

Available online at http://scik.org
Advances in Inequalities and Applications, 2 (2013), No. 1, 31-60
ISSN 2050-7461

NEW OPERATOR PRESERVING L_{p} INEQUALITIES BETWEEN POLYNOMIALS

NISAR A. RATHER ${ }^{1, *}$, SHOWKAT A. ZARGAR ${ }^{2}$

${ }^{1}$ P.G.Department of Mathematics, Kashmir University, Hazratbal, Srinagar-190006, India
${ }^{2}$ Department of Mathematics, Degree College Ganderbal, Ganderbal Kashmir- India

Abstract

For a polynomial $P(z)$ of degree n having no zero in $|z|<1$, it was recently asserted by Shah and Liman [17] that for every $R \geq 1, p \geq 1$, $$
\|B[P \circ \sigma](z)\|_{p} \leq \frac{R^{n}\left|\Lambda_{n}\right|+\left|\lambda_{0}\right|}{\|1+z\|_{p}}\|P(z)\|_{p}
$$ where B is a B_{n}-operator with parameters $\lambda_{0}, \lambda_{1}, \lambda_{2}$ in the sense of Rahman and Schmeisser [15], $\Lambda=$ $\lambda_{0}+\lambda_{1} \frac{n^{2}}{2}+\lambda_{2} \frac{n^{3}(n-1)}{8}$ and $\sigma(z)=R z, R \geq 1$. The proof of this result is incorrect. In this paper, we present certain new L_{p} inequlities for B_{n}-operators which not only provide a correct proof of the above inequality and other related results but also extend these inequalities for $0 \leq p<1$ as well.

Keywords: L^{p} inequalities, B_{n}-operators, polynomials.
2000 AMS Subject Classification: 26D10, 41A17

1. Introduction

Let \mathcal{P}_{n} denote the space of all complex polynomials $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ of degree n. For $P \in \mathcal{P}_{n}$, define

$$
\|P(z)\|_{0}:=\exp \left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|P\left(e^{i \theta}\right)\right| d \theta\right\}
$$

[^0]Received November 9, 2012

$$
\begin{gathered}
\|P(z)\|_{p}:=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p}\right\}^{1 / p}, 1 \leq p<\infty \\
\|P(z)\|_{\infty}:=\max _{|z|=1}|P(z)|
\end{gathered}
$$

and denote for any complex function $\psi: \mathbb{C} \rightarrow \mathbb{C}$ the composite function of P and ψ, defined by $(P \circ \psi)(z):=P(\psi(z)) \quad(z \in \mathbb{C})$, as $P \circ \psi$.

If $P \in \mathcal{P}_{n}$, then

$$
\begin{equation*}
\left\|P^{\prime}(z)\right\|_{p} \leq n\|P(z)\|_{p}, \quad p \geq 1 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\|P(R z)\|_{p} \leq R^{n}\|P(z)\|_{p}, \quad R>1, \quad p>0 \tag{2}
\end{equation*}
$$

Inequality (1) was found out by Zygmund [18] whereas inequality (2) is a simple consequence of a result of Hardy [8]. Arestov [2] proved that (3) remains true for $0<p<1$ as well. For $p=\infty$, the inequality (1) is due to Bernstein (for reference, see $[11,15,16]$) whereas the case $p=\infty$ of inequality (2) is a simple consequence of the maximum modulus principle (see $[11,12,15]$). Both the inequalities (1) and (2) can be sharpened if we restrict ourselves to the class of polynomials having no zero in $|z|<1$. In fact, if $P \in \mathcal{P}_{n}$ and $P(z) \neq 0$ in $|z|<1$, then inequalities (1) and (2) can be respectively replaced by

$$
\begin{equation*}
\left\|P^{\prime}(z)\right\|_{p} \leq n \frac{\|P(z)\|_{p}}{\|1+z\|_{p}}, \quad p \geq 0 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\|P(R z)\|_{p} \leq \frac{\left\|R^{n} z+1\right\|_{p}}{\|1+z\|_{p}}\|P(z)\|_{p}, \quad R>1, \quad p>0 \tag{4}
\end{equation*}
$$

Inequality (3) is due to De-Bruijn [6](see also [3]) for $p \geq 1$. Rahman and Schmeisser [14] extended it for $0<p<1$ whereas the inequality (4) was proved by Boas and Rahman [5]
for $p \geq 1$ and later it was extended for $0<p<1$ by Rahman and Schmeisser [14]. For $p=\infty$, the inequality (3) was conjectured by Erdös and later verified by Lax [9] whereas inequality (4) was proved by Ankeny and Rivlin [1].

As a compact generalization of inequalities (1) and (2), Aziz and Rather [4] proved that if $P \in \mathcal{P}_{n}$, then for every real or complex number α with $|\alpha| \leq 1, R \geq 1$, and $p>0$,

$$
\begin{equation*}
\|P(R z)-\alpha P(z)\|_{p} \leq\left|R^{n}-\alpha\right|\|P(z)\|_{p} \tag{5}
\end{equation*}
$$

and if $P \in \mathcal{P}_{n}$ and $P(z) \neq 0$ in $|z|<1$, then for every real or complex number α with $|\alpha| \leq 1, R \geq 1$, and $p>0$,

$$
\begin{equation*}
\|P(R z)-\alpha P(z)\|_{p} \leq \frac{\left\|\left(R^{n}-\alpha\right) z+(1-\alpha)\right\|_{p}}{\|1+z\|_{p}}\|P(z)\|_{p} \tag{6}
\end{equation*}
$$

Inequality (6) is the corresponding compact generalization of inequalities (3) and (4).

Rahman [13] (see also Rahman and Schmeisser [15, p. 538]) introduced a class B_{n} of operators B that maps $P \in \mathcal{P}_{n}$ into itself. That is, the operator B carries $P \in \mathcal{P}_{n}$ into

$$
\begin{equation*}
B[P](z):=\lambda_{0} P(z)+\lambda_{1}\left(\frac{n z}{2}\right) \frac{P^{\prime}(z)}{1!}+\lambda_{2}\left(\frac{n z}{2}\right)^{2} \frac{P^{\prime \prime}(z)}{2!} \tag{7}
\end{equation*}
$$

where λ_{0}, λ_{1} and λ_{2} are such that all the zeros of

$$
\begin{equation*}
u(z):=\lambda_{0}+C(n, 1) \lambda_{1} z+C(n, 2) \lambda_{2} z^{2}, \quad C(n, r)=n!/ r!(n-r)! \tag{8}
\end{equation*}
$$

lie in the half plane

$$
\begin{equation*}
|z| \leq|z-n / 2| \tag{9}
\end{equation*}
$$

and proved that if $P \in \mathcal{P}_{n}$, then

$$
\begin{equation*}
|B[P \circ \sigma](z)| \leq R^{n}\left|\Lambda_{n}\right|\|P(z)\|_{\infty} \text { for }|z|=1 \tag{10}
\end{equation*}
$$

and if $P \in \mathcal{P}_{n}$ and $P(z)$ does not vanish in $|z|<1$, then

$$
\begin{equation*}
|B[P \circ \sigma](z)| \leq \frac{1}{2}\left\{R^{n}\left|\Lambda_{n}\right|+\left|\lambda_{0}\right|\right\}\|P(z)\|_{\infty} \quad \text { for } \quad|z|=1 \tag{11}
\end{equation*}
$$

(see [13, Inequality (5.2) and (5.3)]) where $\sigma(z)=R z, R \geq 1$ and

$$
\begin{equation*}
\Lambda_{n}:=\lambda_{0}+\lambda_{1} \frac{n^{2}}{2}+\lambda_{2} \frac{n^{3}(n-1)}{8} \tag{12}
\end{equation*}
$$

As an extension of inequality (10) to L_{p}-norm, recently W.M.Shah and A.Liman [17, Theorem 1] proved that if $P \in \mathcal{P}_{n}$, then for every $R \geq 1$ and $p \geq 1$,

$$
\begin{equation*}
\|B[P \circ \sigma](z)\|_{p} \leq R^{n}\left|\Lambda_{n}\right|\|P(z)\|_{p} \tag{13}
\end{equation*}
$$

where $B \in B_{n}$ and $\sigma(z)=R z$ and Λ_{n} is defined by (12).
While seeking the desired extension of inequality (11) to L_{p}-norm, they [17, Theorem 2] have made an incomplete attempt by claiming to have proved that if $P \in \mathcal{P}_{n}$ and $P(z)$ does not vanish in $|z|<1$, then for each $R \geq 1$ and $p \geq 1$,

$$
\begin{equation*}
\|B[P \circ \sigma](z)\|_{p} \leq \frac{R^{n}\left|\Lambda_{n}\right|+\left|\lambda_{0}\right|}{\|1+z\|_{p}}\|P(z)\|_{p} \tag{14}
\end{equation*}
$$

where $B \in B_{n}$ and $\sigma(z)=R z$ and Λ_{n} is defined by (12).
Further, it has been claimed to have proved the inequality (14) for self-inversive polynomials as well.

The proof of inequality (14) and other related results including the Lemma 4 in [17] given by Shah and Liman is not correct. The reason being that the authors in [17] deduce line 10 from line 7 on page 84 , line 19 on page 85 from Lemma 3 [17] and line 16 from line 14 on page 86 by using the fact that if $P^{*}(z):=z^{n} \overline{P(1 / \bar{z})}$, then for $\sigma(z)=R z, R \geq 1$ and $|z|=1$,

$$
\left|B\left[P^{*} \circ \sigma\right](z)\right|=\left|B\left[\left(P^{*} \circ \sigma\right)^{*}\right](z)\right|,
$$

which is not true, in general, for every $R \geq 1$ and $|z|=1$. To see this, let

$$
P(z)=a_{n} z^{n}+\cdots+a_{k} z^{k}+\cdots+a_{1} z+a_{0}
$$

be an arbitrary polynomial of degree n, then

$$
P^{\star}(z)=: z^{n} \overline{P(1 / \bar{z})}=\overline{a_{0}} z^{n}+\overline{a_{1}} z^{n-1}+\cdots+\overline{a_{k}} z^{n-k}+\cdots+\overline{a_{n}} .
$$

Now with $\mu_{1}:=\lambda_{1} n / 2$ and $\mu_{2}:=\lambda_{2} n^{2} / 8$, we have

$$
B\left[P^{\star} \circ \rho\right](z)=\sum_{k=0}^{n}\left(\lambda_{0}+\mu_{1}(n-k)+\mu_{2}(n-k)(n-k-1)\right) \overline{a_{k}} z^{n-k} R^{n-k},
$$

and in particular for $|z|=1$, we get

$$
B\left[P^{\star} \circ \rho\right](z)=R^{n} z^{n} \sum_{k=0}^{n}\left(\lambda_{0}+\mu_{1}(n-k)+\mu_{2}(n-k)(n-k-1)\right) \overline{a_{k}\left(\frac{z}{R}\right)^{k}}
$$

whence

$$
\left|B\left[P^{\star} \circ \rho\right](z)\right|=R^{n}\left|\sum_{k=0}^{n} \overline{\left(\lambda_{0}+\mu_{1}(n-k)+\mu_{2}(n-k)(n-k-1)\right)} a_{k}\left(\frac{z}{R}\right)^{k}\right| .
$$

But

$$
\left|B\left[\left(P^{\star} \circ \rho\right)^{\star}\right](z)\right|=R^{n}\left|\sum_{k=0}^{n}\left(\lambda_{0}+\mu_{1} k+\mu_{2} k(k-1)\right) a_{k}\left(\frac{z}{R}\right)^{k}\right|
$$

so the asserted identity does not hold in general for every $R \geq 1$ and $|z|=1$ as e.g. the immediate counterexample of $P(z):=z^{n}$ demonstrates in view of $P^{\star}(z)=1, \mid B\left[P^{\star} \circ\right.$ $\rho](z)\left|=\left|\lambda_{0}\right|\right.$ and

$$
\left|B\left[\left(P^{\star} \circ \rho\right)^{\star}\right](z)\right|=\left|\lambda_{0}+\lambda_{1}\left(n^{2} / 2\right)+\lambda_{2} n^{3}(n-1) / 8\right|, \quad|z|=1 .
$$

The main aim of this paper is to present correct proofs of the results mentioned in [17] by investigating the dependence of

$$
\left\|B[P \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho](z)\right\|_{p}
$$

on $\|P(z)\|_{p}$ for arbitrary real or complex numbers α, β with $|\alpha| \leq 1,|\beta| \leq 1, R>r \geq 1$, $0 \leq p<\infty, \sigma(z):=R z, \rho(z):=r z$ and

$$
\begin{equation*}
\phi_{n}(R, r, \alpha, \beta):=\beta\left\{\left(\frac{R+1}{r+1}\right)^{n}-|\alpha|\right\}-\alpha \tag{15}
\end{equation*}
$$

and establish certain generalized L_{p}-mean extensions of the inequalities (10) and (11) for $0 \leq p<\infty$.

2. Lemmas

For the proofs of our results, we need the following lemmas. The first Lemma is easy to prove.

Lemma 2.1. If $P \in P_{n}$ and $P(z)$ has all its zeros in $|z| \leq 1$, then for every $R \geq r \geq 1$ and $|z|=1$,

$$
|P(R z)| \geq\left(\frac{R+1}{r+1}\right)^{n}|P(r z)|
$$

The following Lemma follows from Corollary 18.3 of [7, p.65].

Lemma 2.2. If all the zeros of polynomial $P \in \mathcal{P}_{n}$ lie in $|z| \leq 1$, then all the zeros of the polynomial $B[P](z)$ also lie in $|z| \leq 1$.

Lemma 2.3. If $F \in P_{n}$ has all its zeros in $|z| \leq 1$ and $P(z)$ is a polynomial of degree at most n such that

$$
|P(z)| \leq|F(z)| \text { for }|z|=1
$$

then for arbitrary real or complex numbers α, β with $|\alpha| \leq 1,|\beta| \leq 1, R \geq r \geq 1$, and $|z| \geq 1$,

$$
\begin{equation*}
|B[P \circ \sigma](z)+\phi(R, r, \alpha, \beta) B[P \circ \rho](z)| \leq\left|B\left[P^{*} \circ \sigma\right](z)+\phi(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right](z)\right| \tag{16}
\end{equation*}
$$

where $P^{*}(z):=z^{n} \overline{P(1 / \bar{z})}, B \in B_{n}, \sigma(z):=R z, \rho(z):=r z, \Lambda_{n}$ and $\phi_{n}(R, r, \alpha, \beta)$ are defined by (12) and (15) respectively.

Proof. Since the polynomial $F(z)$ of degree n has all its zeros in $|z| \leq 1$ and $P(z)$ is a polynomial of degree at most n such that

$$
\begin{equation*}
|P(z)| \leq|F(z)| \text { for }|z|=1 \tag{17}
\end{equation*}
$$

therefore, if $F(z)$ has a zero of multiplicity s at $z=e^{i \theta_{0}}$, then $P(z)$ has a zero of multiplicity at least s at $z=e^{i \theta_{0}}$. If $P(z) / F(z)$ is a constant, then the inequality (16) is obvious.

We now assume that $P(z) / F(z)$ is not a constant, so that by the maximum modulus principle, it follows that

$$
|P(z)|<|F(z)| \text { for }|z|>1
$$

Suppose $F(z)$ has m zeros on $|z|=1$ where $0 \leq m \leq n$, so that we can write

$$
F(z)=F_{1}(z) F_{2}(z)
$$

where $F_{1}(z)$ is a polynomial of degree m whose all zeros lie on $|z|=1$ and $F_{2}(z)$ is a polynomial of degree exactly $n-m$ having all its zeros in $|z|<1$. This implies with the help of inequality (17) that

$$
P(z)=P_{1}(z) F_{1}(z)
$$

where $P_{1}(z)$ is a polynomial of degree at most $n-m$. Now, from inequality (17), we get

$$
\left|P_{1}(z)\right| \leq\left|F_{2}(z)\right| \text { for }|z|=1
$$

where $F_{2}(z) \neq 0$ for $|z|=1$. Therefore for every real or complex number λ with $|\lambda|>1$, a direct application of Rouche's theorem shows that the zeros of the polynomial $P_{1}(z)-$ $\lambda F_{2}(z)$ of degree $n-m \geq 1$ lie in $|z|<1$. Hence the polynomial

$$
f(z)=F_{1}(z)\left(P_{1}(z)-\lambda F_{2}(z)\right)=P(z)-\lambda F(z)
$$

has all its zeros in $|z| \leq 1$ with at least one zero in $|z|<1$, so that we can write

$$
f(z)=\left(z-t e^{i \delta}\right) H(z)
$$

where $t<1$ and $H(z)$ is a polynomial of degree $n-1$ having all its zeros in $|z| \leq 1$. Applying Lemma 1.1 to the polynomial $f(z)$ with $k=1$, we obtain for every $R>r \geq 1$ and $0 \leq \theta<2 \pi$,

$$
\begin{aligned}
\left|f\left(R e^{i \theta}\right)\right| & =\left|R e^{i \theta}-t e^{i \delta}\right|\left|H\left(R e^{i \theta}\right)\right| \\
& \geq\left|R e^{i \theta}-t e^{i \delta}\right|\left(\frac{R+1}{r+1}\right)^{n-1}\left|H\left(r e^{i \theta}\right)\right| \\
& =\left(\frac{R+1}{r+1}\right)^{n-1} \frac{\left|R e^{i \theta}-t e^{i \delta}\right|}{\left|r e^{i \theta}-t e^{i \delta}\right|}\left|\left(r e^{i \theta}-t e^{i \delta}\right) H\left(r e^{i \theta}\right)\right| \\
& \geq\left(\frac{R+1}{r+1}\right)^{n-1}\left(\frac{R+t}{r+t}\right)\left|f\left(r e^{i \theta}\right)\right|
\end{aligned}
$$

This implies for $R>r \geq 1$ and $0 \leq \theta<2 \pi$,

$$
\begin{equation*}
\left(\frac{r+t}{R+t}\right)\left|f\left(R e^{i \theta}\right)\right| \geq\left(\frac{R+1}{r+1}\right)^{n-1}\left|f\left(r e^{i \theta}\right)\right| . \tag{18}
\end{equation*}
$$

Since $R>r \geq 1>t$ so that $f\left(R e^{i \theta}\right) \neq 0$ for $0 \leq \theta<2 \pi$ and $\frac{1+r}{1+R}>\frac{r+t}{R+t}$, from inequality (18), we obtain $R>r \geq 1$ and $0 \leq \theta<2 \pi$,

$$
\begin{equation*}
\left\lvert\, f\left(\left.R e^{i \theta}\left|>\left(\frac{R+1}{r+1}\right)^{n}\right| f\left(r e^{i \theta}\right) \right\rvert\,\right.\right. \tag{19}
\end{equation*}
$$

Equivalently,

$$
|f(R z)|>\left(\frac{R+1}{r+1}\right)^{n}|f(r z)|
$$

for $|z|=1$ and $R>r \geq 1$. Hence for every real or complex number α with $|\alpha| \leq 1$ and $R>r \geq 1$, we have

$$
\begin{align*}
|f(R z)-\alpha f(r z)| & \geq|f(R z)|-|\alpha||f(r z)| \\
& >\left\{\left(\frac{R+1}{r+1}\right)^{n}-|\alpha|\right\}|f(r z)|, \quad|z|=1 . \tag{20}
\end{align*}
$$

Also, inequality (19) can be written in the form

$$
\begin{equation*}
\left\lvert\, f\left(\left.r e^{i \theta)}\left|<\left(\frac{r+1}{R+1}\right)^{n}\right| f\left(R e^{i \theta}\right) \right\rvert\,\right.\right. \tag{21}
\end{equation*}
$$

for every $R>r \geq 1$ and $0 \leq \theta<2 \pi$. Since $f\left(R e^{i \theta}\right) \neq 0$ and $\left(\frac{r+1}{R+1}\right)^{n}<1$, from inequality (21), we obtain for $0 \leq \theta<2 \pi$ and $R>r \geq 1$,

$$
\mid f\left(r e^{i \theta}|<| f\left(R e^{i \theta}\right)\right.
$$

Equivalently,

$$
|f(r z)|<|f(R z)| \text { for }|z|=1
$$

Since all the zeros of $f(R z)$ lie in $|z| \leq(1 / R)<1$, a direct application of Rouche's theorem shows that the polynomial $f(R z)-\alpha f(r z)$ has all its zeros in $|z|<1$ for every real or complex number α with $|\alpha| \leq 1$. Applying Rouche's theorem again, it follows from (20) that for arbitrary real or complex numbers α, β with $|\alpha| \leq 1,|\beta| \leq 1$ and $R>r \geq 1$, all the zeros of the polynomial

$$
\begin{aligned}
T(z)= & f(R z)-\alpha f(r z)+\beta\left\{\left(\frac{R+1}{r+1}\right)^{n}-|\alpha|\right\} f(r z) \\
& =f(R z)+\phi(R, r, \alpha, \beta) f(r z) \\
& =(P(R z)-\lambda F(R z))+\phi(R, r, \alpha, \beta)(P(r z)-\lambda F(r z)) \\
& =(P(R z)+\phi(R, r, \alpha, \beta) P(r z))-\lambda(F(R z)+\phi(R, r, \alpha, \beta) F(r z))
\end{aligned}
$$

lie in $|z|<1$ for every λ with $|\lambda|>1$. Using Lemma 2.2 and the fact that B is a linear operator, we conclude that all the zeros of polynomial

$$
\begin{aligned}
W(z)= & B[T](z) \\
= & (B[P \circ \sigma](z)+\phi(R, r, \alpha, \beta) B[P \circ \rho](z)) \\
& -\lambda(B[F \circ \sigma](z)+\phi(R, r, \alpha, \beta) B[F \circ \rho](z))
\end{aligned}
$$

also lie in $|z|<1$ for every λ with $|\lambda|>1$. This implies

$$
\begin{equation*}
|B[P \circ \sigma](z)+\phi(R, r, \alpha, \beta) B[P \circ \rho](z)| \leq|B[F \circ \sigma](z)+\phi(R, r, \alpha, \beta) B[F \circ \rho](z)| \tag{22}
\end{equation*}
$$

for $|z| \geq 1$ and $R>r \geq 1$. If inequality (22) is not true, then exist a point $z=z_{0}$ with $\left|z_{0}\right| \geq 1$ such that

$$
\left|B[P \circ \sigma]\left(z_{0}\right)+\phi(R, r, \alpha, \beta) B[P \circ \rho]\left(z_{0}\right)\right|>\left|B[F \circ \sigma]\left(z_{0}\right)+\phi(R, r, \alpha, \beta) B[F \circ \rho]\left(z_{0}\right)\right| .
$$

But all the zeros of $F(R z)$ lie in $|z|<1$, therefore, it follows (as in case of $f(z)$) that all the zeros of $F(R z)+\phi(R, r, \alpha, \beta) F(r z)$ lie in $|z|<1$. Hence by Lemma 2.2, all the zeros of $B[F \circ \sigma](z)+\phi(R, r, \alpha, \beta) B[F \circ \rho](z)$ also lie in $|z|<1$, which shows that

$$
B[F \circ \sigma]\left(z_{0}\right)+\phi(R, r, \alpha, \beta) B[F \circ \rho]\left(z_{0}\right) \neq 0
$$

We take

$$
\lambda=\frac{B[P \circ \sigma]\left(z_{0}\right)+\phi(R, r, \alpha, \beta) B[P \circ \rho]\left(z_{0}\right)}{B[F \circ \sigma]\left(z_{0}\right)+\phi(R, r, \alpha, \beta) B[F \circ \rho]\left(z_{0}\right)},
$$

then λ is a well defined real or complex number with $|\lambda|>1$ and with this choice of λ, we obtain $W\left(z_{0}\right)=0$. This contradicts the fact that all the zeros of $W(z)$ lie in $|z|<1$.

Thus (22) holds and this completes the proof of Lemma 2.3.

Lemma 2.4. If $P \in \mathcal{P}_{n}$ and $P(z)$ does not vanish in $|z|<1$, then for arbitrary real or complex numbers α, β with $|\alpha| \leq 1,|\beta| \leq 1, R>r \geq 1$ and $|z| \geq 1$,

$$
\begin{align*}
\mid B[P \circ \sigma](z)+ & \phi(R, r, \alpha, \beta) B[P \circ \rho](z) \mid \\
& \leq\left|B\left[P^{*} \circ \sigma\right](z)+\phi(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right](z)\right| \tag{23}
\end{align*}
$$

where $P^{*}(z):=z^{n} \overline{P(1 / \bar{z})}, B \in B_{n}, \sigma(z):=R z, \rho(z):=r z$, and $\phi(R, r, \alpha, \beta)$ is defined by (15).

Proof. By hpyothesis the polynomial $P(z)$ of degree n does not vanish in $|z|<1$, therefore, all the zeros of the polynomial $P^{*}(z)=z^{n} \overline{P(1 / \bar{z})}$ of degree n lie in $|z| \leq 1$. Applying Lemma 2.3 with $F(z)$ replaced by $P^{*}(z)$, it follows that

$$
\begin{aligned}
& |B[P \circ \sigma](z)+\phi(R, r, \alpha, \beta) B[P \circ \rho](z)| \\
& \quad \leq\left|B\left[P^{*} \circ \sigma\right](z)+\phi(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right](z)\right|
\end{aligned}
$$

for $|z| \geq 1,|\alpha| \leq 1,|\beta| \leq 1$ and $R>r \geq 1$. This proves the Lemma 2.4.

Next we describe a result of Arestov[2].

For $\gamma=\left(\gamma_{0}, \gamma_{1}, \cdots, \gamma_{n}\right) \in \mathbb{C}^{n+1}$ and $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$, we define

$$
C_{\gamma} P(z)=\sum_{j=0}^{n} \gamma_{j} a_{j} z^{j}
$$

The operator C_{γ} is said to be admissible if it preserves one of the following properties:
(i) $P(z)$ has all its zeros in $\{z \in \mathbb{C}:|z| \leq 1\}$,
(ii) $P(z)$ has all its zeros in $\{z \in \mathbb{C}:|z| \geq 1\}$.

The result of Arestov may now be stated as follows.

Lemma 2.5. [2,Th.2] Let $\phi(x)=\psi(\log x)$ where ψ is a convex nondecreasing function on \mathbb{R}. Then for all $P \in \mathcal{P}_{n}$ and each admissible operator Λ_{γ},

$$
\int_{0}^{2 \pi} \phi\left(\left|C_{\gamma} P\left(e^{i \theta}\right)\right|\right) d \theta \leq \int_{0}^{2 \pi} \phi\left(c(\gamma, n)\left|P\left(e^{i \theta}\right)\right|\right) d \theta
$$

where $c(\gamma, n)=\max \left(\left|\gamma_{0}\right|,\left|\gamma_{n}\right|\right)$.

In particular Lemma 2.5 applies with $\phi: x \rightarrow x^{p}$ for every $p \in(0, \infty)$ and $\phi: x \rightarrow \log x$ as well. Therefore, we have for $0 \leq p<\infty$,

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi} \phi\left(\left|C_{\gamma} P\left(e^{i \theta}\right)\right|^{p}\right) d \theta\right\}^{1 / p} \leq c(\gamma, n)\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta\right\}^{1 / p} \tag{24}
\end{equation*}
$$

From Lemma 2.5, we deduce the following result.

Lemma 2.6. If $P \in \mathcal{P}_{n}$ and $P(z)$ does not vanish in $|z|<1$, then for each $p>0$, $R>1$ and η real, $0 \leq \eta<2 \pi$,

$$
\begin{aligned}
& \int_{0}^{2 \pi} \mid\left(B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)\right) e^{i \eta} \\
& \quad+\left.\left(B\left[P^{*} \circ \sigma\right]^{*}\left(e^{i \theta}\right)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}\left(e^{i \theta}\right)\right)\right|^{p} d \theta
\end{aligned} \quad \begin{aligned}
& \leq\left|\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right) \Lambda_{n} e^{i \eta}+\left(1+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta})\right) \bar{\lambda}_{0}\right|^{p} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta
\end{aligned}
$$

where $B \in B_{n}, \sigma(z):=R z, \rho(z):=r z, B\left[P^{*} \circ \sigma\right]^{*}(z):=\left(B\left[P^{*} \circ \sigma\right](z)\right)^{*}, \Lambda_{n}$ and $\phi_{n}(R, r, \alpha, \beta)$ are defined by (12) and (15) respectively.

Proof. Since $P(z)$ does not vanish in $|z|<1$ and $P^{*}(z)=z^{n} \overline{P(1 / \bar{z})}$, by Lemma 3, we have for $R>r \geq 1$,

$$
\begin{align*}
& \mid B[P \circ \sigma](z)+\phi(R, r, \alpha, \beta) B[P \circ \rho](z) \\
& \leq\left|B\left[P^{*} \circ \sigma\right](z)+\phi(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right](z)\right| \tag{25}
\end{align*}
$$

Also, since

$$
\begin{aligned}
& P^{*}(R z)+\phi(R, r, \alpha, \beta) P^{*}(r z)=R^{n} z^{n} \overline{P(1 / R \bar{z})}+\phi(R, r, \alpha, \beta) r^{n} z^{n} \overline{P(1 / r \bar{z})}, \text { therefore, } \\
& B\left[P^{*} \circ \sigma\right](z)+\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right](z) \\
&= \lambda_{0}\left(R^{n} z^{n} \overline{P(1 / R \bar{z})}+\phi(R, r, \alpha, \beta) r^{n} z^{n} \overline{P(1 / r \bar{z})}\right)+\lambda_{1}\left(\frac{n z}{2}\right)\left(n R^{n} z^{n-1} \overline{P(1 / R \bar{z})}\right. \\
&\left.-R^{n-1} z^{n-2} \overline{P^{\prime}(1 / R \bar{z})}+\phi(R, r, \alpha, \beta)\left(n r^{n} z^{n-1} \overline{P(1 / r \bar{z})}-r^{n-1} z^{n-2} \overline{P^{\prime}(1 / r \bar{z})}\right)\right) \\
&+\frac{\lambda_{2}}{2!}\left(\frac{n z}{2}\right)^{2}\left(n(n-1) R^{n} z^{n-2} \overline{P(1 / R \bar{z})}-2(n-1) R^{n-1} z^{n-3} \overline{P^{\prime}(1 / R \bar{z})}\right. \\
&+R^{n-2} z^{n-4} \overline{P^{\prime \prime}(1 / R \bar{z})}+\phi(R, r, \alpha, \beta)\left(n(n-1) r^{n} z^{n-2} \overline{P(1 / r \bar{z})}\right. \\
&\left.\left.-2(n-1) r^{n-1} z^{n-3} \overline{P^{\prime}(1 / r \bar{z})}+r^{n-2} z^{n-4} \overline{P^{\prime \prime}(1 / r \bar{z})}\right)\right)
\end{aligned}
$$

and hence,

$$
\begin{aligned}
& B\left[P^{*} \circ \sigma\right]^{*}(z)+\phi(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}(z) \\
& =\left(B\left[P^{*} \circ \sigma\right](z)+\phi(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right](z)\right)^{*} \\
& =\left(\overline{\lambda_{0}}+\overline{\lambda_{1}} \frac{n^{2}}{2}+\overline{\lambda_{2}} \frac{n^{3}(n-1)}{8}\right)\left(R^{n} P(z / R)+\phi(R, r, \bar{\alpha}, \bar{\beta}) r^{n} P(z / r)\right) \\
& -\left(\overline{\lambda_{1}} \frac{n}{2}+\overline{\lambda_{2}} \frac{n^{2}(n-1)}{4}\right)\left(R^{n-1} z P^{\prime}(z / R)+\phi(R, r, \bar{\alpha}, \bar{\beta}) r^{n-1} z P^{\prime}(z / r)\right) \\
& +\overline{\lambda_{2}} \frac{n^{2}}{8}\left(R^{n-2} z^{2} P^{\prime \prime}(z / R)+\phi(R, r, \bar{\alpha}, \bar{\beta}) r^{n-2} z^{2} P^{\prime \prime}(z / r)\right) .
\end{aligned}
$$

Also, for $|z|=1$

$$
\begin{aligned}
\mid B\left[P^{*} \circ \sigma\right](z)+ & \phi(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right](z) \mid \\
& =\left|B\left[P^{*} \circ \sigma\right]^{*}(z)+\phi(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}(z)\right|
\end{aligned}
$$

Using this in (25), we get for $|z|=1$ and $R>r \geq 1$,

$$
\begin{aligned}
\mid B[P \circ \sigma](z)+ & \phi(R, r, \alpha, \beta) B[P \circ \rho](z) \mid \\
& \leq\left|B\left[P^{*} \circ \sigma\right]^{*}(z)+\phi(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}(z)\right|
\end{aligned}
$$

Since all the zeros of $P^{*}(z)$ lie in $|z| \leq 1$, as before, all the zeros of $P^{*}(R z)+$ $\phi_{n}(R, r, \alpha, \beta) P^{*}(r z)$ lie in $|z|<1$ for all real or complex numbers α, β with $|\alpha| \leq 1,|\beta| \leq 1$ and $R>r \geq 1$. Hence by Lemma 2.2, all the zeros of $B\left[P^{*} \circ \sigma\right](z)+\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ\right.$
$\rho](z)$ lie in $|z|<1$, therefore, all the zeros of $B\left[P^{*} \circ \sigma\right]^{*}(z)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}(z)$ lie in $|z|>1$. Hence by the maximum modulus principle,

$$
\begin{align*}
\mid B[P \circ \sigma](z)+ & \phi(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right](z) \mid \\
& <\left|B\left[P^{*} \circ \sigma\right]^{*}(z)+\phi(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}(z)\right| \quad \text { for } \quad|z|<1 \tag{27}
\end{align*}
$$

A direct application of Rouche's theorem shows that

$$
\begin{aligned}
C_{\gamma} P(z)= & \left(B[P \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho](z)\right) e^{i \eta} \\
& +\left(B\left[P^{*} \circ \sigma\right]^{*}(z)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}(z)\right) \\
= & \left\{\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right) \Lambda_{n} e^{i \eta}+\left(1+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta})\right) \bar{\lambda}_{0}\right\} a_{n} z^{n} \\
& +\cdots+\left\{\left(R^{n}+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) r^{n}\right) \overline{\Lambda_{n}}+e^{i \eta}\left(1+\phi_{n}(R, r, \alpha, \beta)\right) \lambda_{0}\right\} a_{0}
\end{aligned}
$$

does not vanish in $|z|<1$. Therefore, C_{γ} is an admissible operator. Applying (24) of Lemma 2.5 , the desired result follows immediately for each $p>0$.

From Lemma 2.6, we deduce the following more general result.

Lemma 2.7. If $P \in P_{n}$, then for every $p>0, R>1$ and η real, $0 \leq \eta<2 \pi$,

$$
\begin{aligned}
& \int_{0}^{2 \pi} \mid\left(B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)\right) e^{i \eta} \\
& \quad+\left.\left(B\left[P^{*} \circ \sigma\right]^{*}\left(e^{i \theta}\right)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}\left(e^{i \theta}\right)\right)\right|^{p} d \theta
\end{aligned} \quad \begin{aligned}
& \leq\left|\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right) \Lambda_{n} e^{i \eta}+\left(1+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta})\right) \bar{\lambda}_{0}\right|^{p} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta
\end{aligned}
$$

where $B \in B_{n}, \sigma(z):=R z, \rho(z):=r z, B\left[P^{*} \circ \sigma\right]^{*}(z):=\left(B\left[P^{*} \circ \sigma\right](z)\right)^{*}, \Lambda_{n}$ and $\phi_{n}(R, r, \alpha, \beta)$ are defined by (12) and (15) respectively.

Proof. If all the zeros of $P(z)$ lie in $|z| \geq 1$, then the result follows by Lemma 2.6. Henceforth, we assume that $P(z)$ has at least one zero in $|z|<1$ so that we can write

$$
P(z)=P_{1}(z) P_{2}(z)=a \prod_{j=1}^{k}\left(z-z_{j}\right) \prod_{j=k+1}^{n}\left(z-z_{j}\right), \quad 0 \leq k \leq n-1, \quad a \neq 0
$$

where all the zeros of $P_{1}(z)$ lie in $|z| \geq 1$ and all the zeros of $P_{2}(z)$ lie in $|z|<1$. First we assume that $P_{1}(z)$ has no zero on $|z|=1$ so that all the zeros of $P_{1}(z)$ lie in $|z|>1$. Let $P_{2}^{*}(z)=z^{n-k} \overline{P_{2}(1 / \bar{z})}$, then all the zeros of $P_{2}^{*}(z)$ lie in $|z|>1$ and $\left|P_{2}^{*}(z)\right|=\left|P_{2}(z)\right|$ for $|z|=1$. Now consider the polynomial

$$
f(z)=P_{1}(z) P_{2}^{*}(z)=a \prod_{j=1}^{k}\left(z-z_{j}\right) \prod_{j=k+1}^{n}\left(1-z \bar{z}_{j}\right)
$$

then all the zeros of $f(z)$ lie in $|z|>1$ and for $|z|=1$,

$$
\begin{equation*}
|f(z)|=\left|P_{1}(z)\right|\left|P_{2}^{*}(z)\right|=\left|P_{1}(z)\right|\left|P_{2}(z)\right|=|P(z)| \tag{28}
\end{equation*}
$$

Therefore, it follows by Rouche's theorem that the polynomial $g(z)=P(z)+\mu f(z)$ does not vanish in $|z| \leq 1$ for every μ with $|\mu|>1$, so that all the zeros of $g(z)$ lie in $|z| \geq \delta$ for some $\delta>1$ and hence all the zeros of $T(z)=g(\delta z)$ lie in $|z| \geq 1$. Applying (27) and (26) to the polynomial $T(z)$, we get for $R>1$ and $|z|<1$,

$$
\begin{aligned}
& |B[T \circ \sigma](z)+\phi(R, r, \alpha, \beta) B[T \circ \rho](z)| \\
& \quad<\left|B\left[T^{*} \circ \sigma\right]^{*}(z)+\phi(R, r, \bar{\alpha}, \bar{\beta}) B\left[T^{*} \circ \rho\right]^{*}(z)\right| \\
& \quad=\left\lvert\,\left(\overline{\lambda_{0}}+\overline{\lambda_{1}} \frac{n^{2}}{2}+\overline{\lambda_{2}} \frac{n^{3}(n-1)}{8}\right)\left(R^{n} T(z / R)+\phi(R, r, \bar{\alpha}, \bar{\beta}) r^{n} T(z / r)\right)\right. \\
& \quad-\left(\overline{\lambda_{1}} \frac{n}{2}+\overline{\lambda_{2}} \frac{n^{2}(n-1)}{4}\right)\left(R^{n-1} z T^{\prime}(z / R)+\phi(R, r, \bar{\alpha}, \bar{\beta}) r^{n-1} z T^{\prime}(z / r)\right) \\
& \left.\quad+\overline{\lambda_{2}} \frac{n^{2}}{8}\left(R^{n-2} z^{2} T^{\prime \prime}(z / R)+\phi(R, r, \bar{\alpha}, \bar{\beta}) r^{n-2} z^{2} T^{\prime \prime}(z / r)\right) \right\rvert\,,
\end{aligned}
$$

that is,

$$
\begin{aligned}
& |B[T \circ \sigma](z)+\phi(R, r, \alpha, \beta) B[T \circ \rho](z)| \\
& \quad=\left\lvert\,\left(\overline{\lambda_{0}}+\overline{\lambda_{1}} \frac{n^{2}}{2}+\overline{\lambda_{2}} \frac{n^{3}(n-1)}{8}\right)\left(R^{n} g(\delta z / R)+\phi(R, r, \bar{\alpha}, \bar{\beta}) r^{n} g(\delta z / r)\right)\right. \\
& \quad-\left(\overline{\lambda_{1}} \frac{n}{2}+\overline{\lambda_{2}} \frac{n^{2}(n-1)}{4}\right)\left(R^{n-1} \delta z g^{\prime}(\delta z / R)+\phi(R, r, \bar{\alpha}, \bar{\beta}) r^{n-1} \delta z g^{\prime}(\delta z / r)\right) \\
& \left.\quad+\overline{\lambda_{2}} \frac{n^{2}}{8}\left(R^{n-2} \delta^{2} z^{2} g^{\prime \prime}(\delta z / R)+\phi(R, r, \bar{\alpha}, \bar{\beta}) r^{n-2} \delta^{2} z^{2} g^{\prime \prime}(\delta z / r)\right) \right\rvert\,
\end{aligned}
$$

for $|z|<1$. If $z=e^{i \theta} / \delta, 0 \leq \theta<2 \pi$, then $|z|=(1 / \delta)<1$ as $\delta>1$ and we get

$$
\begin{aligned}
\mid B & {[T \circ \sigma]\left(e^{i \theta} / \delta\right)+\phi_{n}(R, r, \alpha, \beta) B[T \circ \rho]\left(e^{i \theta} / \delta\right) \mid } \\
= & \left\lvert\,\left(\overline{\lambda_{0}}+\overline{\lambda_{1}} \frac{n^{2}}{2}+\overline{\lambda_{2}} \frac{n^{3}(n-1)}{8}\right)\left(R^{n} g\left(e^{i \theta} / R\right)+\phi(R, r, \bar{\alpha}, \bar{\beta}) r^{n} g\left(e^{i \theta} / r\right)\right)\right. \\
- & \left(\overline{\lambda_{1}} \frac{n}{2}+\overline{\lambda_{2}} \frac{n^{2}(n-1)}{4}\right)\left(R^{n-1} e^{i \theta} g^{\prime}\left(e^{i \theta} / R\right)+\phi(R, r, \bar{\alpha}, \bar{\beta}) r^{n-1} e^{i \theta} g^{\prime}\left(e^{i \theta} / r\right)\right) \\
& \left.+\overline{\lambda_{2}} \frac{n^{2}}{8}\left(R^{n-2} e^{2 i \theta} g^{\prime \prime}\left(e^{i \theta} / R\right)+\phi(R, r, \bar{\alpha}, \bar{\beta}) r^{n-2} e^{2 i \theta} g^{\prime \prime}\left(e^{i \theta} / r\right)\right) \right\rvert\, \\
= & \left|B\left[g^{*} \circ \sigma\right]^{*}\left(e^{i \theta}\right)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[g^{*} \circ \rho\right]^{*}\left(e^{i \theta}\right)\right| .
\end{aligned}
$$

Equivalently for $|z|=1$,

$$
\begin{aligned}
\mid B[g \circ \sigma](z)]+ & \phi(R, r, \alpha, \beta) B[g \circ \rho](z) \mid \\
& <\left|B\left[g^{*} \circ \sigma\right]^{*}(z)+\phi(R, r, \bar{\alpha}, \bar{\beta}) B\left[g^{*} \circ \rho\right]^{*}(z)\right| .
\end{aligned}
$$

Since all the zeros of $g(z)$ lie in $|z| \geq 1$, all the zeros of $g^{*}(z)=z^{n} \overline{g(1 / \bar{z})}$ lie in $|z| \leq 1$ and hence as before, all the zeros of $g^{*}(R z)+\phi(R, r, \alpha, \beta) g^{*}(r z)$ lie in $|z|<1$. By Lemma 2.2, all the zeros of $B\left[g^{*} \circ \sigma\right](z)+\phi(R, r, \alpha, \beta) B\left[g^{*} \circ \rho\right](z)$ lie in $|z|<1$ and therefore, all the zeros of $B\left[g^{*} \circ \sigma\right]^{*}(z)+\phi(R, r, \bar{\alpha}, \bar{\beta}) B\left[g^{*} \circ \rho\right]^{*}(z)$ lie in $|z|>1$. Thus

$$
B\left[g^{*} \circ \sigma\right]^{*}(z)+\phi(R, r, \bar{\alpha}, \bar{\beta}) B\left[g^{*} \circ \rho\right]^{*}(z) \neq 0 \text { for }|z| \leq 1
$$

An application of Rouche's theorem shows that the polynomial

$$
\begin{align*}
M(z)= & \left(B[g \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[g \circ \rho](z)\right) e^{i \eta} \\
& +B\left[g^{*} \circ \sigma\right]^{*}(z)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[g^{*} \circ \rho\right]^{*}(z) \tag{29}
\end{align*}
$$

does not vanish in $|z| \leq 1$. Replacing $g(z)$ by $P(z)+\mu f(z)$ and noting that B is a linear operator, it follows that the polynomial

$$
\begin{align*}
M(z)=(B[P \circ \sigma](z)+ & \left.\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho](z)\right) e^{i \eta} \\
& +\left(B\left[P^{*} \circ \sigma\right]^{*}(z)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}(z)\right) \\
+\mu((B[f \circ \sigma] & \left.(z)+\phi_{n}(R, r, \alpha, \beta) B[f \circ \rho](z)\right) e^{i \eta} \\
& \left.+\left(B\left[f^{*} \circ \sigma\right]^{*}(z)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[f^{*} \circ \rho\right]^{*}(z)\right)\right) \tag{30}
\end{align*}
$$

does not vanish in $|z| \leq 1$ for every μ with $|\mu|>1$.
We claim

$$
\begin{align*}
& \mid(B[P \circ \sigma](z)\left.+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho](z)\right) e^{i \eta} \\
&+B\left[P^{*} \circ \sigma\right]^{*}(z)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}(z) \mid \\
& \leq \mid\left(B[f \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[f \circ \rho](z)\right) e^{i \eta} \\
&+B\left[f^{*} \circ \sigma\right]^{*}(z)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[f^{*} \circ \rho\right]^{*}(z) \mid \tag{31}
\end{align*}
$$

for $|z| \leq 1$. If inequality (31) is not true, then there a point $z=z_{0}$ with $\left|z_{0}\right| \leq 1$ such that

$$
\begin{aligned}
& \mid\left(B[P \circ \sigma]\left(z_{0}\right)\right.\left.+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(z_{0}\right)\right) e^{i \eta} \\
&+B\left[P^{*} \circ \sigma\right]^{*}\left(z_{0}\right)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}\left(z_{0}\right) \mid \\
&>\mid\left(B[f \circ \sigma]\left(z_{0}\right)+\phi_{n}(R, r, \alpha, \beta) B[f \circ \rho]\left(z_{0}\right)\right) e^{i \eta} \\
&+B\left[f^{*} \circ \sigma\right]^{*}\left(z_{0}\right)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[f^{*} \circ \rho\right]^{*}\left(z_{0}\right) \mid
\end{aligned}
$$

Since $f(z)$ does not vanish in $|z| \leq 1$, proceeding similarly as in the proof of (29), it follows that the polynomial

$$
\begin{aligned}
(B[f \circ \sigma](z) & \left.+\phi_{n}(R, r, \alpha, \beta) B[f \circ \rho](z)\right) e^{i \eta} \\
& +B\left[f^{*} \circ \sigma\right]^{*}(z)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[f^{*} \circ \rho\right]^{*}(z)
\end{aligned}
$$

does not vanish in $|z| \leq 1$. Hence

$$
\begin{aligned}
\left(B[f \circ \sigma]\left(z_{0}\right)\right. & \left.+\phi_{n}(R, r, \alpha, \beta) B[f \circ \rho]\left(z_{0}\right)\right) e^{i \eta} \\
& +B\left[f^{*} \circ \sigma\right]^{*}\left(z_{0}\right)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[f^{*} \circ \rho\right]^{*}\left(z_{0}\right) \neq 0
\end{aligned}
$$

We take

$$
\mu=-\frac{\left(B[P \circ \sigma]\left(z_{0}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(z_{0}\right)\right) e^{i \eta}+B\left[P^{*} \circ \sigma\right]^{*}\left(z_{0}\right)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}\left(z_{0}\right)}{\left(B[f \circ \sigma]\left(z_{0}\right)+\phi_{n}(R, r, r, \alpha, \beta) B[f \circ \rho]\left(z_{0}\right)\right) e^{i \eta}+B\left[f^{*} \circ \sigma\right]^{*}\left(z_{0}\right)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[f^{*} \circ \rho\right]^{*}\left(z_{0}\right)},
$$

so that μ is well-defined real or complex number with $|\mu|>1$ and with this choice of μ, from (30), we get $M\left(z_{0}\right)=0$. This clearly is a contradiction to the fact that $M(z)$ does
not vanish in $|z| \leq 1$. Thus (31) holds, which in particular gives for each $p>0$ and η real,

$$
\begin{align*}
& \int_{0}^{2 \pi} \mid\left(B[P \circ \sigma]\left(e^{i \theta}\right)+\right. \\
& \left.+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)\right) e^{i \theta} \\
& \\
& +B\left[P^{*} \circ \sigma\right]^{*}\left(e^{i \theta}\right)+\left.\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}\left(e^{i \theta}\right)\right|^{p} d \theta \tag{32}\\
& \leq \int_{0}^{2 \pi} \mid\left(B[f \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[f \circ \rho](z)\right) e^{i \theta} \\
&
\end{align*}
$$

Using Lemma 2.7 and (28), we get for each $p>0$,

$$
\begin{align*}
& \int_{0}^{2 \pi} \mid\left(B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)\right) e^{i \eta} \\
& \quad+B\left[P^{*} \circ \sigma\right]^{*}\left(e^{i \theta}\right)+\left.\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}\left(e^{i \theta}\right)\right|^{p} d \theta
\end{aligned} \quad \begin{aligned}
& \leq\left|\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right) \Lambda_{n} e^{i \eta}+\left(1+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta})\right) \bar{\lambda}_{0}\right|^{p} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{p} d \theta \\
& =\left|\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right) \Lambda_{n} e^{i \eta}+\left(1+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta})\right) \bar{\lambda}_{0}\right|^{p} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta
\end{align*}
$$

Now if $P_{1}(z)$ has a zero on $|z|=1$, then applying (33) to the polynomial $Q(z)=$ $P_{1}(t z) P_{2}(z)$ where $t<1$, we get for each $p>0, R>r \geq 1$ and η real,

$$
\left.\begin{array}{rl}
& \int_{0}^{2 \pi} \mid\left(B[Q \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[Q \circ \rho]\left(e^{i \theta}\right)\right) e^{i \eta} \\
& +\left.\left(B\left[Q^{*} \circ \sigma\right]^{*}\left(e^{i \theta}\right)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[Q^{*} \circ \rho\right]^{*}\left(e^{i \theta}\right)\right)\right|^{p} d \theta
\end{array}\right\}
$$

Letting $t \rightarrow 1$ in (34) and using continuity, the desired result follows immediately and this proves Lemma 2.7.

Lemma 2.8. If $P \in P_{n}$ and $P^{*}(z)=z^{n} \overline{P(1 / \bar{z})}$, then for every $p>0, \alpha, \beta \in \mathbb{C}$ with $|\alpha| \leq 1,|\beta| \leq 1$ and $R>r \geq 1$,

$$
\begin{align*}
& \int_{0}^{2 \pi} \int_{0}^{2 \pi} \mid\left(B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)\right) e^{i \eta} \\
& \quad+\left.\left(B\left[P^{*} \circ \sigma\right]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right]\left(e^{i \theta}\right)\right)\right|^{p} d \theta \\
& \quad \leq \int_{0}^{2 \pi}\left|\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right) \Lambda_{n} e^{i \eta}+\left(1+\phi_{n}(R, r, \alpha, \beta)\right) \lambda_{0}\right|^{p} d \eta \\
& \quad \tag{35}
\end{align*}
$$

where $B \in B_{n}, \sigma(z):=R z, \rho(z):=r z, \Lambda_{n}$ and $\phi_{n}(R, r, \alpha, \beta)$ are defined by (12) and (15) respectively. The result is best possible and the extremal polynomial is $P(z)=\beta z^{n}, \beta \neq 0$.

Proof. Since $B\left[P^{*} \circ \sigma\right]^{*}(z)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}(z)$ is the conjugate polynomial of $B\left[P^{*} \circ \sigma\right](z)+\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right](z)$,

$$
\begin{aligned}
\mid B\left[P^{*} \circ \sigma\right]^{*}\left(e^{i \theta}\right) & +\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}\left(e^{i \theta}\right) \mid \\
& =\left|B\left[P^{*} \circ \sigma\right]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right]\left(e^{i \theta}\right)\right|, 0 \leq \theta<2 \pi
\end{aligned}
$$

and therefore for each $p>0, R>r \geq 1$ and $0 \leq \theta<2 \pi$, we have

$$
\begin{aligned}
& \int_{0}^{2 \pi} \mid\left(B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)\right) e^{i \eta} \\
& \quad+\left.\left(B\left[P^{*} \circ \sigma\right]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right]\left(e^{i \theta}\right)\right)\right|^{p} d \eta \\
& =\int_{0}^{2 \pi} \| B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right) \mid e^{i \eta} \\
& \quad+\mid B\left[P^{*} \circ \sigma\right]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right]\left(e^{i \theta}\right) \|^{p} d \eta
\end{aligned} \begin{array}{r}
=\int_{0}^{2 \pi} \| B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right) \mid e^{i \eta} \\
\quad+\left|B\left[P^{*} \circ \sigma\right]^{*}\left(e^{i \theta}\right)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}\left(e^{i \theta}\right)\right|^{p} d \eta
\end{array}
$$

Integrating both sides of (36) with respect to θ from 0 to 2π and using Lemma 2.7, we get

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{0}^{2 \pi} \mid\left(B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)\right) e^{i \eta} \\
& +\left.\left(B\left[P^{*} \circ \sigma\right]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right]\left(e^{i \theta}\right)\right)\right|^{p} d \eta d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{2 \pi} \| B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right) \mid e^{i \eta} \\
& +\left|B\left[P^{*} \circ \sigma\right]^{*}\left(e^{i \theta}\right)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}\left(e^{i \theta}\right)\right|^{p} d \eta d \theta \\
& =\int_{0}^{2 \pi}\left(\int_{0}^{2 \pi}\left(B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)\right) e^{i \eta}\right. \\
& \left.+\left.\left(B\left[P^{*} \circ \sigma\right]^{*}\left(e^{i \theta}\right)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B\left[P^{*} \circ \rho\right]^{*}\left(e^{i \theta}\right)\right)\right|^{p} d \theta\right) d \eta \\
& \leq \int_{0}^{2 \pi}\left|\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right) \Lambda_{n} e^{i \eta}+\left(1+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta})\right) \bar{\lambda}_{0}\right|^{p} d \eta \\
& \times \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta \\
& \leq \int_{0}^{2 \pi}\left|\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right) \Lambda_{n} e^{i \eta}+\left(1+\phi_{n}(R, r, \alpha, \beta)\right) \lambda_{0}\right|^{p} d \eta \\
& \times \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta .
\end{aligned}
$$

This completes the proof of Lemma 2.8.

3. Main results

We first present the following result which is a compact generalization of the inequalities (1),(2), (5) and (10) and extends inequality (13) for $0 \leq p<1$ as well.

Theorem 3.1. If $P \in \mathcal{P}_{n}$, then for arbitrary real or complex numbers α, β with $|\alpha| \leq 1,|\beta| \leq 1, R>r \geq 1$ and $0 \leq p<\infty$,
$\left\|B[P \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho](z)\right\|_{p}$

$$
\begin{equation*}
\leq\left|R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right|\left|\Lambda_{n}\right|\|P(z)\|_{p} \tag{37}
\end{equation*}
$$

where $B \in B_{n}, \sigma(z):=R z, \rho(z):=r z, \Lambda_{n}$ and $\phi_{n}(R, r, \alpha, \beta)$ are defined by (12) and (15) respectively. The result is best possible and equality in (37) holds for $P(z)=a z^{n}, a \neq 0$.

Proof. By hypothesis $P \in P_{n}$, we can write

$$
P(z)=P_{1}(z) P_{2}(z)=c \prod_{j=1}^{k}\left(z-z_{j}\right) \prod_{j=k+1}^{n}\left(z-z_{j}\right), \quad k \geq 1, c \neq 0
$$

where all the zeros of $P_{1}(z)$ lie in $|z| \leq 1$ and all the zeros of $P_{2}(z)$ lie in $|z|>1$. First we suppose that all the zeros of $P_{1}(z)$ lie in $|z|<1$. Let $P_{2}^{*}(z)=z^{n-k} \overline{P_{2}(1 / \bar{z})}$, then all the zeros of $P_{2}^{*}(z)$ lie in $|z|<1$ and $\left|P_{2}^{*}(z)\right|=\left|P_{2}(z)\right|$ for $|z|=1$. Now consider the polynomial

$$
F(z)=P_{1}(z) P_{2}^{*}(z)=c \prod_{j=1}^{k}\left(z-z_{j}\right) \prod_{j=k+1}^{n}\left(1-z \bar{z}_{j}\right)
$$

then all the zeros of $F(z)$ lie in $|z|<1$ and for $|z|=1$,

$$
\begin{equation*}
|F(z)|=\left|P_{1}(z)\right|\left|P_{2}^{*}(z)\right|=\left|P_{1}(z)\right|\left|P_{2}(z)\right|=|P(z)| \tag{38}
\end{equation*}
$$

Observe that $P(z) / F(z) \rightarrow 1 / \prod_{j=k+1}^{n}\left(-\bar{z}_{j}\right)$ when $z \rightarrow \infty$, so it is regular even at ∞ and thus from (38) and by the maximum modulus principle, it follows that

$$
|P(z)| \leq|F(z)| \text { for }|z| \geq 1
$$

Since $F(z) \neq 0$ for $|z| \geq 1$, a direct application of Rouche's theorem shows that the polynomial $H(z)=P(z)+\lambda F(z)$ has all its zeros in $|z|<1$ for every λ with $|\lambda|>1$. Therefore, for all real or complex numbers α, β with $|\alpha| \leq 1,|\beta| \leq 1$ and $R>r \geq 1$, it follows that all the zeros of $h(z)=H(R z)+\phi_{n}(R, r, \alpha, \beta) H(r z)$ lie in $|z|<1$. Applying Lemma 2.2 to the polynomial $h(z)$ and noting that B is a linear operator, it follows that
all the zeros of

$$
\begin{aligned}
& B[h](z)=B[H \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[H \circ \rho](z) \\
& =B[P \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho](z) \\
& +\lambda\left(B[F \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[F \circ \rho](z)\right)
\end{aligned}
$$

lie in $|z|<1$ for every λ with $|\lambda|>1$. This implies

$$
\left|B[P \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho](z)\right| \leq\left|B[F \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[F \circ \rho](z)\right|
$$

for $|z| \geq 1$, which, in particular, gives for each $p>0, R>r \geq 1$ and $0 \leq \theta<2 \pi$,

$$
\begin{align*}
& \int_{0}^{2 \pi}\left|B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)\right|^{p} d \theta \\
& \quad \leq \int_{0}^{2 \pi}\left|B[F \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[F \circ \rho]\left(e^{i \theta}\right)\right|^{p} d \theta \tag{39}
\end{align*}
$$

Again, since all the zeros of $F(z)$ lie in $|z|<1$, it follows, as before, that all the zeros of $B[F(R z)]+\phi_{n}(R, r, \alpha, \beta) F(r z)$ also lie in $|z|<1$. Therefore, if $F(z)=b_{n} z^{n}+b_{n-1} z^{n-1}+$ $\cdots+b_{0}$, then the operator C_{γ} defined by

$$
\begin{aligned}
C_{\gamma} F(z) & =B[F \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[F \circ \rho](z) \\
& =\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right)\left(\lambda_{0}+\lambda_{1} \frac{n^{2}}{2}+\lambda_{2} \frac{n^{3}(n-1)}{8}\right) b_{n} z^{n}+\cdots+\lambda_{0} b_{0}
\end{aligned}
$$

is admissible. Hence by (24) of Lemma 2.5, for each $p>0$, we have

$$
\begin{align*}
& \int_{0}^{2 \pi}\left|B[F \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[F \circ \rho]\left(e^{i \theta}\right)\right|^{p} d \theta \\
& \leq\left|R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right|\left|\lambda_{0}+\lambda_{1} \frac{n^{2}}{2}+\lambda_{2} \frac{n^{3}(n-1)}{8}\right|^{p} \int_{0}^{2 \pi}\left|F\left(e^{i \theta}\right)\right|^{p} d \theta \tag{40}
\end{align*}
$$

Combining inequalities (39) and (40) and noting that $\left|F\left(e^{i \theta}\right)\right|=\left|P\left(e^{i \theta}\right)\right|$, we obtain for each $p>0$ and $R>r \geq 1$,

$$
\begin{align*}
\int_{0}^{2 \pi} \mid B[P \circ \sigma]\left(e^{i \theta}\right) & +\left.\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)\right|^{p} d \theta \\
& \leq\left|R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right|\left|\Lambda_{n}\right| \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta \tag{41}
\end{align*}
$$

In case $P_{1}(z)$ has a zero on $|z|=1$, then the inequality (41) follows by continuity. To obtain this result for $p=0$, we simply make $p \rightarrow 0+$.

A variety of interesting results can be deduced from Theorem 3.1 as special cases. Here we mention a few of these.

The following result follows from Theorem 3.1 by taking $\beta=0$.

Corollary 3.2. If $P \in \mathcal{P}_{n}$, then for every real or complex number α with $|\alpha| \leq 1$, $R>r \geq 1$ and $0 \leq p<\infty$,

$$
\begin{equation*}
\|B[P \circ \sigma](z)-\alpha B[P \circ \rho](z)\|_{p} \leq\left|R^{n}-\alpha r^{n}\right|\left|\Lambda_{n}\right|\|P(z)\|_{p} \tag{42}
\end{equation*}
$$

where $B \in B_{n}, \sigma(z):=R z, \rho(z):=r z$ and Λ_{n} is defined by (12). The result is best possible and equality in (42) holds for $P(z)=a z^{n}, a \neq 0$.

Setting $\alpha=0$ in Corollary 3.2, we get the following sharp result.

Corollary 3.3. If $P \in \mathcal{P}_{n}$, then for $R>1$ and $0 \leq p<\infty$,

$$
\begin{equation*}
\|B[P \circ \sigma](z)\|_{p} \leq\left|R^{n}\right|\left|\Lambda_{n}\right|\|P(z)\|_{p} \tag{43}
\end{equation*}
$$

where $B \in B_{n}, \sigma(z):=R z$ and Λ_{n} is defined by (12). The result is best possible and equality in (43) holds for $P(z)=a z^{n}, a \neq 0$.

Remark 3.4. Corollary 3.3 not only includes inequality (13) as a special case but also extends it for $0 \leq p<1$ as well. Further inequality (10) follows from Corollary 3.3 by letting $p \rightarrow \infty$ in (43).

The case $B[P](z)=P(z)$ of Theorem 3.1 yields the following interesting result which is a compact generalization of inequalities (1), (2) and (5).

Corollary 3.5. If $P \in \mathcal{P}_{n}$, then for every real or complex number α with $|\alpha| \leq 1$, $R>r \geq 1$, and $p>0$,

$$
\begin{equation*}
\left\|P(R z)+\phi_{n}(R, r, \alpha, \beta) P(r z)\right\|_{p} \leq\left|R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right|\|P(z)\|_{p} \tag{44}
\end{equation*}
$$

where $\phi_{n}(R, r, \alpha, \beta)$ is defined by (15). The result is best possible and equality in (44) holds for $P(z)=a z^{n}, a \neq 0$.

Remark 3.6. If we divide the two sides of (44) by $R-r$ with $\alpha=1$ and then let $R \rightarrow r$, we get for $P \in \mathcal{P}_{n}, r \geq 1,|\beta| \leq 1$ and $0 \leq p<\infty$,

$$
\begin{equation*}
\left\|z P^{\prime}(r z)+\beta \frac{n}{1+r} P(r z)\right\|_{p} \leq n\left|r^{n-1}+\beta \frac{r^{n}}{1+r}\right|\|P(z)\|_{p} \tag{45}
\end{equation*}
$$

The result is best possible and equality in (45) holds for $P(z)=a z^{n}, a \neq 0$.

Taking $\alpha=0$ in (41), we obtain:

Corollary 3.7. If $P \in \mathcal{P}_{n}$, then for every real or complex number β with $|\beta| \leq 1$, $R>r \geq 1$ and $0 \leq p<\infty$,

$$
\begin{equation*}
\left\|B[P(R z)]+\beta\left(\frac{R+1}{r+1}\right)^{n} B[P(r z)]\right\|_{p} \leq\left|R^{n}+\beta\left(\frac{R+1}{r+1}\right)^{n} r^{n}\right|\left|\Lambda_{n}\right|\|P(z)\|_{p} \tag{46}
\end{equation*}
$$

where $B \in B_{n}$ and $\phi(R, r, \alpha, \beta)$ is defined by (15). The result is best possible and equality in (46) holds for $P(z)=\lambda z^{n}, \lambda \neq 0$.

Theorem 3.1 can be sharpened if we restrict ourselves to the class of polynomials $P \in P_{n}$ having no zero in $|z|<1$. In this direction, we next present the following result which in particular includes a generalized L_{p} mean extension of the inequality (11) for $0 \leq p<\infty$ and among other things yields a correct proof of inequality (14) for each $p \geq 0$ as a special case.

Theorem 3.8. If $P \in \mathcal{P}_{n}$ and $P(z)$ does not vanish in $|z|<1$, then for then for arbitrary real or complex numbers α, β with $|\alpha| \leq 1,|\beta| \leq 1, R>r \geq 1$ and $0 \leq p<\infty$,

$$
\left\|B[P \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho](z)\right\|_{p}
$$

$$
\begin{equation*}
\leq \frac{\left\|\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right) \Lambda_{n} z+\left(1+\phi_{n}(R, r, \alpha, \beta)\right) \lambda_{0}\right\|_{p}}{\|1+z\|_{p}}\|P(z)\|_{p} \tag{47}
\end{equation*}
$$

where $B \in B_{n}, \sigma(z):=R z, \rho(z):=r z, \Lambda_{n}$ and $\phi_{n}(R, r, \alpha, \beta)$ are defined by (12) and (15) respectively. The result is best possible and equality in (47) holds for $P(z)=a z^{n}+b,|a|=$ $|b| \neq 0$.

Proof. By hypothesis $P \in P_{n}$ does not vanish in $|z|<1, \sigma(z)=R z, \rho(z)=r z$ therefore, if $P^{*}(z)=z^{n} \overline{P(1 / \bar{z})}$, then by Lemma 2.3, we have for $0 \leq \theta<2 \pi$,

$$
\begin{align*}
\mid B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n} & (R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right) \mid \\
\leq & \left|B\left[P^{*} \circ \sigma\right]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right]\left(e^{i \theta}\right)\right| \tag{48}
\end{align*}
$$

Also, by Lemma 2.8, for each $p>0$ and η real and $R>r \geq 1$,

$$
\begin{align*}
& \int_{0}^{2 \pi} \int_{0}^{2 \pi} \mid\left(B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)\right) e^{i \eta} \\
& \quad+\left.\left(B\left[P^{*} \circ \sigma\right]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right]\left(e^{i \theta}\right)\right)\right|^{p} d \theta d \eta \\
& \leq \int_{0}^{2 \pi} \mid\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right) \Lambda_{n} e^{i \eta} \\
& \quad \quad+\left.\left(1+\phi_{n}(R, r, \alpha, \beta)\right) \lambda_{0}\right|^{p} d \eta \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta \tag{49}
\end{align*}
$$

Now it can be easily verified that for every real number α and $s \geq 1$,

$$
\left|s+e^{i \alpha}\right| \geq\left|1+e^{i \alpha}\right|
$$

This implies for each $p>0$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|s+e^{i \alpha}\right|^{p} d \alpha \geq \int_{0}^{2 \pi}\left|1+e^{i \alpha}\right|^{p} d \alpha \tag{50}
\end{equation*}
$$

If $B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \bar{\alpha}, \bar{\beta}) B[P \circ \rho]\left(e^{i \theta}\right) \neq 0$, we take

$$
s=\frac{\left|B\left[P^{*} \circ \sigma\right]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right]\left(e^{i \theta}\right)\right|}{\left|B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)\right|}
$$

then by (48), $s \geq 1$ and from (50), we get

$$
\begin{aligned}
& \int_{0}^{2 \pi} \mid\left(B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)\right) e^{i \eta} \\
&+\left.\left(B\left[P^{*} \circ \sigma\right]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right]\left(e^{i \theta}\right)\right)\right|^{p} d \eta \\
&=\left|B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)\right|^{p} \\
& \quad \times \int_{0}^{2 \pi}\left|e^{i \eta}+\frac{B\left[P^{*} \circ \sigma\right]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right]\left(e^{i \theta}\right)}{B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)}\right|^{p} d \eta \\
&=\left|B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)\right|^{p} \\
& \times \int_{0}^{2 \pi}\left|e^{i \eta}+\left|\frac{B\left[P^{*} \circ \sigma\right]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right]\left(e^{i \theta}\right)}{B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)}\right|^{p} d \eta\right. \\
& \geq\left|B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)\right|^{p} \int_{0}^{2 \pi}\left|1+e^{i \eta}\right|^{p} d \eta .
\end{aligned}
$$

For $B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)=0$, this inequality is trivially true. Using this in (49), we conclude that for each $p>0$,

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left|B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)\right|^{p} d \theta \int_{0}^{2 \pi}\left|1+e^{i \eta}\right|^{p} d \eta \\
& \leq \int_{0}^{2 \pi} \mid\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right) \Lambda_{n} e^{i \eta} \\
& \quad+\left.\left(1+\phi_{n}(R, r, \alpha, \beta)\right) \lambda_{0}\right|^{p} d \eta \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta
\end{aligned}
$$

from which Theorem 3.8 follows for $p>0$. To establish this result for $p=0$, we simply let $p \rightarrow 0+$. This completes the proof of Theorem 3.8.

For $\beta=0$, inequality (47) reduces to the following result.

Corollary 3.9. If $P \in \mathcal{P}_{n}$ and $P(z)$ does not vanish in $|z|<1$, then for every real or complex number α with $|\alpha| \leq 1, R>r \geq 1$ and $0 \leq p<\infty$,

$$
\begin{equation*}
\|B[P \circ \sigma](z)-\alpha B[P \circ \rho](z)\|_{p} \leq \frac{\left\|\left(R^{n}-\alpha r^{n}\right) \Lambda_{n} z+(1-\alpha) \lambda_{0}\right\|_{p}}{\|1+z\|_{p}}\|P(z)\|_{p} \tag{51}
\end{equation*}
$$

where $B \in B_{n}, \sigma(z):=R z, \rho(z):=r z$ and Λ_{n} is defined by (12). The result is best possible and equality in (51) holds for $P(z)=a z^{n}+b, \quad|a|=|b| \neq 0$.

For $\alpha=0$, Corollary 3.9 yields the following interesting result.

Corollary 3.10. If $P \in \mathcal{P}_{n}$ and $P(z)$ does not vanish in $|z|<1$, then for $R>r \geq 1$ and $0 \leq p<\infty$,

$$
\begin{equation*}
\|B[P \circ \sigma](z)\|_{p} \leq \frac{\left\|R^{n} \Lambda_{n} z+\lambda_{0}\right\|_{p}}{\|1+z\|_{p}}\|P(z)\|_{p} \tag{52}
\end{equation*}
$$

where $B \in B_{n}, \sigma(z):=R z$ and Λ_{n} is defined by (12). The result is best possible and equality in (52) holds for $P(z)=a z^{n}+b,|a|=|b| \neq 0$.

Remark 3.11. If we choose $\alpha=\lambda_{0}=\lambda_{2}=0$ in (49), we get for $R>1$ and $0 \leq p<\infty$

$$
\begin{equation*}
\left\|P^{\prime}(R z)\right\|_{p} \leq \frac{n R^{n-1}}{\|1+z\|_{p}}\|P(z)\|_{p} \tag{53}
\end{equation*}
$$

which in particular yields inequality (3).

By the triangle inequality, the following result immediately follows from Corollary 3.10.

Corollary 3.12. If $P \in \mathcal{P}_{n}$ and $P(z)$ does not vanish in $|z|<1$, then for $0 \leq p<\infty$ and $R>1$,

$$
\begin{equation*}
\|B[P \circ \sigma](z)\|_{p} \leq \frac{R^{n}\left|\Lambda_{n}\right|+\left|\lambda_{0}\right|}{\|1+z\|_{p}}\|P(z)\|_{p} \tag{54}
\end{equation*}
$$

where $B \in B_{n}, \sigma(z):=R z, \Lambda_{n}$ is defined by (12).

Remark 3.13. Corollary 3.12 not only validates the inequality (13) for $p \geq 1$ but also extends it for $0 \leq p<1$ as well.

A polynomial $P \in \mathcal{P}_{n}$ is said be self-inversive if $P(z)=u P^{*}(z)$ where $|u|=1$ and $P^{*}(z)$ is the conjugate polynomial of $P(z)$, that is, $P^{*}(z)=z^{n} \overline{P(1 / \bar{z})}$. Finally in this paper, we establish the following result for self-inversive polynomials which includes a correct proof of another result of Shah and Liman [17, Theorem 3] as a special case.

Theorem 3.14. If $P \in \mathcal{P}_{n}$ is a self-inversive polynomial, then for arbitrary real or complex numbers α, β with $|\alpha| \leq 1,|\beta| \leq 1, R>r \geq 1$ and $0 \leq p<\infty$,

$$
\left\|B[P \circ \sigma](z)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho](z)\right\|_{p}
$$

$$
\begin{equation*}
\leq \frac{\left\|\left(R^{n}+\phi_{n}(R, r, \alpha, \beta) r^{n}\right) \Lambda_{n} z+\left(1+\phi_{n}(R, r, \alpha, \beta)\right) \lambda_{0}\right\|_{p}}{\|1+z\|_{p}}\|P(z)\|_{p} \tag{55}
\end{equation*}
$$

where $B \in B_{n}, \sigma(z):=R z, \rho(z):=r z, \Lambda_{n}$ and $\phi_{n}(R, r, \alpha, \beta)$ are defined by (12) and (15) respectively. The result is best possible and equality in (55) holds for $P(z)=z^{n}+1$.

Proof. Since $P \in P_{n}$ is self-inversive polynomial, we have for some u with $|u|=1$, $P^{*}(z)=u P(z)$ for all $z \in \mathbb{C}$ where $P^{*}(z)=z^{n} \overline{P(1 / \bar{z})}$. This gives for $0 \leq \theta<2 \pi$,

$$
\begin{aligned}
& \left|B[P \circ \sigma]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B[P \circ \rho]\left(e^{i \theta}\right)\right| \\
& \quad=\left|B\left[P^{*} \circ \sigma\right]\left(e^{i \theta}\right)+\phi_{n}(R, r, \alpha, \beta) B\left[P^{*} \circ \rho\right]\left(e^{i \theta}\right)\right|
\end{aligned}
$$

Using this in (35) and proceeding similarly as in the proof of Theorem 3.8, we get the desired result for each $p>0$. To extension to $p=0$ is obtains by letting $p \rightarrow 0+$.

The following result is an immediate consequence of Theorem 3.14.

Corollary 3.15. If $P \in \mathcal{P}_{n}$ is a self-inversive polynomial, then for $|\alpha| \leq 1,0 \leq p<\infty$ and $R>r \geq 1$,

$$
\begin{equation*}
\| B[P \circ \sigma](z)-\alpha B[P \circ \rho)](z)\left\|_{p} \leq \frac{\left\|\left(R^{n}-\alpha r^{n}\right) \Lambda_{n} z+(1-\alpha) \lambda_{0}\right\|_{p}}{\|1+z\|_{p}}\right\| P(z) \|_{p} \tag{56}
\end{equation*}
$$

where $B \in B_{n}$ and $\sigma(z):=R z, \rho(z):=r z$ and Λ_{n} is defined by (12). The result is sharp and equality in (56) holds for $P(z)=z^{n}+1$.

For $\alpha=0$, Corollary 3.15 reduces to the following interesting result.

Corollary 3.16. If $P \in \mathcal{P}_{n}$ is a self-inversive polynomial, then for $0 \leq p<\infty$ and $R>1$,

$$
\begin{equation*}
\|B[P \circ \sigma](z)\|_{p} \leq \frac{\left\|R^{n} \Lambda_{n} z+\lambda_{0}\right\|_{p}}{\|1+z\|_{p}}\|P(z)\|_{p} \tag{57}
\end{equation*}
$$

where $B \in B_{n}, \sigma(z):=R z$ and Λ_{n} is defined by (12). The result is best possible and equality in (57) holds for $P(z)=z^{n}+1$.

By the triangle inequality, the following result follows immediately from Corollary 3.16.

Corollary 3.17. If $P \in \mathcal{P}_{n}$ is a self-inversive polynomial, then for $0 \leq p<\infty$ and $R>1$,

$$
\begin{equation*}
\|B[P \circ \sigma](z)\|_{p} \leq \frac{R^{n}\left|\Lambda_{n}\right|+\left|\lambda_{0}\right|}{\|1+z\|_{p}}\|P(z)\|_{p} \tag{58}
\end{equation*}
$$

where $B \in B_{n}, \sigma(z):=R z$ and Λ_{n} is defined by (12).

Remark 3.18. Corollary 3.16 establishes a correct proof of a result due to Shah and Liman [17, Theorem 3] for $p \geq 1$ and also extends it for $0 \leq p<1$ as well.

Lastly letting $p \rightarrow \infty$ and setting $\alpha=\beta=0$ in (57), we obtain the following result.

Corollary 3.19. If $P \in \mathcal{P}_{n}$ is a self-inversive polynomial, then for $|z|=1$ and $R>1$,

$$
|B[P \circ \sigma](z)| \leq \frac{1}{2}\left\{R^{n}\left|\Lambda_{n}\right|+\left|\lambda_{0}\right|\right\}\|P(z)\|_{\infty}
$$

where $B \in B_{n}, \sigma(z):=R z$ and Λ_{n} is defined by (12). The result is sharp.

References

[1] N.C. Ankeny and T.J.Rivlin, On a theorm of S.Bernstein, Pacific J. Math., 5(1955),849-852.
[2] V.V.Arestov, On integral inequalities for trigonometric polynimials and their derivatives, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981),3-22[in Russian]. English translation; Math.USSR-Izv.,18 (1982),117.
[3] A.Aziz, A new proof and a generalization of a theorem of De Bruijn, proc. Amer Math. Soc., 106(1989),345-350.
[4] A. Aziz and N.A. Rather, Some compact generalizations of Zygmund-type inequalities for polynomials, Nonlinear Studies, 6(1999), 241-255.
[5] R.P.Boas,Jr. and Q.I.Rahman, L^{p} inequalities for polynomials and entire functions, Arch. Rational Mech. Anal., 11(1962),34-39.
[6] N.G.Bruijn, Inequalities concerning polynomials in the complex domain,Nederal. Akad.Wetensch. Proc.,50(1947),1265-1272.
[7] K.K.Dewan and N.K.Govil, An inequality for self- inversive polynomials, J.Math. Anal. Appl.,45(1983), 490.
[8] G.H.Hardy, The mean value of the modulus of an analytic functions, Proc. London Math. Soc., 14(1915), 269-277.
[9] P.D.Lax, Proof of a conjecture of P.Erdös on the derivative of a polynomial, Bull. Amer. Math.Soc.,50(1944),509-513.
[10] M.Marden, Geometry of polynomials, Math. Surveys, No.3, Amer. Math.Soc. Providence, RI, 1949.
[11] G.V.Milovanovic,D.S.Mitrinovic and Th.M.Rassias, Topics in Polynomials: Extremal Properties, Inequalities, Zeros, World scientific Publishing Co., Singapore,(1994).
[12] G.Polya and G.Szegö, Aufgaben und lehrsätze aus der analysis, Springer-Verlag, Berlin(1925).
[13] Q.I.Rahman, Functions of exponential type, Trans. Amer. Math. Soc., 135(1969),295-309.
[14] Q.I.Rahman and G.Schmeisser, L^{p} inequalities for polynomials, J. Approx. Theory,53(1988),26-32.
[15] Q.I.Rahman and G.Schmisser, Analytic Theory of Polynomials, Oxford University Press, New York, 2002.
[16] A.C.Schaffer, Inequalities of A.Markov and S.Bernstein for polynomials and related functions, Bull.Amer. Math. Soc., 47(1941), 565-579.
[17] W.M.Shah and A.Liman, Integral estimstes for the family of B-operators, Operators and Matrices, 5(2011), 79-87.
[18] A. Zygmund, A remark on conjugate series, Proc. London Math. Soc., 34(1932),292-400.

[^0]: *Corresponding author

