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Abstract. This paper considers an SEIR model with infectious force in latent and infected. By means of Lyapunov

function and LaSalles invariant set theorem, we proved the global asymptotical stable results of the disease-free

equilibrium. It is then obtained the sufficient conditions for the global stability of the unique endemic equilibrium

by the compound matrix theory. In addition, it is verified that there is phenomena of limit cycle according to

simulations.
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1. Introduction

Mathematical modeling for disease transmission in host population is of great practical value

in predicting and controlling disease spread such as SARS [1], HIV/AIDS [2] and H1N1 in-

fluenza [3]. Many infectious diseases in nature incubate inside the hosts for a period of time
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before the hosts become infectious. Assume that the population size N is divided into four ho-

mogeneous classes: the susceptible S, the exposed (in the latent period) E, the infective I, and

the recovered R. Xuezhi Li and Linlin Zhou [4] considered the global dynamics of an SEIR epi-

demic model with vertical transmission and the saturating contact. Chengjun Sun and Yinghen

Hsieh [5] studied an SEIR model with varying population size and vaccination strategy. Na Yi

et al. [6] studied the dynamical behaviors of an SEIR epidemic system with nonlinear transmis-

sion rate. Since there is a difference in relative measure of infectiousness between the exposed

and the infected populations, the incidence rate between the susceptible fraction S and the in-

fected fraction I should be different from that between the susceptible fraction with the exposed

ones. Wang Lianhua et al. [13] studied an SEIR epidemic model with constant recruitment of

susceptible and infective individuals, respectively, and proved the global asymptotical stable re-

sults of the endemic equilibrium. In this paper, we assume that all newborns are susceptible (no

vertical transmission) and a uniform birthrate (Cholera, Hepatitis A are of this case) and will

obtain the different results from the case in [13]. In the following paper, we firstly investigate

the SEIR model by considering the infectious force both in latent period and infected period

such as tuberculosis [7]

S′ = bN−dS−β1SI/N−β2SE/N,

E ′ = β1SI/N +β2SE/N− (α +d)E,

I′ = αE− (ε +d)I,

R′ = εI−dR,

N = S+ I +E +R.

(1)

where the derivative d/dt is denoted by ′. b > 0 is the rate for natural birth. d > 0 is the rate

for natural death. The positive parameter α is the rate at which the exposed individuals become

infective. ε > 0 is the rate for recovery. β1 is the force of infection. β2 denotes the relative

measure of infectious ness for the asymptomatic class E. If b− d 6= 0 , then the population

would be naturally exponentially growing or decaying in the absence of the infectious disease.

From biological considerations, we assume that b = d 6= 0 , then there is an inflow of newborn
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susceptible and the population size remains constant . For simplicity, we denote by

s = S/N, e = E/N, i = I/N, r = R/N,

then

s′ = S′/N− s(b−d), e′ = E ′/N− e(b−d),

and i′ = I′/N− i(b−d). Since the variable R do not appear in the equations of S, E, I, we only

need to consider the system:

s′ = b(1− s)−β1si−β2se,

e′ = β1SI/N +β2SE/N− (α +b)E,

i′ = αe− (ε +b)i,

1 = s+ e+ i+ r.

(2)

It is easy to verify that all solutions of (2) initiating in set D = {(s,e, i) ∈ R3
+ : 0 ≤ s,e, i ≤ 1},

where R3
+ denotes the non-negative cone of R3, including its lower-dimensional faces. There-

fore, D is positively invariant for (2). We consider the solutions of (2) in D below.

2. Dynamic analysis

It is easy to visualize that the system (2) always has a disease-free equilibrium E0(1,0,0).

We first establish the following results for E0.

Theorem 1. When R0 ≤ 1, the disease-free equilibrium E0 is global asymptotically stable, and

when R0 > 1, E0 is unstable , where R0 ≤ εβ2+bβ2+αβ1
(ε+b)(α+b) .

Proof. Consider the function

L =
εβ2 +bβ2 +αβ1

(ε +b)(α +b)
e+

β1i
ε +b

.

Its derivative along the solutions to the system (2) is

L′ = (β1i+β2e)(R0s−1)≤ (β1i+β2e)(R0−1)≤ 0.

Furthermore, L′ = 0 only if i = e = 0. The maximum invariant set in {(s,e, i) ∈ D : L′ = 0} is

the singleton {E0}. The global stability of E0 when R0 ≤ 1 follows from LaSalles Invariance
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Principle (see [8]). By direct calculating, the determinant of J(E0) is (ε+b)(α+b)(1−R0)< 0

when R0 > 1, therefore E0 is unstable. This completes the proof.

We can easily see that system (2) has a unique endemic equilibrium E∗(s∗,e∗, i∗) if R0 > 1

where

s∗ = 1/R0, e∗ =
b(R0−1)

R0(α +b)(ε +b)
.

To demonstrate the local stability of E∗, we need the following lemma.

Lemma 1. (see [9], [10]) Let M be a 3×3 real matrix. If tr(M), det(M) and det(M[2]) are all

negative, then all of the eigenvalues of M have negative real part.

Theorem 2. The unique endemic equilibrium E∗ of (2) is locally asymptotically stable if R0 > 1.

Proof. The Jacobian matrix of the system (2) at a point E∗ is

J(E∗) =


−bR0 −β2/R0 −β1/R0

b(R0−1) β2/R0−α−b β1/R0

0 α −ε−b

 (3)

tr(J(E∗)) = bR0− ε−b− αβ1

R0(ε +b)
< 0.

It follows from (3) that the determinant of J(E∗) is given by

det(J(E∗)) =−b(ε +b)(α +b)(R0−1)< 0.

The second additive compound matrix J[2](E∗) of J(E∗) is given by

J[2](E∗) =


−bR0− αβ1

R0
(ε +b) β1

R0

β1
R0

α −bR0− ε−b β2
R0

0 b(R0−1) − αβ1
R0(ε+b) − ε−b

 (4)

Direct calculations show that

det(J[2](E∗)) =−b(R0−1)(bβ2 +
αβ1β2

R2
0(ε +b)

)− bαβ1

R0
−bR0(ε +b)2

− (
αβ1

R0(ε +b)
+ ε +b)(b2R2

0 +
αβ1

ε +b
).

Hence, the result follows Lemma 1. This completes the proof.
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In the following, using the geometrical approach of Li and Muldowney in [11], we will

present a sufficient condition for the global asymptotic stability of the unique endemic equilib-

rium E∗ Denote the interior of D by D̊.

Theorem 3. The unique endemic equilibrium E∗ of the system (2) is globally asymptotically

stable in D̊, when b+α > 2β2

Proof. We calculate easily E0 is unstable when b+α > 2β2 and we can easy see that the system

(2) satisfies the assumptions (H1) and (H2) (see [11]) in the interior of its feasible region D.

Let x = (s,e, i) and f (x) denote the vector field of (2). The Jacobian matrix associated with a

general solution to (2) is

J(E) =


−b−β1i−β2e −β2s −β1s

β1i+β2e β2s−α−b β1s

0 α −ε−b


and its second additive compound matrix is

J[2](E) =


β2s−β1i−β2e−α−2b beta1s beta1s

α −β1i−β2e− ε−2b −β2s

0 β1i+β2e β2s− ε−α−2b


Set the function

P(x) = P(s,e, i) = diag(1,e/i,e/i),

Then the matrix B = Pf P−1 +PJ[2]P−1 can be written in block form

B =

B11 B12

B21 B22

 ,

where

B11 = β2s−β1i−β2e−α−2b, B21 = (αe/i 0)
′
, B12 = (β1si/e β1si/e)

B22 =

e
′
/e− i

′
/i−2b− ε−β1i−β2e −β2s

β1i+β2e e
′
/e− i

′
/i−2b− ε−α

 ,
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Let (u,v,w) denote the vectors in R3 ∼= R
3
2 , we select a norm in R3 as

|(u,v,w)|= max{|u| , |v|+ |w|},

and let ρ denotes the Lonzinskii measure with respect to this norm. Using the method of

estimating ρ in [11], we have ρ(B)≤ sup(g1,g2), where

g1 = ρ1(B11)+ |B12| , g2 = |B21|+ρ1(B22)

|B12| and |B21| are matrix norms with respect to the l1 vector norm, and ρ1 denotes the Lonzin-

skii measure with respect to l1 norm. More specifically,

ρ1(B11) = B11, |B21| = αe/i, and |B12|= β1si/e

Rewriting (2), we get

αe/i = i
′
/i+ ε +b,

and

β1si/e = e
′
/e−β2s+α +b.

Therefore

g1 = e
′
/e−b−β1i−β2e, g2 = max{e

′
/e−b,e

′
/e− (α +b−2β2s)}.

From the system (2), we have 0 < s < 1, e > 0, i > 0.

We can choose t large enough such that

g1 < e
′
/e−b, g2 < e

′
/e−h, f or t > t,

where

b+α > 2β2, h = min{α +b−2|beta2,b}> 0.

Therefore

ρ(B)≤ sup(g1,g2)≤ e
′
/e−h, f or t > t.

Along each solution (s(t),e(t), i(t)) of (2) with such that ((s(0),e(0), i(0)) ∈ K, where K is the

compact absorbing set, we have

1
t

∫ t

0
ρ(B)ds≤ 1

t
log

e(t)
e(t)

+
1
t

∫ t

0
ρ(B)ds−h

t− t
t
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which implies q2 ≤−h/2 < 0. This completes the proof.

3. Numerical simulations

From practical point of view, numerical solutions are very important beside analytical study.

In this section, we apply the simulation to investigate the case of b+α < 2β2 and R0 > 1.We

choose the parameters of (2) as β1 = 0.28 (see [6]), ε = 0.5 (see [12]), and α = 0.1, β2 = 0.3,

b = 0.002, (s(0),e(0), i(0)) = (0.8,0.0001,0.001). Then the unique endemic equilibrium E∗ =

(0.29,0.0139,0.0028), R0 = 3.488 > 1. Therefore, by Theorem 2, E∗ is locally asymptotically

stable, and by Theorem 1, the disease-free equilibrium E0(1,0,0) is unstable. The spectrum of

Lyapunov exponents of the system (2) with respect to times is given in Fig.1, which shows that

there exists limit cycle. To well see the dynamics, the phase portraits in susceptible-exposed-

infective, susceptible-exposed, exposed-infective, and susceptible-infective are given in Fig. 2,

3, 4, and 5.

FIGURE 1. Lyapunov exponents of the system (2) with respect to times.

4. Conclusion
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FIGURE 2. The phase portrait in susceptible-exposed-infective.

FIGURE 3. The phase portrait in susceptible-exposed.

In this paper, we discuss an SEIR epidemic model with infectious force in latent and infected

and investigate the global dynamics of the reduced proportional system. The assumed condi-

tions and results are different from the case in [13]. We obtain that the disease-free equilibrium

E0 is globally asymptotically stable when R0 ≤ 1. If and only if R0 > 1 , a unique endemic

equilibrium E∗ exists and is locally asymptotically stable. The unique endemic equilibrium is

globally asymptotically stable when R0 > 1 and b+α > 2β2. Without infectivity in latent, (1)
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FIGURE 4. The phase portrait in exposed-infective.

FIGURE 5. The phase portrait in susceptible-infective

becomes an SEIR model without infectious force in latent (see [6]). Finally, it is verified that

there is phenomena of limit cycle according to simulations.
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