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Abstract. In this paper, we introduced a p-analogue of the exponential integral function and further establish some

analytical inequalities involving the function. We employ the Holder’s inequality for integrals, the Minkowski’s

inequality for integral and the Young’s inequality for scalars.
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1. INTRODUCTION

The exponential integral was introduced by Legendry in 1811 and was later coined with the

Ei notation [1]. The function occurs in a wide variety of application. Examples of applications

are cited from diffusion theory and transport problems and the study of the radiative equilibrium

of Steller atmosphere [2].
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The exponential integral function is defined as [3]

(1) E1(x) =
∫

∞

x

e−t

t
dt x ∈ R.

It is defined in terms of the Cauchy Principal value due to the singularity of the integrand at

zero [3] as

(2) Ei(x) =−
∫

∞

−x

e−t

t
dt =

∫ x

−∞

et

t
dt x > 0.

The above function should not be confused with E1(x) because the Risch algorithm shows

that Ei(x) is not an elementary function [4]. The two functions are closely related as follows.

(3) E1(−x) =−Ei(x) x > 0.

In this paper, our focus is on the usual exponential integral function defined by Schloemich in

[5] as

(4) En(x) =
∫

∞

1
t−ne−tx dt x > 0,n ∈ N.

The following differential equations hold from (4)

(5)
d
dx

En(x) =−En−1(x)

and more generally,

(6)
dm

dxm En(x) = (−1)mEn−m(x).

The recurrence relation, deduced from equation (4) by means of a suitable integration by parts,

is as follows,

(7) En+1(x) =
1
n
[e−t− xEn(x)]

which generalizes the well-known results when n is an integer.

Other special values of particular interest are the following

(8) En(0) =


1

n−1 , n > 1

∞, (−∞ < n 6 1)

Thus, E0(0) = ∞, E1(0) = ∞, E2(0) = 1, E3(0) = 1
2 , E4(0) = 1

3 etc.

The exponential integral function has attracted the attention of several researchers and it has
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been investigated in diverse ways (see [6], [7], [8], [9], [10], [11] and the related references

therein).

2. PRELIMINARIES

We begin with the following well known results( see for instance [12], [13], [14] or [15]).

Lemma 2.1. (Holder’s Inequality ) Let p,q > 1 and 1
p +

1
q = 1. If f (t) and g(t) are continuous

real-valued functions on [a,b], then inequality

∫ b

a
| f (t)g(t)|dt ≤

(∫ b

a
| f (t)|pdt

) 1
p
(∫ b

a
|g(t)|qdt

) 1
q

,(9)

holds. With equality when |g(t)| = c| f (t)|p−1. If p = q = 2, the inequality becomes Schwarz’s

Inequality.

Lemma 2.2. (Minkowski’s Inequality) Let p > 1. If f (t) and g(t) are continuous real-valued

functions on [a,b], then inequality(∫ b

a
| f (x)+g(x)|pdx

) 1
p

≤
(∫ b

a
| f (x)|pdx

) 1
p

+

(∫ b

a
|g(x)|pdx

) 1
p

,(10)

holds.

Lemma 2.3. (Young’s Inequality) Let a,b > 0, p,q > 1, and 1
p +

1
q = 1. Then inequality

(11) ab≤ ap

p
+

bq

q
,

holds.

3. MAIN RESULTS

Definition 3.1. Let x > 0, p ∈ R+, n ∈ N0. Then the p-analogue of the exponential integral is

defined as

(12) En,p (x) =
∫ p

1
t−nA−xt

p dt,

where, En,p (x)−→ En (x) as p−→ ∞ and Ap = (1+ 1
p)

p .
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Lemma 3.2. The recursive relation

(13) En,p(x) = lnA−x
p
[
A−x

p − p−nA−px
p −nEn+1,p(x)

]
,

holds for n ∈ N0.

Proof. Using (12) and by means of integration by parts, we have

En,p(x) =
∫ p

1
t−nA−xt

p dt

=

[
−

t−nA−xt
p

lnAx
p

]p

1

− n
lnAx

p

∫ p

1
t−(n+1)A−xt

p dt

=−
p−nA−px

p

lnAx
p

+
A−x

p

lnAx
p
− n

lnAx
p

En+1,p(x)

=
A−x

p

lnAx
p
−

p−nA−px
p

lnAx
p
− n

lnAx
p

En+1,p(x)

=
1

lnAx
p

[
A−x

p − p−nA−px
p −nEn+1,p(x)

]
= lnA−x

p
[
A−x

p − p−nA−px
p −nEn+1,p(x)

]
,

which completes the proof.

Theorem 3.3. Let n ∈ N0, η > 1, p ∈ R+. Then, the inequality

(14) En,p

(
x
η
+

y
µ

)
≤ (En,p(x))

1
η (En,p(y))

1
µ ,

holds for x,y > 0 and 1
η
+ 1

µ
= 1.

Proof. Using (12) and Hölder’s inequality for integrals, we have

En,p

(
x
η
+

y
µ

)
=
∫ p

1
t−nA

−
(

x
η
+ y

µ

)
t

p dt

=
∫ p

1
t−n

(
1
η
+ 1

µ

)
A
−
(

x
η
+ y

µ

)
t

p dt

=
∫ p

1
t−

n
η A
− xt

η

p t−
n
µ A
− yt

µ

p dt
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≤
(∫ p

1

(
t−

n
η A
− xt

η

p

)η

dt
) 1

η
(∫ p

1

(
t−

n
µ A
− yt

µ

p

)µ

dt
) 1

µ

=

(∫ p

1
t−nA−xt

p dt
) 1

η
(∫ p

1
t−nA−yt

p dt
) 1

µ

= (En,p(x))
1
η (En,p (y))

1
µ

which completes the proof.

Theorem 3.4. Let p ∈ R+ and m,n ∈ N0 such that ηm,µn ∈ N0. Then, the inequality

(15) Em+n,p

(
x
η
+

y
µ

)
≤ (Eηm,p(x))

1
η

(
Eµn,p(y)

) 1
µ ,

holds for x,y > 0, η > 1 and 1
η
+ 1

µ
= 1.

Proof. Using (12) and Hölder’s inequality for integrals, we have

Em+n,p

(
x
η
+

y
µ

)
=
∫ p

1
t−(m+n)A

−
(

x
η
+ y

µ

)
t

p dt

=
∫ p

1
t−mA

− xt
η

p t−nA
− yt

µ

p dt

≤
(∫ p

1

(
t−mA

− xt
η

p

)η

dt
) 1

η
(∫ p

1

(
t−nA

− yt
µ

p

)µ

dt
) 1

µ

=

(∫ p

1
t−ηmA−xt

p dt
) 1

η
(∫ p

1
t−µnA−yt

p dt
) 1

µ

= (Eηm,p(x))
1
η

(
Eµn,p(y)

) 1
η

which completes the proof.

Corollary 3.5. Let m,n ∈ N0, p ∈ R+. Then, the inequality

(16)
(

Em+n,p

(
x+ y

2

))2

≤ E2m,p(x)E2n,p(y),

holds for x,y > 0.

Proof. This follows from Theorem 3.4 by letting η = µ = 2.
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Theorem 3.6. Let p ∈ R+, m,n ∈ N0 such that m
η
+ n

µ
∈ N0. Then, the inequality

(17) E m
η
+ n

µ
,p

(
x
η
+

y
µ

)
≤ (Em,p(x))

1
η (En,p(y))

1
µ ,

holds for η > 1, x,y > 0, 1
η
+ 1

µ
= 1.

Proof. Using (12) and Hölder’s inequality for integrals, we have

E m
η
+ n

µ
,p

(
x
η
+

y
µ

)
=
∫ p

1
t−
(

m
η
+ n

µ

)
A
−( x

η
+ y

µ
)t

p dt

=
∫ p

1
t−

m
η A
− xt

η

p t−
n
µ A
− yt

µ

p dt

≤
(∫ p

1

(
t−

m
η A
− xt

η

p

)η

dt
) 1

η
(∫ p

1

(
t−

n
µ A
− yt

µ

p

)µ

dt
) 1

µ

=

(∫ p

1
t−mA−xt

p dt
) 1

η
(∫ p

1
t−nA−yt

p dt
) 1

µ

= (Em,p(x))
1
η (En,p(y))

1
µ

which completes the proof.

Corollary 3.7. Let m,n ∈ N0, p ∈ R+. Then, the inequality

(
E m+n

2 ,p

(
x+ y

2

))2

= Em,p(x)En,p(y),(18)

holds for x,y > 0.

Proof. This follows from Theorem 3.6 by letting η = µ = 2.

Theorem 3.8. Let m,n ∈ N0, α ∈ Z+, and p ∈ R+. Then, the inequality

(19) [Em,p(x)+En,p(y)]
1
α ≤ [Em,p(x)]

1
α +[En,p(y)]

1
α ,

holds for x,y > 0.
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Proof. Using (12), the Minkowski’s inequality for integrals and aα +bα ≤ (a+b)α , for a,b≥ 0

and α ∈ Z+, we have

[Em,p(x)+En,p(y)]
1
α =

[∫ p

1
t−mA−xt

p dt +
∫ p

1
t−nA−yt

p dt
] 1

α

=

[∫ p

1

((
t−

m
α A
− xt

α
p

)α

+

(
t−

n
α A
− yt

α
p

)α)
dt
] 1

α

≤
[∫ p

1

((
t−

m
α A
− xt

α
p

)
+

(
t−

n
α A
− yt

α
p

))α

dt
] 1

α

≤
[∫ p

1

[
t−

m
α A
− xt

α
p

]α

dt
] 1

α

+

[∫ p

1

[
t−

n
α A
− yt

α
p

]α

dt
] 1

α

=

[∫ p

1
t−mA−xt

p dt
] 1

α

+

[∫ p

1
t−nA−yt

p dt
] 1

α

= [Em,p(x)]
1
α +[En,p(y)]

1
α

which completes the proof.

Theorem 3.9. Let n ∈ N0 and p ∈ R+. Then, the inequality

En,p(xy)≥ E
1
η

n,p

(
ηxq1

q1

)
E

1
µ

n,p

(
µyq2

q2

)
,(20)

holds for x > 0, y > 0, 0 < η < 1, q1 > 1, 1
q1
+ 1

q2
= 1 and 1

η
+ 1

µ
= 1.

Proof. Using (12), the reverse Hölder’s inequality for integrals, the Young’s inequality and the

fact that En,p(x) is decreasing, we have

En,p(xy)≥ En,p

(
xq1

q1
+

yq2

q2

)
=
∫ p

1
t−nA

−
(

xq1
q1

+ yq2
q2

)
t

p dt

=
∫ p

1
t−n

(
1
η
+ 1

µ

)
A
−
(

xq1
q1

+ yq2
q2

)
t

p dt

=
∫ p

1

(
t−

n
η A
− xq1 t

q1
p t−

n
µ A
− yq2 t

q2
p

)
dt
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≥

(∫ p

1

(
t−

n
η A
− xq1 t

q1
p

)η

dt

) 1
η
(∫ p

1

(
t−

n
µ A
− yq2 t

q2
p

)µ

dt

) 1
µ

=

(∫ p

1
t−nA

−ηxq1 t
q1

p dt

) 1
η
(∫ p

1
t−nA

− µyq2 t
q2

p dt

) 1
µ

= E
1
η

n,p

(
ηxq1

q1

)
E

1
µ

n,p

(
µyq2

q2

)
which completes the proof.

Theorem 3.10. Let n ∈ N0, and p ∈ R+. Then, the inequality

(21) En,p(xy)≥ (En,p(ηx))
1
η (En,p(µy))

1
µ ,

holds for x > 0, 0 < y < 1, 0 < η < 1, 1
η
+ 1

µ
= 1 and x+ y≥ xy.

Proof. Using (12), the reverse Holder’s inequality for integrals and the fact that En,p(x) is de-

creasing for x > 0, we have

En,p(xy)≥ En,p(x+ y) =
∫ p

1
t−n

(
1
η
+ 1

µ

)
A−(x+y)t

p dt

=
∫ p

1
t−

n
η A−xt

p t−
n
µ A−yt

p dt

≥
(∫ p

1

(
t−

n
η A−xt

p

)η

dt
) 1

η
(∫ p

1

(
t−

n
µ A−yt

p

)µ

dt
) 1

µ

=

(∫ p

1
t−nA−ηxt

p dt
) 1

η
(∫ p

1
t−nA−µyt

p dt
) 1

µ

= (En,p(ηx))
1
η (En,p(µy))

1
µ

which completes the proof.
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