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Abstract. For a polynomial P (z) of degree n having no zero in |z| < 1, it was recently asserted by Shah

and Liman [17] that for every R ≥ 1, p ≥ 1,

‖B[P ◦ σ](z)‖p ≤
Rn|Λn|+ |λ0|
‖1 + z‖p

‖P (z)‖p ,

where B is a Bn-operator with parameters λ0, λ1, λ2 in the sense of Rahman and Schmeisser [15], Λ =

λ0 + λ1
n2

2 + λ2
n3(n−1)

8 and σ(z) = Rz, R ≥ 1. The proof of this result is incorrect. In this paper, we

present certain new Lp inequlities for Bn-operators which not only provide a correct proof of the above

inequality and other related results but also extend these inequalities for 0 ≤ p < 1 as well.
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1. Introduction

Let Pn denote the space of all complex polynomials P (z) =
∑n

j=0 ajz
j of degree n. For

P ∈ Pn, define

‖P (z)‖0 := exp

{
1

2π

∫ 2π

0

log
∣∣P (eiθ)

∣∣ dθ} ,
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‖P (z)‖p :=

{
1

2π

∫ 2π

0

∣∣P (eiθ)
∣∣p}1/p

, 1 ≤ p <∞,

‖P (z)‖∞ := max
|z|=1
|P (z)|

and denote for any complex function ψ : C → C the composite function of P and ψ,

defined by (P ◦ ψ) (z) := P (ψ(z)) (z ∈ C), as P ◦ ψ.

If P ∈ Pn, then

(1) ‖P ′(z)‖p ≤ n ‖P (z)‖p , p ≥ 1

and

(2) ‖P (Rz)‖p ≤ Rn ‖P (z)‖p , R > 1, p > 0,

Inequality (1) was found out by Zygmund [18] whereas inequality (2) is a simple conse-

quence of a result of Hardy [8]. Arestov [2] proved that (3) remains true for 0 < p < 1

as well. For p = ∞, the inequality (1) is due to Bernstein (for reference, see [11,15,16])

whereas the case p =∞ of inequality (2) is a simple consequence of the maximum mod-

ulus principle ( see [11,12,15]). Both the inequalities (1) and (2) can be sharpened if we

restrict ourselves to the class of polynomials having no zero in |z| < 1. In fact, if P ∈ Pn

and P (z) 6= 0 in |z| < 1, then inequalities (1) and (2) can be respectively replaced by

(3) ‖P ′(z)‖p ≤ n
‖P (z)‖p
‖1 + z‖p

, p ≥ 0

and

(4) ‖P (Rz)‖p ≤
‖Rnz + 1‖p
‖1 + z‖p

‖P (z)‖p , R > 1, p > 0.

Inequality (3) is due to De-Bruijn [6](see also [3]) for p ≥ 1. Rahman and Schmeisser [14]

extended it for 0 < p < 1 whereas the inequality (4) was proved by Boas and Rahman [5]
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for p ≥ 1 and later it was extended for 0 < p < 1 by Rahman and Schmeisser [14]. For

p =∞, the inequality (3) was conjectured by Erdös and later verified by Lax [9] whereas

inequality (4) was proved by Ankeny and Rivlin [1].

As a compact generalization of inequalities (1) and (2), Aziz and Rather [4] proved that

if P ∈ Pn, then for every real or complex number α with |α| ≤ 1, R ≥ 1, and p > 0,

(5) ‖P (Rz)− αP (z)‖p ≤ |R
n − α| ‖P (z)‖p .

and if P ∈ Pn and P (z) 6= 0 in |z| < 1, then for every real or complex number α with

|α| ≤ 1, R ≥ 1, and p > 0,

(6) ‖P (Rz)− αP (z)‖p ≤
‖(Rn − α)z + (1− α)‖p

‖1 + z‖p
‖P (z)‖p .

Inequality (6) is the corresponding compact generalization of inequalities (3) and (4).

Rahman [13] (see also Rahman and Schmeisser [15, p. 538]) introduced a class Bn of

operators B that maps P ∈ Pn into itself. That is, the operator B carries P ∈ Pn into

(7) B[P ](z) := λ0P (z) + λ1

(nz
2

) P ′(z)

1!
+ λ2

(nz
2

)2 P ′′(z)

2!

where λ0, λ1 and λ2 are such that all the zeros of

(8) u(z) := λ0 + C(n, 1)λ1z + C(n, 2)λ2z
2, C(n, r) = n!/r!(n− r)!,

lie in the half plane

(9) |z| ≤ |z − n/2|

and proved that if P ∈ Pn, then

(10) |B[P ◦ σ](z)| ≤ Rn |Λn| ‖P (z)‖∞ for |z| = 1.

and if P ∈ Pn and P (z) does not vanish in |z| < 1, then

(11) |B[P ◦ σ](z)| ≤ 1

2
{Rn |Λn|+ |λ0|} ‖P (z)‖∞ for |z| = 1,
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(see [13, Inequality (5.2) and (5.3)]) where σ(z) = Rz, R ≥ 1 and

(12) Λn := λ0 + λ1
n2

2
+ λ2

n3(n− 1)

8
.

As an extension of inequality (10) to Lp-norm, recently W.M.Shah and A.Liman [17,

Theorem 1] proved that if P ∈ Pn, then for every R ≥ 1 and p ≥ 1,

(13) ‖B[P ◦ σ](z)‖p ≤ Rn |Λn| ‖P (z)‖p

where B ∈ Bn and σ(z) = Rz and Λn is defined by (12).

While seeking the desired extension of inequality (11) to Lp-norm, they [17, Theorem

2] have made an incomplete attempt by claiming to have proved that if P ∈ Pn and P (z)

does not vanish in |z| < 1, then for each R ≥ 1 and p ≥ 1,

(14) ‖B[P ◦ σ](z)‖p ≤
Rn|Λn|+ |λ0|
‖1 + z‖p

‖P (z)‖p .

where B ∈ Bn and σ(z) = Rz and Λn is defined by (12).

Further, it has been claimed to have proved the inequality (14) for self-inversive poly-

nomials as well.

The proof of inequality (14) and other related results including the Lemma 4 in [17]

given by Shah and Liman is not correct. The reason being that the authors in [17] deduce

line 10 from line 7 on page 84, line 19 on page 85 from Lemma 3 [17] and line 16 from

line 14 on page 86 by using the fact that if P ∗(z) := znP (1/z), then for σ(z) = Rz, R ≥ 1

and |z| = 1,

|B[P ∗ ◦ σ](z)| = |B[(P ∗ ◦ σ)∗](z)|,

which is not true, in general, for every R ≥ 1 and |z| = 1. To see this, let

P (z) = anz
n + · · ·+ akz

k + · · ·+ a1z + a0

be an arbitrary polynomial of degree n, then

P ?(z) =: znP (1/z) = ā0z
n + ā1z

n−1 + · · ·+ ākz
n−k + · · ·+ ān.
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Now with µ1 := λ1n/2 and µ2 := λ2n
2/8, we have

B[P ? ◦ ρ](z) =
n∑
k=0

(λ0 + µ1(n− k) + µ2(n− k)(n− k − 1)) ākz
n−kRn−k,

and in particular for |z| = 1, we get

B[P ? ◦ ρ](z) = Rnzn
n∑
k=0

(λ0 + µ1(n− k) + µ2(n− k)(n− k − 1)) ak

( z
R

)k
,

whence

|B[P ? ◦ ρ](z)| = Rn

∣∣∣∣∣
n∑
k=0

(λ0 + µ1(n− k) + µ2(n− k)(n− k − 1))ak

( z
R

)k∣∣∣∣∣ .
But

|B[(P ? ◦ ρ)?](z)| = Rn

∣∣∣∣∣
n∑
k=0

(λ0 + µ1k + µ2k(k − 1)) ak

( z
R

)k∣∣∣∣∣ ,
so the asserted identity does not hold in general for every R ≥ 1 and |z| = 1 as e.g. the

immediate counterexample of P (z) := zn demonstrates in view of P ?(z) = 1, |B[P ? ◦

ρ](z)| = |λ0| and

|B[(P ? ◦ ρ)?](z)| = |λ0 + λ1(n2/2) + λ2n
3(n− 1)/8|, |z| = 1.

The main aim of this paper is to present correct proofs of the results mentioned in [17]

by investigating the dependence of

‖B[P ◦ σ](z) + φn (R, r, α, β)B[P ◦ ρ](z)‖p

on ‖P (z)‖p for arbitrary real or complex numbers α, β with |α| ≤ 1, |β| ≤ 1, R > r ≥ 1,

0 ≤ p <∞, σ(z) := Rz, ρ(z) := rz and

(15) φn (R, r, α, β) := β

{(
R + 1

r + 1

)n
− |α|

}
− α,

and establish certain generalized Lp-mean extensions of the inequalities (10) and (11) for

0 ≤ p <∞.

2. Lemmas
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For the proofs of our results, we need the following lemmas. The first Lemma is easy

to prove.

Lemma 2.1. If P ∈ Pn and P (z) has all its zeros in |z| ≤ 1, then for every R ≥ r ≥ 1

and |z| = 1,

|P (Rz)| ≥
(
R + 1

r + 1

)n
|P (rz)| .

The following Lemma follows from Corollary 18.3 of [7, p.65].

Lemma 2.2. If all the zeros of polynomial P ∈ Pn lie in |z| ≤ 1, then all the zeros

of the polynomial B[P ](z) also lie in |z| ≤ 1.

Lemma 2.3. If F ∈ Pn has all its zeros in |z| ≤ 1 and P (z) is a polynomial of degree

at most n such that

|P (z)| ≤ |F (z)| for |z| = 1,

then for arbitrary real or complex numbers α, β with |α| ≤ 1, |β| ≤ 1, R ≥ r ≥ 1, and

|z| ≥ 1,

(16) |B[P ◦ σ](z) + φ(R, r, α, β)B[P ◦ ρ](z)| ≤ |B[P ∗ ◦ σ](z) + φ(R, r, α, β)B[P ∗ ◦ ρ](z)|

where P ∗(z) := znP (1/z), B ∈ Bn, σ(z) := Rz, ρ(z) := rz, Λn and φn (R, r, α, β) are

defined by (12) and (15) respectively.

Proof. Since the polynomial F (z) of degree n has all its zeros in |z| ≤ 1 and P (z) is a

polynomial of degree at most n such that

(17) |P (z)| ≤ |F (z)| for |z| = 1,

therefore, if F (z) has a zero of multiplicity s at z = eiθ0 , then P (z) has a zero of multiplicity

at least s at z = eiθ0 . If P (z)/F (z) is a constant, then the inequality (16) is obvious.
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We now assume that P (z)/F (z) is not a constant, so that by the maximum modulus

principle, it follows that

|P (z)| < |F (z)| for |z| > 1 .

Suppose F (z) has m zeros on |z| = 1 where 0 ≤ m ≤ n, so that we can write

F (z) = F1(z)F2(z)

where F1(z) is a polynomial of degree m whose all zeros lie on |z| = 1 and F2(z) is a

polynomial of degree exactly n−m having all its zeros in |z| < 1. This implies with the

help of inequality (17) that

P (z) = P1(z)F1(z)

where P1(z) is a polynomial of degree at most n−m. Now, from inequality (17), we get

|P1(z)| ≤ |F2(z)| for |z| = 1

where F2(z) 6= 0 for |z| = 1. Therefore for every real or complex number λ with |λ| > 1,

a direct application of Rouche’s theorem shows that the zeros of the polynomial P1(z)−

λF2(z) of degree n−m ≥ 1 lie in |z| < 1. Hence the polynomial

f(z) = F1(z) (P1(z)− λF2(z)) = P (z)− λF (z)

has all its zeros in |z| ≤ 1 with at least one zero in |z| < 1, so that we can write

f(z) = (z − teiδ)H(z)

where t < 1 and H(z) is a polynomial of degree n − 1 having all its zeros in |z| ≤ 1.

Applying Lemma 1.1 to the polynomial f(z) with k = 1, we obtain for every R > r ≥ 1

and 0 ≤ θ < 2π,

|f(Reiθ)| = |Reiθ − teiδ||H(Reiθ)|

≥ |Reiθ − teiδ|
(
R + 1

r + 1

)n−1

|H(reiθ)|

=

(
R + 1

r + 1

)n−1 |Reiθ − teiδ|
|reiθ − teiδ|

|(reiθ − teiδ)H(reiθ)|

≥
(
R + 1

r + 1

)n−1(
R + t

r + t

)
|f(reiθ)|.



38 NISAR A. RATHER1,∗, SHOWKAT A. ZARGAR2

This implies for R > r ≥ 1 and 0 ≤ θ < 2π,

(18)

(
r + t

R + t

)
|f(Reiθ)| ≥

(
R + 1

r + 1

)n−1

|f(reiθ)|.

Since R > r ≥ 1 > t so that f(Reiθ) 6= 0 for 0 ≤ θ < 2π and 1+r
1+R

> r+t
R+t

, from inequality

(18), we obtain R > r ≥ 1 and 0 ≤ θ < 2π,

(19) |f(Reiθ| >
(
R + 1

r + 1

)n
|f(reiθ)|.

Equivalently,

|f(Rz)| >
(
R + 1

r + 1

)n
|f(rz)|

for |z| = 1 and R > r ≥ 1. Hence for every real or complex number α with |α| ≤ 1 and

R > r ≥ 1, we have

|f(Rz)− αf(rz)| ≥ |f(Rz)| − |α||f(rz)|

>

{(
R + 1

r + 1

)n
− |α|

}
|f(rz)|, |z| = 1.(20)

Also, inequality (19) can be written in the form

(21) |f(reiθ)| <
(
r + 1

R + 1

)n
|f(Reiθ)|

for every R > r ≥ 1 and 0 ≤ θ < 2π. Since f(Reiθ) 6= 0 and
(
r+1
R+1

)n
< 1, from inequality

(21), we obtain for 0 ≤ θ < 2π and R > r ≥ 1,

|f(reiθ| < |f(Reiθ).

Equivalently,

|f(rz)| < |f(Rz)| for |z| = 1.

Since all the zeros of f(Rz) lie in |z| ≤ (1/R) < 1, a direct application of Rouche’s

theorem shows that the polynomial f(Rz) − αf(rz) has all its zeros in |z| < 1 for every

real or complex number α with |α| ≤ 1. Applying Rouche’s theorem again, it follows from

(20) that for arbitrary real or complex numbers α, β with |α| ≤ 1, |β| ≤ 1 and R > r ≥ 1,

all the zeros of the polynomial
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T (z) =f(Rz)− αf(rz) + β

{(
R + 1

r + 1

)n
− |α|

}
f(rz)

= f(Rz) + φ(R, r, α, β)f(rz)

=
(
P (Rz)− λF (Rz)

)
+ φ(R, r, α, β)

(
P (rz)− λF (rz)

)
=
(
P (Rz) + φ(R, r, α, β)P (rz)

)
− λ
(
F (Rz) + φ(R, r, α, β)F (rz)

)
lie in |z| < 1 for every λ with |λ| > 1. Using Lemma 2.2 and the fact that B is a linear

operator, we conclude that all the zeros of polynomial

W (z) = B[T ](z)

= (B[P ◦ σ](z) + φ(R, r, α, β)B[P ◦ ρ](z))

−λ(B[F ◦ σ](z) + φ(R, r, α, β)B[F ◦ ρ](z))

also lie in |z| < 1 for every λ with |λ| > 1. This implies

(22) |B[P ◦ σ](z) + φ(R, r, α, β)B[P ◦ ρ](z)| ≤ |B[F ◦ σ](z) + φ(R, r, α, β)B[F ◦ ρ](z)|

for |z| ≥ 1 and R > r ≥ 1. If inequality (22) is not true, then exist a point z = z0 with

|z0| ≥ 1 such that

|B[P ◦ σ](z0) + φ(R, r, α, β)B[P ◦ ρ](z0)| > |B[F ◦ σ](z0) + φ(R, r, α, β)B[F ◦ ρ](z0)|.

But all the zeros of F (Rz) lie in |z| < 1, therefore, it follows (as in case of f(z)) that all

the zeros of F (Rz) + φ(R, r, α, β)F (rz) lie in |z| < 1. Hence by Lemma 2.2, all the zeros

of B[F ◦ σ](z) + φ(R, r, α, β)B[F ◦ ρ](z) also lie in |z| < 1, which shows that

B[F ◦ σ](z0) + φ(R, r, α, β)B[F ◦ ρ](z0) 6= 0.

We take

λ =
B[P ◦ σ](z0) + φ(R, r, α, β)B[P ◦ ρ](z0)

B[F ◦ σ](z0) + φ(R, r, α, β)B[F ◦ ρ](z0)
,

then λ is a well defined real or complex number with |λ| > 1 and with this choice of λ,

we obtain W (z0) = 0. This contradicts the fact that all the zeros of W (z) lie in |z| < 1.
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Thus (22) holds and this completes the proof of Lemma 2.3.

Lemma 2.4. If P ∈ Pn and P (z) does not vanish in |z| < 1, then for arbitrary real or

complex numbers α, β with |α| ≤ 1, |β| ≤ 1, R > r ≥ 1 and |z| ≥ 1,

|B[P ◦ σ](z)+φ (R, r, α, β)B[P ◦ ρ](z)|

≤ |B[P ∗ ◦ σ](z) + φ (R, r, α, β)B[P ∗ ◦ ρ](z)|(23)

where P ∗(z) := znP (1/z), B ∈ Bn, σ(z) := Rz, ρ(z) := rz, and φ (R, r, α, β) is defined

by (15).

Proof. By hpyothesis the polynomial P (z) of degree n does not vanish in |z| < 1,

therefore, all the zeros of the polynomial P ∗(z) = znP (1/z) of degree n lie in |z| ≤ 1.

Applying Lemma 2.3 with F (z) replaced by P ∗(z), it follows that

|B[P ◦ σ](z) + φ (R, r, α, β)B[P ◦ ρ](z)|

≤ |B[P ∗ ◦ σ](z) + φ (R, r, α, β)B[P ∗ ◦ ρ](z)|

for |z| ≥ 1, |α| ≤ 1, |β| ≤ 1 and R > r ≥ 1. This proves the Lemma 2.4.

Next we describe a result of Arestov[2].

For γ = (γ0, γ1, · · · , γn) ∈ Cn+1 and P (z) =
∑n

j=0 ajz
j, we define

CγP (z) =
n∑
j=0

γjajz
j.

The operator Cγ is said to be admissible if it preserves one of the following properties:

(i) P (z) has all its zeros in {z ∈ C : |z| ≤ 1},

(ii) P (z) has all its zeros in {z ∈ C : |z| ≥ 1}.

The result of Arestov may now be stated as follows.
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Lemma 2.5. [2,Th.2] Let φ(x) = ψ(log x) where ψ is a convex nondecreasing function

on R. Then for all P ∈ Pn and each admissible operator Λγ,

∫ 2π

0

φ
(
|CγP (eiθ)|

)
dθ ≤

∫ 2π

0

φ
(
c(γ, n)|P (eiθ)|

)
dθ

where c(γ, n) = max (|γ0|, |γn|).

In particular Lemma 2.5 applies with φ : x→ xp for every p ∈ (0,∞) and φ : x→ log x

as well. Therefore, we have for 0 ≤ p <∞,

(24)

{∫ 2π

0

φ
(
|CγP (eiθ)|p

)
dθ

}1/p

≤ c(γ, n)

{∫ 2π

0

∣∣P (eiθ)
∣∣p dθ}1/p

.

From Lemma 2.5, we deduce the following result.

Lemma 2.6. If P ∈ Pn and P (z) does not vanish in |z| < 1, then for each p > 0,

R > 1 and η real, 0 ≤ η < 2π,

∫ 2π

0

|
(
B[P ◦ σ](eiθ) + φn(R, r, α, β)B[P ◦ ρ](eiθ)

)
eiη

+
(
B[P ∗ ◦ σ]∗(eiθ) + φn(R, r, ᾱ, β̄)B[P ∗ ◦ ρ]∗(eiθ)

)
|pdθ

≤ |(Rn + φn(R, r,α, β)rn)Λne
iη + (1 + φn(R, r, ᾱ, β̄))λ̄0|p

∫ 2π

0

∣∣P (eiθ)
∣∣p dθ

where B ∈ Bn, σ(z) := Rz, ρ(z) := rz, B[P ∗ ◦ σ]∗(z) := (B[P ∗ ◦ σ](z))∗, Λn and

φn (R, r, α, β) are defined by (12) and (15) respectively.

Proof. Since P (z) does not vanish in |z| < 1 and P ∗(z) = znP (1/z̄), by Lemma 3, we

have for R > r ≥ 1,

|B[P ◦ σ](z) + φ (R, r, α, β)B[P ◦ ρ](z)

≤ |B[P ∗ ◦ σ](z) + φ (R, r, α, β)B[P ∗ ◦ ρ](z)|(25)



42 NISAR A. RATHER1,∗, SHOWKAT A. ZARGAR2

Also, since

P ∗(Rz) + φ (R, r, α, β)P ∗(rz) = RnznP (1/Rz̄) + φ (R, r, α, β) rnznP (1/rz̄), therefore,

B[P ∗ ◦ σ](z) + φn(R, r, α, β)B[P ∗ ◦ ρ](z)

= λ0

(
RnznP (1/Rz̄) + φ (R, r, α, β) rnznP (1/rz̄)

)
+ λ1

(nz
2

)(
nRnzn−1P (1/Rz̄)

−Rn−1zn−2P ′(1/Rz̄) + φ (R, r, α, β)
(
nrnzn−1P (1/rz̄)− rn−1zn−2P ′(1/rz̄)

))
+
λ2

2!

(nz
2

)2 (
n(n− 1)Rnzn−2P (1/Rz̄)− 2(n− 1)Rn−1zn−3P ′(1/Rz̄)

+Rn−2zn−4P ′′(1/Rz̄) + φ (R, r, α, β)
(
n(n− 1)rnzn−2P (1/rz̄)

− 2(n− 1)rn−1zn−3P ′(1/rz̄) + rn−2zn−4P ′′(1/rz̄)
))

and hence,

B[P ∗ ◦ σ]∗(z) + φ
(
R, r, ᾱ, β̄

)
B[P ∗ ◦ ρ]∗(z)

=
(
B[P ∗ ◦ σ](z) + φ (R, r, α, β)B[P ∗ ◦ ρ](z)

)∗
=

(
λ̄0 + λ̄1

n2

2
+ λ̄2

n3(n− 1)

8

)(
RnP (z/R) + φ

(
R, r, ᾱ, β̄

)
rnP (z/r)

)
−
(
λ̄1
n

2
+ λ̄2

n2(n− 1)

4

)(
Rn−1zP ′(z/R) + φ

(
R, r, ᾱ, β̄

)
rn−1zP ′(z/r)

)
+λ̄2

n2

8

(
Rn−2z2P ′′(z/R) + φ

(
R, r, ᾱ, β̄

)
rn−2z2P ′′(z/r)

)
.(26)

Also, for |z| = 1

|B[P ∗ ◦ σ](z)+φ (R, r, α, β)B[P ∗ ◦ ρ](z)|

= |B[P ∗ ◦ σ]∗(z) + φ
(
R, r, ᾱ, β̄

)
B[P ∗ ◦ ρ]∗(z)|.

Using this in (25), we get for |z| = 1 and R > r ≥ 1,

|B[P ◦ σ](z)+φ (R, r, α, β)B[P ◦ ρ](z)|

≤ |B[P ∗ ◦ σ]∗(z) + φ
(
R, r, ᾱ, β̄

)
B[P ∗ ◦ ρ]∗(z)|.

Since all the zeros of P ∗(z) lie in |z| ≤ 1, as before, all the zeros of P ∗(Rz) +

φn(R, r, α, β)P ∗(rz) lie in |z| < 1 for all real or complex numbers α, β with |α| ≤ 1, |β| ≤ 1

and R > r ≥ 1. Hence by Lemma 2.2, all the zeros of B[P ∗ ◦ σ](z) + φn(R, r, α, β)B[P ∗ ◦
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ρ](z) lie in |z| < 1, therefore, all the zeros of B[P ∗ ◦ σ]∗(z) + φn(R, r, ᾱ, β̄)B[P ∗ ◦ ρ]∗(z)

lie in |z| > 1. Hence by the maximum modulus principle,

|B[P ◦ σ](z)+φ (R, r, α, β)B[P ∗ ◦ ρ](z)|

< |B[P ∗ ◦ σ]∗(z) + φ
(
R, r, ᾱ, β̄

)
B[P ∗ ◦ ρ]∗(z)| for |z| < 1.(27)

A direct application of Rouche’s theorem shows that

CγP (z) =
(
B[P ◦ σ](z) + φn(R, r, α, β)B[P ◦ ρ](z)

)
eiη

+
(
B[P ∗ ◦ σ]∗(z) + φn(R, r, ᾱ, β̄)B[P ∗ ◦ ρ]∗(z)

)
=
{

(Rn + φn(R, r, α, β)rn)Λne
iη + (1 + φn(R, r, ᾱ, β̄))λ̄0

}
anz

n

+ · · ·+
{

(Rn + φn(R, r, ᾱ, β̄)rn)Λ̄n + eiη(1 + φn(R, r, α, β))λ0

}
a0

does not vanish in |z| < 1. Therefore, Cγ is an admissible operator. Applying (24) of

Lemma 2.5, the desired result follows immediately for each p > 0.

From Lemma 2.6, we deduce the following more general result.

Lemma 2.7. If P ∈ Pn, then for every p > 0, R > 1 and η real, 0 ≤ η < 2π,∫ 2π

0

|
(
B[P ◦ σ](eiθ) + φn(R, r, α, β)B[P ◦ ρ](eiθ)

)
eiη

+
(
B[P ∗ ◦ σ]∗(eiθ) + φn(R, r, ᾱ, β̄)B[P ∗ ◦ ρ]∗(eiθ)

)
|pdθ

≤ |(Rn + φn(R, r,α, β)rn)Λne
iη + (1 + φn(R, r, ᾱ, β̄))λ̄0|p

∫ 2π

0

∣∣P (eiθ)
∣∣p dθ

where B ∈ Bn, σ(z) := Rz, ρ(z) := rz, B[P ∗ ◦ σ]∗(z) := (B[P ∗ ◦ σ](z))∗, Λn and

φn (R, r, α, β) are defined by (12) and (15) respectively.

Proof. If all the zeros of P (z) lie in |z| ≥ 1, then the result follows by Lemma 2.6.

Henceforth, we assume that P (z) has at least one zero in |z| < 1 so that we can write

P (z) = P1(z)P2(z) = a
k∏
j=1

(z − zj)
n∏

j=k+1

(z − zj), 0 ≤ k ≤ n− 1, a 6= 0
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where all the zeros of P1(z) lie in |z| ≥ 1 and all the zeros of P2(z) lie in |z| < 1. First

we assume that P1(z) has no zero on |z| = 1 so that all the zeros of P1(z) lie in |z| > 1.

Let P ∗2 (z) = zn−kP2(1/z̄), then all the zeros of P ∗2 (z) lie in |z| > 1 and |P ∗2 (z)| = |P2(z)|

for |z| = 1. Now consider the polynomial

f(z) = P1(z)P ∗2 (z) = a

k∏
j=1

(z − zj)
n∏

j=k+1

(1− zz̄j),

then all the zeros of f(z) lie in |z| > 1 and for |z| = 1,

(28) |f(z)| = |P1(z)| |P ∗2 (z)| = |P1(z)| |P2(z)| = |P (z)| .

Therefore, it follows by Rouche’s theorem that the polynomial g(z) = P (z) + µf(z) does

not vanish in |z| ≤ 1 for every µ with |µ| > 1, so that all the zeros of g(z) lie in |z| ≥ δ

for some δ > 1 and hence all the zeros of T (z) = g(δz) lie in |z| ≥ 1. Applying (27) and

(26) to the polynomial T (z), we get for R > 1 and |z| < 1,

|B[T ◦ σ](z) + φ (R, r, α, β)B[T ◦ ρ](z)|

< |B[T ∗ ◦ σ]∗(z) + φ
(
R, r, ᾱ, β̄

)
B[T ∗ ◦ ρ]∗(z)|

= |
(
λ̄0 + λ̄1

n2

2
+ λ̄2

n3(n− 1)

8

)(
RnT (z/R) + φ

(
R, r, ᾱ, β̄

)
rnT (z/r)

)
−
(
λ̄1
n

2
+ λ̄2

n2(n− 1)

4

)(
Rn−1zT ′(z/R) + φ

(
R, r, ᾱ, β̄

)
rn−1zT ′(z/r)

)
+λ̄2

n2

8

(
Rn−2z2T ′′(z/R) + φ

(
R, r, ᾱ, β̄

)
rn−2z2T ′′(z/r)

)
|,

that is,

|B[T ◦ σ](z) + φ (R, r, α, β)B[T ◦ ρ](z)|

= |
(
λ̄0 + λ̄1

n2

2
+ λ̄2

n3(n− 1)

8

)(
Rng(δz/R) + φ

(
R, r, ᾱ, β̄

)
rng(δz/r)

)
−
(
λ̄1
n

2
+ λ̄2

n2(n− 1)

4

)(
Rn−1δzg′(δz/R) + φ

(
R, r, ᾱ, β̄

)
rn−1δzg′(δz/r)

)
+λ̄2

n2

8

(
Rn−2δ2z2g′′(δz/R) + φ

(
R, r, ᾱ, β̄

)
rn−2δ2z2g′′(δz/r)

)
|



NEW OPERATOR PRESERVING Lp INEQUALITIES BETWEEN POLYNOMIALS 45

for |z| < 1. If z = eiθ/δ, 0 ≤ θ < 2π, then |z| = (1/δ) < 1 as δ > 1 and we get

|B[T ◦ σ](eiθ/δ) + φn(R, r, α, β)B[T ◦ ρ](eiθ/δ)|

= |
(
λ̄0 + λ̄1

n2

2
+ λ̄2

n3(n− 1)

8

)(
Rng(eiθ/R) + φ

(
R, r, ᾱ, β̄

)
rng(eiθ/r)

)
−
(
λ̄1
n

2
+ λ̄2

n2(n− 1)

4

)(
Rn−1eiθg′(eiθ/R) + φ

(
R, r, ᾱ, β̄

)
rn−1eiθg′(eiθ/r)

)
+λ̄2

n2

8

(
Rn−2e2iθg′′(eiθ/R) + φ

(
R, r, ᾱ, β̄

)
rn−2e2iθg′′(eiθ/r)

)
|

= |B[g∗ ◦ σ]∗(eiθ) + φn(R, r, ᾱ, β̄)B[g∗ ◦ ρ]∗(eiθ)|.

Equivalently for |z| = 1,

|B[g ◦ σ](z)]+φ (R, r, α, β)B[g ◦ ρ](z)|

< |B[g∗ ◦ σ]∗(z) + φ
(
R, r, ᾱ, β̄

)
B[g∗ ◦ ρ]∗(z)|.

Since all the zeros of g(z) lie in |z| ≥ 1, all the zeros of g∗(z) = zng(1/z̄) lie in |z| ≤ 1

and hence as before, all the zeros of g∗(Rz) +φ(R, r, α, β)g∗(rz) lie in |z| < 1. By Lemma

2.2, all the zeros of B[g∗ ◦ σ](z) + φ(R, r, α, β)B[g∗ ◦ ρ](z) lie in |z| < 1 and therefore, all

the zeros of B[g∗ ◦ σ]∗(z) + φ(R, r, ᾱ, β̄)B[g∗ ◦ ρ]∗(z) lie in |z| > 1. Thus

B[g∗ ◦ σ]∗(z) + φ(R, r, ᾱ, β̄)B[g∗ ◦ ρ]∗(z) 6= 0 for |z| ≤ 1.

An application of Rouche’s theorem shows that the polynomial

M(z) =
(
B[g ◦ σ](z) + φn(R, r, α, β)B[g ◦ ρ](z)

)
eiη

+B[g∗ ◦ σ]∗(z) + φn(R, r, ᾱ, β̄)B[g∗ ◦ ρ]∗(z)(29)

does not vanish in |z| ≤ 1. Replacing g(z) by P (z) + µf(z) and noting that B is a linear

operator, it follows that the polynomial

M(z) =
(
B[P ◦ σ](z)+φn(R, r, α, β)B[P ◦ ρ](z)

)
eiη

+
(
B[P ∗ ◦ σ]∗(z) + φn(R, r, ᾱ, β̄)B[P ∗ ◦ ρ]∗(z)

)
+µ
((
B[f ◦ σ](z) + φn(R, r, α, β)B[f ◦ ρ](z)

)
eiη

+ (B[f ∗ ◦ σ]∗(z) + φn(R, r, ᾱ, β̄)B[f ∗ ◦ ρ]∗(z))
)

(30)
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does not vanish in |z| ≤ 1 for every µ with |µ| > 1.

We claim

|
(
B[P ◦ σ](z) + φn(R, r, α, β)B[P ◦ ρ](z)

)
eiη

+B[P ∗ ◦ σ]∗(z) + φn(R, r, ᾱ, β̄)B[P ∗ ◦ ρ]∗(z)|

≤ |
(
B[f ◦ σ](z) + φn(R, r, α, β)B[f ◦ ρ](z)

)
eiη

+B[f ∗ ◦ σ]∗(z) + φn(R, r, ᾱ, β̄)B[f ∗ ◦ ρ]∗(z)|(31)

for |z| ≤ 1. If inequality (31) is not true, then there a point z = z0 with |z0| ≤ 1 such

that

|
(
B[P ◦ σ](z0) + φn(R, r, α, β)B[P ◦ ρ](z0)

)
eiη

+B[P ∗ ◦ σ]∗(z0) + φn(R, r, ᾱ, β̄)B[P ∗ ◦ ρ]∗(z0)|

> |
(
B[f ◦ σ](z0) + φn(R, r, α, β)B[f ◦ ρ](z0)

)
eiη

+B[f ∗ ◦ σ]∗(z0) + φn(R, r, ᾱ, β̄)B[f ∗ ◦ ρ]∗(z0)|

Since f(z) does not vanish in |z| ≤ 1, proceeding similarly as in the proof of (29), it

follows that the polynomial

(
B[f ◦ σ](z) + φn(R, r, α, β)B[f ◦ ρ](z)

)
eiη

+B[f ∗ ◦ σ]∗(z) + φn(R, r, ᾱ, β̄)B[f ∗ ◦ ρ]∗(z)

does not vanish in |z| ≤ 1. Hence

(
B[f ◦ σ](z0) + φn(R, r, α, β)B[f ◦ ρ](z0)

)
eiη

+B[f ∗ ◦ σ]∗(z0) + φn(R, r, ᾱ, β̄)B[f ∗ ◦ ρ]∗(z0) 6= 0.

We take

µ = − (B[P◦σ](z0)+φn(R,r,α,β)B[P◦ρ](z0))eiη+B[P ∗◦σ]∗(z0)+φn(R,r,ᾱ,β̄)B[P ∗◦ρ]∗(z0)

(B[f◦σ](z0)+φn(R,r,α,β)B[f◦ρ](z0))eiη+B[f∗◦σ]∗(z0)+φn(R,r,ᾱ,β̄)B[f∗◦ρ]∗(z0)
,

so that µ is well-defined real or complex number with |µ| > 1 and with this choice of µ,

from (30), we get M(z0) = 0. This clearly is a contradiction to the fact that M(z) does
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not vanish in |z| ≤ 1. Thus (31) holds, which in particular gives for each p > 0 and η real,

∫ 2π

0

|
(
B[P ◦ σ](eiθ) + φn(R, r, α, β)B[P ◦ ρ](eiθ)

)
eiθ

+B[P ∗ ◦ σ]∗(eiθ) + φn(R, r, ᾱ, β̄)B[P ∗ ◦ ρ]∗(eiθ)|pdθ

≤
∫ 2π

0

|
(
B[f ◦ σ](z) + φn(R, r, α, β)B[f ◦ ρ](z)

)
eiθ

+B[f ∗ ◦ σ]∗(eiθ) + φn(R, r, ᾱ, β̄)B[f ∗ ◦ ρ]∗(eiθ)|dθ(32)

Using Lemma 2.7 and (28), we get for each p > 0,

∫ 2π

0

|
(
B[P ◦ σ](eiθ) + φn(R, r, α, β)B[P ◦ ρ](eiθ)

)
eiη

+B[P ∗ ◦ σ]∗(eiθ) + φn(R, r, ᾱ, β̄)B[P ∗ ◦ ρ]∗(eiθ)|pdθ

≤ |(Rn + φn(R, r,α, β)rn)Λne
iη + (1 + φn(R, r, ᾱ, β̄))λ̄0|p

∫ 2π

0

∣∣f(eiθ)
∣∣p dθ

= |(Rn + φn(R, r,α, β)rn)Λne
iη + (1 + φn(R, r, ᾱ, β̄))λ̄0|p

∫ 2π

0

∣∣P (eiθ)
∣∣p dθ(33)

Now if P1(z) has a zero on |z| = 1, then applying (33) to the polynomial Q(z) =

P1(tz)P2(z) where t < 1, we get for each p > 0, R > r ≥ 1 and η real,

∫ 2π

0

|
(
B[Q ◦ σ](eiθ) + φn(R, r, α, β)B[Q ◦ ρ](eiθ)

)
eiη

+
(
B[Q∗ ◦ σ]∗(eiθ) + φn(R, r, ᾱ, β̄)B[Q∗ ◦ ρ]∗(eiθ)

)
|pdθ

≤ |(Rn + φn(R, r, α, β)rn)Λne
iη + (1 + φn(R, r, ᾱ, β̄))λ̄0|p

∫ 2π

0

∣∣Q(eiθ)
∣∣p dθ.(34)

Letting t → 1 in (34) and using continuity, the desired result follows immediately and

this proves Lemma 2.7.



48 NISAR A. RATHER1,∗, SHOWKAT A. ZARGAR2

Lemma 2.8. If P ∈ Pn and P ∗(z) = znP (1/z̄), then for every p > 0, α, β ∈ C with

|α| ≤ 1, |β| ≤ 1 and R > r ≥ 1,

∫ 2π

0

∫ 2π

0

|
(
B[P ◦ σ](eiθ) + φn(R, r, α, β)B[P ◦ ρ](eiθ)

)
eiη

+
(
B[P ∗ ◦ σ](eiθ) + φn(R, r, α, β)B[P ∗ ◦ ρ](eiθ)

)
|pdθ

≤
∫ 2π

0

|(Rn + φn(R, r, α, β)rn)Λne
iη + (1 + φn(R, r, α, β))λ0|pdη

×
∫ 2π

0

∣∣P (eiθ)
∣∣p dθ(35)

where B ∈ Bn, σ(z) := Rz, ρ(z) := rz, Λn and φn (R, r, α, β) are defined by (12) and (15)

respectively. The result is best possible and the extremal polynomial is P (z) = βzn, β 6= 0.

Proof. Since B[P ∗ ◦ σ]∗(z) + φn(R, r, ᾱ, β̄)B[P ∗ ◦ ρ]∗(z) is the conjugate polynomial of

B[P ∗ ◦ σ](z) + φn(R, r, α, β)B[P ∗ ◦ ρ](z),

|B[P ∗ ◦ σ]∗(eiθ) + φn(R, r, ᾱ, β̄)B[P ∗ ◦ ρ]∗(eiθ)|

= |B[P ∗ ◦ σ](eiθ) + φn(R, r, α, β)B[P ∗ ◦ ρ](eiθ)|, 0 ≤ θ < 2π

and therefore for each p > 0, R > r ≥ 1 and 0 ≤ θ < 2π, we have

∫ 2π

0

|
(
B[P ◦ σ](eiθ) + φn(R, r, α, β)B[P ◦ ρ](eiθ)

)
eiη

+
(
B[P ∗ ◦ σ](eiθ) + φn(R, r, α, β)B[P ∗ ◦ ρ](eiθ)

)
|pdη

=

∫ 2π

0

||B[P ◦ σ](eiθ) + φn(R, r, α, β)B[P ◦ ρ](eiθ)|eiη

+|B[P ∗ ◦ σ](eiθ) + φn(R, r, α, β)B[P ∗ ◦ ρ](eiθ)||pdη

=

∫ 2π

0

||B[P ◦ σ](eiθ) + φn(R, r, α, β)B[P ◦ ρ](eiθ)|eiη

+|B[P ∗ ◦ σ]∗(eiθ) + φn(R, r, ᾱ, β̄)B[P ∗ ◦ ρ]∗(eiθ)||pdη.(36)
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Integrating both sides of (36) with respect to θ from 0 to 2π and using Lemma 2.7, we

get

∫ 2π

0

∫ 2π

0

|
(
B[P ◦ σ](eiθ) + φn(R, r, α, β)B[P ◦ ρ](eiθ)

)
eiη

+
(
B[P ∗ ◦ σ](eiθ) + φn(R, r, α, β)B[P ∗ ◦ ρ](eiθ)

)
|pdηdθ

=

∫ 2π

0

∫ 2π

0

||B[P ◦ σ](eiθ) + φn(R, r, α, β)B[P ◦ ρ](eiθ)|eiη

+|B[P ∗ ◦ σ]∗(eiθ) + φn(R, r, ᾱ, β̄)B[P ∗ ◦ ρ]∗(eiθ)||pdηdθ

=

∫ 2π

0

(∫ 2π

0

(
B[P ◦ σ](eiθ) + φn(R, r, α, β)B[P ◦ ρ](eiθ)

)
eiη

+
(
B[P ∗ ◦ σ]∗(eiθ) + φn(R, r, ᾱ, β̄)B[P ∗ ◦ ρ]∗(eiθ)

)
|pdθ

)
dη

≤
∫ 2π

0

|(Rn + φn(R, r, α, β)rn)Λne
iη + (1 + φn(R, r, ᾱ, β̄))λ̄0|pdη

×
∫ 2π

0

∣∣P (eiθ)
∣∣p dθ

≤
∫ 2π

0

|(Rn + φn(R, r, α, β)rn)Λne
iη + (1 + φn(R, r, α, β))λ0|pdη

×
∫ 2π

0

|P (eiθ)|pdθ.

This completes the proof of Lemma 2.8.

3. Main results

We first present the following result which is a compact generalization of the inequali-

ties (1),(2), (5) and (10) and extends inequality (13) for 0 ≤ p < 1 as well.

Theorem 3.1. If P ∈ Pn, then for arbitrary real or complex numbers α, β with

|α| ≤ 1, |β| ≤ 1, R > r ≥ 1 and 0 ≤ p <∞,
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‖B[P ◦ σ](z) + φn(R, r, α, β)B[P ◦ ρ](z)‖p

(37) ≤ |Rn + φn (R, r, α, β) rn| |Λn| ‖P (z)‖p

where B ∈ Bn, σ(z) := Rz, ρ(z) := rz, Λn and φn (R, r, α, β) are defined by (12) and (15)

respectively. The result is best possible and equality in (37) holds for P (z) = azn, a 6= 0.

Proof. By hypothesis P ∈ Pn, we can write

P (z) = P1(z)P2(z) = c

k∏
j=1

(z − zj)
n∏

j=k+1

(z − zj), k ≥ 1, c 6= 0

where all the zeros of P1(z) lie in |z| ≤ 1 and all the zeros of P2(z) lie in |z| > 1. First

we suppose that all the zeros of P1(z) lie in |z| < 1. Let P ∗2 (z) = zn−kP2(1/z̄), then all

the zeros of P ∗2 (z) lie in |z| < 1 and |P ∗2 (z)| = |P2(z)| for |z| = 1. Now consider the

polynomial

F (z) = P1(z)P ∗2 (z) = c
k∏
j=1

(z − zj)
n∏

j=k+1

(1− zz̄j),

then all the zeros of F (z) lie in |z| < 1 and for |z| = 1,

(38) |F (z)| = |P1(z)| |P ∗2 (z)| = |P1(z)| |P2(z)| = |P (z)| .

Observe that P (z)/F (z)→ 1/
∏n

j=k+1(−z̄j) when z →∞, so it is regular even at ∞ and

thus from (38) and by the maximum modulus principle, it follows that

|P (z)| ≤ |F (z)| for |z| ≥ 1.

Since F (z) 6= 0 for |z| ≥ 1, a direct application of Rouche’s theorem shows that the

polynomial H(z) = P (z) + λF (z) has all its zeros in |z| < 1 for every λ with |λ| > 1.

Therefore, for all real or complex numbers α, β with |α| ≤ 1, |β| ≤ 1 and R > r ≥ 1, it

follows that all the zeros of h(z) = H(Rz) + φn(R, r, α, β)H(rz) lie in |z| < 1. Applying

Lemma 2.2 to the polynomial h(z) and noting that B is a linear operator, it follows that
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all the zeros of

B[h](z) = B[H ◦ σ](z) + φn(R, r, α, β)B[H ◦ ρ](z)

= B[P ◦ σ](z) + φn(R, r, α, β)B[P ◦ ρ](z)

+λ(B[F ◦ σ](z) + φn(R, r, α, β)B[F ◦ ρ](z))

lie in |z| < 1 for every λ with |λ| > 1. This implies

|B[P ◦ σ](z) + φn(R, r, α, β)B[P ◦ ρ](z)| ≤ |B[F ◦ σ](z) + φn(R, r, α, β)B[F ◦ ρ](z)|

for |z| ≥ 1, which, in particular, gives for each p > 0, R > r ≥ 1 and 0 ≤ θ < 2π,∫ 2π

0

|B[P ◦ σ](eiθ) + φn(R, r, α, β)B[P ◦ ρ](eiθ)|pdθ

≤
∫ 2π

0

|B[F ◦ σ](eiθ) + φn(R, r, α, β)B[F ◦ ρ](eiθ)|pdθ(39)

Again, since all the zeros of F (z) lie in |z| < 1, it follows, as before, that all the zeros of

B[F (Rz)] +φn(R, r, α, β)F (rz) also lie in |z| < 1. Therefore, if F (z) = bnz
n + bn−1z

n−1 +

· · ·+ b0, then the operator Cγ defined by

CγF (z) = B[F ◦ σ](z) + φn(R, r, α, β)B[F ◦ ρ](z)

= (Rn + φn(R, r, α, β)rn)(λ0 + λ1
n2

2
+ λ2

n3(n− 1)

8
)bnz

n + · · ·+ λ0b0

is admissible. Hence by (24) of Lemma 2.5, for each p > 0, we have∫ 2π

0

|B[F ◦ σ](eiθ) + φn(R, r, α, β)B[F ◦ ρ](eiθ)|pdθ

≤ |Rn + φn(R, r, α, β)rn||λ0 + λ1
n2

2
+ λ2

n3(n− 1)

8
|p
∫ 2π

0

|F (eiθ)|pdθ.(40)

Combining inequalities (39) and (40) and noting that |F (eiθ)| = |P (eiθ)|, we obtain for

each p > 0 and R > r ≥ 1,∫ 2π

0

|B[P ◦ σ](eiθ) + φn(R, r, α, β)B[P ◦ ρ](eiθ)|pdθ

≤ |Rn + φn(R, r, α, β)rn||Λn|
∫ 2π

0

|P (eiθ)|pdθ.(41)
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In case P1(z) has a zero on |z| = 1, then the inequality (41) follows by continuity. To

obtain this result for p = 0, we simply make p→ 0+.

A variety of interesting results can be deduced from Theorem 3.1 as special cases. Here

we mention a few of these.

The following result follows from Theorem 3.1 by taking β = 0.

Corollary 3.2. If P ∈ Pn, then for every real or complex number α with |α| ≤ 1,

R > r ≥ 1 and 0 ≤ p <∞,

(42) ‖B[P ◦ σ](z)− αB[P ◦ ρ](z)‖p ≤ |R
n − αrn| |Λn| ‖P (z)‖p

where B ∈ Bn, σ(z) := Rz, ρ(z) := rz and Λn is defined by (12). The result is best

possible and equality in (42) holds for P (z) = azn, a 6= 0.

Setting α = 0 in Corollary 3.2, we get the following sharp result.

Corollary 3.3. If P ∈ Pn, then for R > 1 and 0 ≤ p <∞,

(43) ‖B[P ◦ σ](z)‖p ≤ |R
n| |Λn| ‖P (z)‖p

where B ∈ Bn, σ(z) := Rz and Λn is defined by (12). The result is best possible and

equality in (43) holds for P (z) = azn, a 6= 0.

Remark 3.4. Corollary 3.3 not only includes inequality (13) as a special case but also

extends it for 0 ≤ p < 1 as well. Further inequality (10) follows from Corollary 3.3 by

letting p→∞ in (43).

The case B[P ](z) = P (z) of Theorem 3.1 yields the following interesting result which

is a compact generalization of inequalities (1), (2) and (5).
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Corollary 3.5. If P ∈ Pn, then for every real or complex number α with |α| ≤ 1,

R > r ≥ 1, and p > 0,

(44) ‖P (Rz) + φn (R, r, α, β)P (rz)‖p ≤ |R
n + φn (R, r, α, β) rn| ‖P (z)‖p

where φn (R, r, α, β) is defined by (15). The result is best possible and equality in (44)

holds for P (z) = azn, a 6= 0.

Remark 3.6. If we divide the two sides of (44) by R − r with α = 1 and then let

R→ r, we get for P ∈ Pn, r ≥ 1, |β| ≤ 1 and 0 ≤ p <∞,

(45)

∥∥∥∥zP ′(rz) + β
n

1 + r
P (rz)

∥∥∥∥
p

≤ n

∣∣∣∣rn−1 + β
rn

1 + r

∣∣∣∣ ‖P (z)‖p .

The result is best possible and equality in (45) holds for P (z) = azn, a 6= 0.

Taking α = 0 in (41), we obtain:

Corollary 3.7. If P ∈ Pn, then for every real or complex number β with |β| ≤ 1,

R > r ≥ 1 and 0 ≤ p <∞,

(46)

∥∥∥∥B[P (Rz)] + β

(
R + 1

r + 1

)n
B[P (rz)]

∥∥∥∥
p

≤
∣∣∣∣Rn + β

(
R + 1

r + 1

)n
rn
∣∣∣∣ |Λn| ‖P (z)‖p .

where B ∈ Bn and φ (R, r, α, β) is defined by (15).The result is best possible and equality

in (46) holds for P (z) = λzn, λ 6= 0.

Theorem 3.1 can be sharpened if we restrict ourselves to the class of polynomials P ∈ Pn

having no zero in |z| < 1. In this direction, we next present the following result which in

particular includes a generalized Lp mean extension of the inequality (11) for 0 ≤ p <∞

and among other things yields a correct proof of inequality (14) for each p ≥ 0 as a special

case.
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Theorem 3.8. If P ∈ Pn and P (z) does not vanish in |z| < 1, then for then for

arbitrary real or complex numbers α, β with |α| ≤ 1, |β| ≤ 1, R > r ≥ 1 and 0 ≤ p <∞,

‖B[P ◦ σ](z) + φn(R, r, α, β)B[P ◦ ρ](z)‖p

(47) ≤
‖(Rn + φn(R, r, α, β)rn) Λnz + (1 + φn(R, r, α, β))λ0‖p

‖1 + z‖p
‖P (z)‖p .

where B ∈ Bn, σ(z) := Rz, ρ(z) := rz, Λn and φn (R, r, α, β) are defined by (12) and (15)

respectively. The result is best possible and equality in (47) holds for P (z) = azn+ b, |a| =

|b| 6= 0.

Proof. By hypothesis P ∈ Pn does not vanish in |z| < 1, σ(z) = Rz, ρ(z) = rz

therefore, if P ∗(z) = znP (1/z̄), then by Lemma 2.3, we have for 0 ≤ θ < 2π,

|B[P ◦ σ](eiθ) + φn(R, r, α, β)B[P ◦ ρ](eiθ)|

≤ |B[P ∗ ◦ σ](eiθ) + φn(R, r, α, β)B[P ∗ ◦ ρ](eiθ)|(48)

Also, by Lemma 2.8, for each p > 0 and η real and R > r ≥ 1,∫ 2π

0

∫ 2π

0

|
(
B[P ◦ σ](eiθ) + φn(R, r, α, β)B[P ◦ ρ](eiθ)

)
eiη

+
(
B[P ∗ ◦ σ](eiθ) + φn(R, r, α, β)B[P ∗ ◦ ρ](eiθ)

)
|pdθdη

≤
∫ 2π

0

|(Rn + φn(R, r, α, β)rn)Λne
iη

+(1 + φn(R, r, α, β))λ0|pdη
∫ 2π

0

∣∣P (eiθ)
∣∣p dθ.(49)

Now it can be easily verified that for every real number α and s ≥ 1,

∣∣s+ eiα
∣∣ ≥ ∣∣1 + eiα

∣∣ .
This implies for each p > 0,

(50)

∫ 2π

0

∣∣s+ eiα
∣∣p dα ≥ ∫ 2π

0

∣∣1 + eiα
∣∣p dα.
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If B[P ◦ σ](eiθ) + φn(R, r, ᾱ, β̄)B[P ◦ ρ](eiθ) 6= 0, we take

s =
|B[P ∗ ◦ σ](eiθ) + φn(R, r, α, β)B[P ∗ ◦ ρ](eiθ)|
|B[P ◦ σ](eiθ) + φn(R, r, α, β)B[P ◦ ρ](eiθ)|

,

then by (48), s ≥ 1 and from (50), we get

∫ 2π

0

|
(
B[P ◦ σ](eiθ) + φn(R, r, α, β)B[P ◦ ρ](eiθ)

)
eiη

+
(
B[P ∗ ◦ σ](eiθ) + φn(R, r, α, β)B[P ∗ ◦ ρ](eiθ)

)
|pdη

= |B[P ◦ σ](eiθ) + φn(R, r, α, β)B[P ◦ ρ](eiθ)|p

×
∫ 2π

0

∣∣∣∣eiη +
B[P ∗ ◦ σ](eiθ) + φn(R, r, α, β)B[P ∗ ◦ ρ](eiθ)

B[P ◦ σ](eiθ) + φn(R, r, α, β)B[P ◦ ρ](eiθ)

∣∣∣∣p dη
= |B[P ◦ σ](eiθ) + φn(R, r, α, β)B[P ◦ ρ](eiθ)|p

×
∫ 2π

0

∣∣∣∣eiη +

∣∣∣∣B[P ∗ ◦ σ](eiθ) + φn(R, r, α, β)B[P ∗ ◦ ρ](eiθ)

B[P ◦ σ](eiθ) + φn(R, r, α, β)B[P ◦ ρ](eiθ)

∣∣∣∣∣∣∣∣p dη
≥ |B[P ◦ σ](eiθ) + φn(R, r, α, β)B[P ◦ ρ](eiθ)|p

∫ 2π

0

|1 + eiη|pdη.

For B[P ◦ σ](eiθ) + φn(R, r, α, β)B[P ◦ ρ](eiθ) = 0, this inequality is trivially true. Using

this in (49), we conclude that for each p > 0,

∫ 2π

0

∣∣B[P ◦ σ](eiθ) + φn(R, r, α, β)B[P ◦ ρ](eiθ)
∣∣pdθ ∫ 2π

0

∣∣1 + eiη
∣∣p dη

≤
∫ 2π

0

|(Rn + φn(R, r, α, β)rn)Λne
iη

+(1 + φn(R, r, α,β))λ0|pdη
∫ 2π

0

|P (eiθ)|pdθ,

from which Theorem 3.8 follows for p > 0. To establish this result for p = 0, we simply

let p→ 0+. This completes the proof of Theorem 3.8.

For β = 0, inequality (47) reduces to the following result.
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Corollary 3.9. If P ∈ Pn and P (z) does not vanish in |z| < 1, then for every real or

complex number α with |α| ≤ 1, R > r ≥ 1 and 0 ≤ p <∞,

(51) ‖B[P ◦ σ](z)− αB[P ◦ ρ](z)‖p ≤
‖(Rn − αrn)Λnz + (1− α)λ0‖p

‖1 + z‖p
‖P (z)‖p

where B ∈ Bn, σ(z) := Rz, ρ(z) := rz and Λn is defined by (12). The result is best

possible and equality in (51) holds for P (z) = azn + b, |a| = |b| 6= 0.

For α = 0, Corollary 3.9 yields the following interesting result.

Corollary 3.10. If P ∈ Pn and P (z) does not vanish in |z| < 1, then for R > r ≥ 1

and 0 ≤ p <∞,

(52) ‖B[P ◦ σ](z)‖p ≤
‖RnΛnz + λ0‖p
‖1 + z‖p

‖P (z)‖p

where B ∈ Bn, σ(z) := Rz and Λn is defined by (12). The result is best possible and

equality in (52) holds for P (z) = azn + b, |a| = |b| 6= 0.

Remark 3.11. If we choose α = λ0 = λ2 = 0 in (49), we get for R > 1 and 0 ≤ p <∞

(53) ‖P ′(Rz)‖p ≤
nRn−1

‖1 + z‖p
‖P (z)‖p

which in particular yields inequality (3).

By the triangle inequality, the following result immediately follows from Corollary 3.10.

Corollary 3.12. If P ∈ Pn and P (z) does not vanish in |z| < 1, then for 0 ≤ p <∞

and R > 1,

(54) ‖B[P ◦ σ](z)‖p ≤
Rn|Λn|+ |λ0|
‖1 + z‖p

‖P (z)‖p .

where B ∈ Bn, σ(z) := Rz, Λn is defined by (12).
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Remark 3.13. Corollary 3.12 not only validates the inequality (13) for p ≥ 1 but also

extends it for 0 ≤ p < 1 as well.

A polynomial P ∈ Pn is said be self-inversive if P (z) = uP ∗(z) where |u| = 1 and P ∗(z)

is the conjugate polynomial of P (z), that is, P ∗(z) = znP (1/z). Finally in this paper, we

establish the following result for self-inversive polynomials which includes a correct proof

of another result of Shah and Liman [17, Theorem 3] as a special case.

Theorem 3.14. If P ∈ Pn is a self-inversive polynomial, then for arbitrary real or

complex numbers α, β with |α| ≤ 1, |β| ≤ 1, R > r ≥ 1 and 0 ≤ p <∞,

‖B[P ◦ σ](z) + φn(R, r, α, β)B[P ◦ ρ](z)‖p

(55) ≤
‖(Rn + φn(R, r, α, β)rn) Λnz + (1 + φn(R, r, α, β))λ0‖p

‖1 + z‖p
‖P (z)‖p .

where B ∈ Bn, σ(z) := Rz, ρ(z) := rz, Λn and φn (R, r, α, β) are defined by (12) and (15)

respectively. The result is best possible and equality in (55) holds for P (z) = zn + 1.

Proof. Since P ∈ Pn is self-inversive polynomial, we have for some u with |u|=1,

P ∗(z) = uP (z) for all z ∈ C where P ∗(z) = znP (1/z̄). This gives for 0 ≤ θ < 2π,

|B[P ◦ σ](eiθ) + φn(R, r, α, β)B[P ◦ ρ](eiθ)|

= |B[P ∗ ◦ σ](eiθ) + φn(R, r, α, β)B[P ∗ ◦ ρ](eiθ)|.

Using this in (35) and proceeding similarly as in the proof of Theorem 3.8, we get the

desired result for each p > 0. To extension to p = 0 is obtains by letting p→ 0+.

The following result is an immediate consequence of Theorem 3.14.
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Corollary 3.15. If P ∈ Pn is a self-inversive polynomial, then for |α| ≤ 1, 0 ≤ p <∞

and R > r ≥ 1,

(56) ‖B[P ◦ σ](z)− αB[P ◦ ρ)](z)‖p ≤
‖(Rn − αrn)Λnz + (1− α)λ0‖p

‖1 + z‖p
‖P (z)‖p .

where B ∈ Bn and σ(z) := Rz, ρ(z) := rz and Λn is defined by (12). The result is sharp

and equality in (56) holds for P (z) = zn + 1.

For α = 0, Corollary 3.15 reduces to the following interesting result.

Corollary 3.16. If P ∈ Pn is a self-inversive polynomial, then for 0 ≤ p < ∞ and

R > 1,

(57) ‖B[P ◦ σ](z)‖p ≤
‖RnΛnz + λ0‖p
‖1 + z‖p

‖P (z)‖p .

where B ∈ Bn, σ(z) := Rz and Λn is defined by (12). The result is best possible and

equality in (57) holds for P (z) = zn + 1.

By the triangle inequality, the following result follows immediately from Corollary 3.16.

Corollary 3.17. If P ∈ Pn is a self-inversive polynomial, then for 0 ≤ p < ∞ and

R > 1,

(58) ‖B[P ◦ σ](z)‖p ≤
Rn|Λn|+ |λ0|
‖1 + z‖p

‖P (z)‖p .

where B ∈ Bn, σ(z) := Rz and Λn is defined by (12).

Remark 3.18. Corollary 3.16 establishes a correct proof of a result due to Shah and

Liman [17, Theorem 3] for p ≥ 1 and also extends it for 0 ≤ p < 1 as well.

Lastly letting p→∞ and setting α = β = 0 in (57), we obtain the following result.

Corollary 3.19. If P ∈ Pn is a self-inversive polynomial, then for |z| = 1 and R > 1,

|B[P ◦ σ](z)| ≤ 1

2
{Rn |Λn|+ |λ0|} ‖P (z)‖∞ .
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where B ∈ Bn, σ(z) := Rz and Λn is defined by (12). The result is sharp.
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