)

SB(y, x)
,(28)

v =
SB(x, y)

y
.(29)

It follows from the second and the third inequalities in (11) that 1 < uv and 1 <
1

2
(
1

u
+

1

v
),

respectively. Thus the conditions (21) and (22) are satisfied with α = β = 1. Also, using

(11), with x interchanged with y, we conclude that

(30) u < 1 < v

provided x > y. Similarly, if x < y, then we use (11), to obtain

(31) v < 1 < u.

Thus if u and v are defined as in (28) and (29), then they satisfy conditions (20) - (22).

We are in a position to prove the following.

Theorem 4. Let λ > 0, µ > 0, and let x 6= 0. Then

(32) 1 <
λ

λ+ µ

(sin−1(tanh x)

x

)p
+

µ

λ+ µ

(sinhx

x

)q
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if either

(33) q > 0 and p ≤ q
µ

λ

or if

(34) p ≤ q ≤ −1 and λ ≥ µ.

Proof. Let x =
√

1 + t2 (t 6= 0) and let y = 1. Clearly x > y. Using [13, (2.10), (2.11)]

we have

SB(x, y) =
t

sinh−1 t
and SB(y, x) =

t

tan−1 t
.

Making use of (28) and (29) we obtain

u =
tan−1 t

sinh−1 t
and v =

t

tan−1 t
.

Since x > y, u and v satisfy inequalities (30). To complete the proof it suffices to use

Theorem A to obtain

1 <
λ

λ+ µ

( tan−1 t

sinh−1 t

)p
+

µ

λ+ µ

( t

sinh−1 t

)q
.

Now we let t = sinhx and utilize an elementary identity tan−1(sinhx) = sin−1(tanh x) to

obtain the desired result. �

Corollary 5. Let λ ≥ µ > 0 and let x 6= 0. Then

(35) 1 <
λ

λ+ µ

( x

tanh x

)r
+

µ

λ+ µ

( x

sinhx

)s
provided

(36) r ≥ s ≥ 1.

Proof. We utilize inequality (32) assuming that p, q, λ and µ satisfy conditions (34). Let-

ting p = −r and q = −s we obtain

(37) 1 <
λ

λ+ µ

( x

sinh−1(tanh x)

)r
+

µ

λ+ µ

( x

sinhx

)s
,

where r and s must to satisfy (36). Taking into account that the inequality

1 <
x

sin−1(tanh x)
<

x

tanh x
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holds true for all x 6= 0 we see that (37) implies inequality (35). �

Our next result reads as follows.

Theorem 6. Let λ > 0, µ > 0, and let 0 < |ϕ| < π

2
. Then

(38) 1 <
λ

λ+ µ

(sinh−1(tanϕ)

ϕ

)p
+

µ

λ+ µ

(sinϕ

ϕ

)q
if either

(39) p > 0 and q ≤ p
λ

µ

or if

(40) q ≤ p ≤ −1 and µ ≥ λ.

Proof. Let x = 1 and y =
√

1 + t2 (t 6= 0). Making use of [13, (2.11)] and [13, (2.12)] we

get

SB(x, y) =
t

tan−1 t
and SB(y, x) =

t

sinh−1 t
.

This in conjunction with (28) and (29) yields

u =
sinh−1 t

tan−1 t
and v =

t√
1 + t2 tan−1 t

.

Since x < y, v < 1 < u. Letting above t = tanϕ and substituting resulting expressions

for u and v into (23), we obtain inequality (38). Conditions (39) and (40) follow from

(26) and (27), respectively, because α = β = 1. �

We close this section with the following.

Corollary 7. Let λ, µ, ϕ, p, q satisfy the same conditions as in Theorem 6. Then

(41) 1 <
λ

λ+ µ

(tanϕ

ϕ

)p
+

µ

λ+ µ

(sinϕ

ϕ

)q
.

Proof. To obtain the desired result we use Theorem 6 together with the inequality

1 <
sinh−1(tanϕ)

ϕ
<

tanϕ

ϕ

which is a consequence of the well known inequality t < sinh t (t 6= 0). �
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