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Abstract. In this paper, we study the problem of positive almost periodic solutions for the Nicholson’s blowflies

mode with feedback control and multiple time-varying delays. By applying the properties of almost periodic

function and exponential dichotomy of linear system as well as fixed point theorem, we establish the conditions

for the existence uniqueness and exponential convergence of the positive almost periodic solution of the equations.

Moreover, an example and its numerical simulation are given to illustrate our main results.
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1. Introduction

It is well known that the theory of Nicholson’s blowflies model has made a remarkable progress in the past forty

years with main results scattered in numerous research papers; see, for example, [1-7] and the references cited

therein.

In the real world, the delays in differential equations of population and ecology problems are usually time-

varying. Recently, Chen and Liu [8] considered a class of the generalized Nicholson’s blowflies mode with multiple
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time-varying delay as follows:

x′(t)−α(t)x(t)+
m

∑
j=1

β j(t)x(t− τ j(t))e−γ j(t)x(t−τ j(t)), (1.1)

where t ∈ R, α, β j, γ j, τ j( j = 1, · · · ,m) : R→ (0,+∞) are almost periodic functions. By constructing suitable

Lyapunov functional, they showed that under a set of algebraic conditions, system (1.1) has a unique positive

almost periodic solution. The solutions of this model converge exponentially to a positive almost periodic solution.

On the other hand, ecosystem in the real world is continuously disturbed by unpredictable forces such as survival

rates. Practical interest in ecology is the question of whether or not an ecosystem can withstand those unpredictable

disturbances which persist for a finite period of time. In the language of control variable, we call the disturbance

functions as control variables. Recently, some excellent results [9-12] which are concerned with existence and

the stability of almost periodic solution of the single species or multi-species competition system with feedback

control are obtained. However, to the best of the author’s knowledge, to this day, few work has dealt with the

almost periodic solution of Nicholson’s blowflies models with feedback control and time-varying delays.

Motivated by the above, we consider the following generalized Nicholson’s blowflies model with feedback

control and multiple time-varying delays:

x′(t) =−α(t)x(t)+
m

∑
j=1

β j(t)x(t− τ j(t))e−γ j(t)x(t−τ j(t))− c(t)x(t)u(t−ζ (t)),

u′(t) =−λ (t)u(t)+g(t)x(t−δ (t)),

(1.2)

where x(t) is a population size at time t, u(t) is the indirect control variable, and c(t), λ , g(t) are almost periodic

functions. For convenience, we introduce the notations

f− = inf
t∈R

f (t), f+ = sup
t∈R

f (t),

where f is a continuous bounded function defined on [0,+∞). It will be assumed that

α
− > 0, β

−
j > 0, γ

−
j > 0, c− > 0, λ

− > 0, g− > 0, ( j = 1, · · · ,m)

and

τ
+ = max

1≤ j≤m
{sup

t∈R
τ j(t)}> 0,( j = 1, · · · ,m), τ = max{τ+,ζ+,δ+}.

Let R2(R2
+0) be the set of all (nonnegative) real vectors. Denote C=C([−τ,0],R2) and C+ =C([−τ,0],R2

+0) as

the Banach space of continuous functions. If x(t), u(t) are defined on [t0− τ,σ) with t0,σ ∈ R1, then we defined

Xt ∈ C as Xt = (x(t),u(t)) where xt(θ) = x(t + θ), ut(θ) = u(t + θ) for all θ ∈ [−τ,0]. From the viewpoint of

mathematical biology, we consider (1.2) together with the following initial conditions

xt0 = ϕ1, ut0 = ϕ2, ϕ = (ϕ1,ϕ2)
T ∈ C+,ϕi(0)> 0, i = 1,2, (1.3)

where ϕi(θ),(i = 1,2),θ ∈ [−τ,0] is continuous and positive.
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We take Xt(t0,ϕ) = X(t, t0,ϕ) as a solution of the initial value problem (1.2) and (1.3) with Xt0(t0,ϕ) = ϕ(t0 ∈

R). Also, let [t0,η(ϕ)) be the maximal right-interval of existence of Xt(t0,ϕ).

2. Preliminaries

Definition 2.1 (see [13]) Let x ∈ Rn and Q(t) be a n×n continuous matrix defined on R. The linear system

x′(t) = Q(t)x(t). (2.1)

is said to admit an exponential dichotomy on R if there exist positive constants k, α , projection P and the funda-

mental solution matrix X(t) of (2.1) satisfying

‖ X(t)PX−1(s) ‖≤ ke−α(t−s) for all t ≥ s,

‖ X(t)(I−P)X−1(s) ‖≤ ke−α(s−t) for all t ≤ s.

Set

B = {ϕ|ϕ = (ϕ1(t),ϕ2(t))T is an almost periodic function on R}.

For any ϕ ∈ B, we define an induced module ‖ ϕ ‖B= sup
t∈R
‖ ϕ(t) ‖, the B is a Banach space.

Lemma 2.1 (see [13]) If the linear system (2.1) admits an exponential dichotomy, the almost periodic system

x′(t) = Q(t)x(t)+g(t). (2.2)

has an unique almost periodic solution x(t), and

x(t) =
∫ t

−∞

X(t)PX−1(s)g(s)ds−
∫ +∞

t
X(t)(I−P)X−1(s)g(s)ds. (2.3)

Lemma 2.2 (see [13]) Let ci(t) be an almost periodic function on R and

M[ci] = lim
T→+∞

1
T

∫ t+T

T
ci(s)ds > 0, i = 1,2, · · · ,n.

Then the linear system

x′(t) = diag(−c1(t),−c2(t), · · · ,−cn(t))x(t),

admits an exponential dichotomy on R.

Set B∗ = {ϕ|ϕ ∈ B,k1 ≤ ϕ1 ≤ K1, k2 ≤ ϕ2 ≤ K2}.

Lemma 2.3 (see [14]) If u(t), g(t) : R→ R are almost periodic, then u(t−g(t)) is almost periodic.

We also suppose the following condition (H1) hold.

(H1)there exist four constants K1, K2, k1, and k2 such that

K1 > k1, K2 > k2, K1 >
m

∑
j=1

(β j

γ j

)+ 1
α−e

,
1

min
1≤ j≤m

γ
−
j
< k1 <

m

∑
j=1

β
−
j

α+
K1e−γ

+
j K1 − c+K1K2

α+
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Lemma 2.4 Let (H1) hold, and B∗ = {ϕ|ϕ ∈ B,k1 ≤ ϕ1 ≤ K1, k2 ≤ ϕ2 ≤ K2}. Then, for ϕ ∈ B∗, the solution

X(t, t0,ϕ) of (1.2) and (1.3) satisfies

k1 < x(t, t0,ϕ1)< K1,k2 < u(t, t0,ϕ2)< K2, for allt ∈ [t0,η(ϕ)) (2.4)

and η(ϕ) = +∞.

Proof. Set x(t) = x(t, t0,ϕ1). Let [t0,T )⊆ [t0,η(ϕ)] be a interval such that

0 < x(t) for all t ∈ [t0,T ). (2.5)

We claim that

0 < x(t)< K1 for all t ∈ [t0,T ). (2.6)

Assume, by way of contradiction, that (2.6) does not hold. Then, it exist t1 ∈ [t0,T ) such that

x(t1) = K1 and 0 < x(t)< K1 for all t ∈ [t0− τ, t1). (2.7)

Calculating the derivative of x(t), from (H1) and the fact that sup
u≥0

ue−u = 1
e , the first equation of system (1.2) and

(2.7) yield that

0≤ x′(t1) ≤ −α(t1)x(t1)+
m

∑
j=1

β j(t1)x(t1− τ j(t1))e−γ j(t1)x(t1−τ j(t1))

≤ −α
−x(t1)+

m

∑
j=1

β j(t1)
γ j(t1)

γ j(t1)x(t1− τ j(t1))e−γ j(t1)x(t1−τ j(t1))

≤ −α
−x(t1)+

m

∑
j=1

(β j

γ j

)+ 1
e

= α
−[−K1 +

m

∑
j=1

(β j

γ j

)+ 1
α−e

]
< 0,

which is a contradiction and implies that (2.6) holds. In view of u(t0) = ϕ2(0)> 0, integrating the second equation

of (1.2) from t0 to t, we have

u(t) = e−
∫ t
t0

λ (s)dsu(t0)+ e−
∫ t
t0

λ (s)ds ∫ t
t0 e

∫ s
t0

λ (ω)dω g(s)x(s−δ (s))ds

> 0, for all t ∈ [t0,η(ϕ)).
(2.8)

From (2.6) and (2.8), we obtain that u(t) is bounded and there exist positive constants K2 such that

0 < u(t)≤ K2, for all t ∈ [t0,η(ϕ)). (2.9)

We next show that

x(t)> k1, for all t ∈ [t0,η(ϕ)). (2.10)

Otherwise, there exists t2 ∈ (t0,η(ϕ)) such that

x(t2) = k1 and x(t)> k1 for all t ∈ [t0− τ, t2). (2.11)
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Then, from (H1) and (2.6), we get

k1 < x(t)< K1, γ
+
j x(t)≥ γ

+
j

1
min

1≤ j≤m
γ
−
j
, for all t ∈ [t0− τ, t2), j = 1,2, · · · ,m. (2.12)

Calculating the derivative of x(t), together with (H1) and the fact that min
1≤u≤ω

ue−u = ωe−ω , the first equation of

system (1.2), (2.11) and (2.12) imply that

0≥ x′(t2) = −α(t2)x(t2)+
m

∑
j=1

β j(t2)x(t2− τ j(t2))e−γ j(t2)x(t2−τ j(t2))− c(t2)x(t2)u(t2−ζ (t2))

≥ −α
+x(t2)+

m

∑
j=1

β j(t2)
γ
+
j

γ
+
j x(t2− τ j(t2))e

−γ
+
j x(t2−τ j(t2))− c+K1K2

≥ −α
+x(t2)+

m

∑
j=1

β j(t2)
γ
+
j

γ
+
j K1e−γ

+
j K1 − c+K1K2

= α
+
[
− k1 +

m

∑
j=1

β
−
j

α+
K1e−γ

+
j K1 − c+K1K2

α+

]
> 0,

which is a contradiction and yield that (2.10) holds. From (2.8) and (2.10), we obtain that u(t) is bounded and

there exist positive constants k2 such that

u(t)≥ k2, for all t ∈ [t0,η(ϕ)). (2.13)

It follows from (2.6) (2.9) (2.10) and (2.13) that (2.4) is true. From Theorem 2.3.1 in [15], we easily obtain

η(ϕ) = +∞. This end the proof of Lemma 2.1.

3. Main results

Let

K2 >
g+K1

λ−
,

g−k1

λ+
> k2, max

{ m
∑
j=1

β
+
j

α−e2 +
c+K2

α−
+

c+K1

α−
,

g+

λ−

}
< 1. (3.1)

Then, there exists a unique positive almost periodic solution of system (1.2) in the region B∗.

Proof. For any φ ∈ B, we consider an auxiliary equation
x′(t) = −α(t)x(t)+

m
∑
j=1

β j(t)φ1(t− τ j(t))e−γ j(t)φ1(t−τ j(t))− c(t)φ1(t)φ2(t−ζ (t)),

u′(t) = −λ (t)u(t)+g(t)φ1(t−δ (t)).
(3.2)

It follows from Lemma 2.3 that φ1(t− τ j(t)), φ1(t− δ (t)), φ2(t− ζ (t)), are almost periodic. Notice that M[α] >

0, M[λ ]> 0, it follows from Lemma 2.2 that the linear equation x′(t) = −α(t)x(t),

u′(t) = −λ (t)u(t),
(3.3)
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admits an exponential dichotomy on R. Thus, by Lemma 2.1, we obtain that the system (3.2) has exactly one

almost periodic solution:

Xφ (t) = {xφ (t),uφ (t)}

=
{∫ t
−∞

e−
∫ t

s α(u)du
( m

∑
j=1

β j(s)φ1(s− τ j(s))e−γ j(s)φ1(s−τ j(s))− c(s)φ1(s)φ2(s−ζ (s))
)

ds,

∫ t
−∞

e−
∫ t

s λ (u)du
(

g(s)φ1(s−δ (s))
)

ds
}
.

(3.4)

Define a mapping T : B→ B by setting

T (φ(t)) = Xφ (t), ∀φ ∈ B.

It is easy to see that B∗ is a closed subset of B. For any φ ∈ B∗, from (3.4) and sup
u≥0

ueu =
1
e

, we have

xφ (t) ≤
∫ t
−∞

e−
∫ t

s α(u)du
( m

∑
j=1

(β j

γ j

)+ 1
e

)
ds

≤
m
∑
j=1

(β j
γ j

)+ 1
α−e < K1,

uφ (t) ≤
∫ t
−∞

e−
∫ t

s λ (u)dug+K1ds =
g+ ·K1

λ−
< K2.

Noting that k1 >
1

min
1≤ j≤m

γ
−
j

and min
1≤u≤m

ue−u = me−m, we have

xφ (t) ≥
∫ t
−∞

e−
∫ t

s α(u)du
( m

∑
j=1

β
−
j K1e−γ

+
j K1 − c+K1K2

)
ds

≥
m
∑
j=1

β
−
j K1e−γ

+
j K1

α−
− c+K1K2

α+
> k1,

uφ (t) ≥
∫ t
−∞

e−
∫ t

s λ (u)dug−k1ds =
g− · k1

λ+
> k2.

This implies that the mapping T is a self-mapping from B∗ to B∗ .

Now, we prove that the mapping T is a contraction mapping on B∗. In fact, for φ , ψ ∈ B∗, we get

‖ T (φ)−T (ψ) ‖B=
(

sup
t∈R
|
(
T (φ)(t)−T (ψ)(t)

)
1 |,sup

t∈R
|
(
T (φ)(t)−T (ψ)(t)

)
2 |
)

sup
t∈R
|
(
T (φ)(t)−T (ψ)(t)

)
1| = sup

t∈R

∣∣∣∫ t
−∞

e−
∫ t

s α(u)du
{ m

∑
j=1

β j(s)
(

φ1(s− τ j(s))e−γ j(s)φ1(s−τ j(s))

−ψ1(s− τ j(s))e−γ j(s)ψ1(s−τ j(s))
)

−c(s)
(

φ1(s)φ2(s−ζ (s))−ψ1(s)ψ2(s−ζ (s))
)}

ds
∣∣∣

Since sup
u≥1
| 1−u

eu |= 1
e2 , we obtain

| xe−x− ye−y | =
∣∣∣1− (x+θ(y− x))

ex+θ(y−x)

∣∣∣|x− y|

≤ 1
e2 |x− y|, wherex,y ∈ [1,+∞),0 < θ < 1.

(3.5)
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(3.5) combine with 1
min

1≤ j≤m
γ
+
j
< k1, we get

sup
t∈R
|
(
T (φ)(t)−T (ψ)(t)

)
1| ≤

m
∑
j=1

β
+
j

α−e2 ‖φ −ψ‖B

+sup
t∈R

∫ t
−∞

e−
∫ t

s α(u)duc(t)
(∣∣φ1(s)φ2(s−ζ (s))−ψ1(s)φ2(s−ζ (s))|

+|ψ1(s)φ2(t−ζ (t))−ψ1(s)ψ2(s−ζ (s))
∣∣)ds

≤

m
∑
j=1

β
+
j

α−e2 ‖φ −ψ‖B + sup
t∈R

∫ t
−∞

e−
∫ t

s α(u)duc(t)
(

K2
∣∣φ1(s)−ψ1(s)

∣∣
+K1

∣∣φ2(s−ζ (s))−ψ2(s−ζ (s))
∣∣)ds

≤

m
∑
j=1

β
+
j

α−e2 ‖φ −ψ‖B +
c+K2

α−
‖φ −ψ‖B +

c+K1

α−
‖φ −ψ‖B

=
( m

∑
j=1

β
+
j

α−e2 +
c+K2

α−
+

c+K1

α−

)
‖φ −ψ‖B.

sup
t∈R

∣∣(T (φ)(t)−T (ψ)(t)
)

2

∣∣ = sup
t∈R

∣∣∣∫ t
−∞

e−
∫ t

s λ (u)du
(

g(s)φ2(s−δ (s))−g(s)ψ2(s−δ (s))
)

ds
∣∣∣

≤ sup
t∈R

∫ t
−∞

e−
∫ t

s λ (u)dug+
∣∣φ2(s−δ (s))−ψ2(s−δ (s))

∣∣ds

≤ g+

λ−
‖φ −ψ‖B.

Hence

‖ T (φ)−T (ψ) ‖B≤max

{ m
∑
j=1

β
+
j

α−e2 +
c+K2

α−
+

c+K1

α−
,

g+

λ−

}
‖φ −ψ‖B.

Noting that

max

{ m
∑
j=1

β
+
j

α−e2 +
c+K2

α−
+

c+K1

α−
,

g+

λ−

}
< 1,

it is clear that the mapping T is a contraction on B∗. By the fixed point theorem of Banach space, T possesses a

unique fixed point φ ∗ ∈ B∗ such that T φ ∗ = φ ∗. By (3.2), φ ∗ satisfies (1.2). So φ ∗ is an almost periodic solution

of (1.2) in B∗. The proof of Theorem 3.1 is now complete.

Theorem 3.2. Let X∗(t) be the positive almost periodic solution of system (1.2) in the region B∗. Suppose that

(3.1) holds. Then, the solution X(t; t0,ϕ) of (1.2) with ϕ ∈C converges exponentially to X∗(t) as t→+∞.

Proof. Set X(t) = X(t; t0,ϕ), z1(t) = x(t)− x∗(t) and z2(t) = u(t)−u∗(t), where t ∈ [t0− τ,+∞). Then
z′1(t) = −α(t)z1(t)+

m
∑
j=1

β j(t)
(
x(t− τ j(t))e−γ j(t)x(t−τ j(t))− x∗(t− τ j(t))e−γ j(t)x∗(t−τ j(t))

)
−c(t)

(
x(t)u(t−ζ (t))− x∗(t)u∗(t−ζ (t))

)
,

z′2(t) = −λ (t)z2(t)+g(t)z1(t−δ (t)).

(3.6)
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Define a continuous function Γ(µ) by setting

Γ(µ) =−(α−−µ)+
m

∑
j=1

β
+
j

1
e2 eµτ , µ ∈ [0,1].

Then, we have

Γ(0) =−α
−+

m

∑
j=1

β
+
j

1
e2 < 0, Γ(µ)→+∞(µ →+∞),

which implies that there exist two constants η > 0 and σ ∈ (0,λ−)∩ (0,1] such that

Γ(σ) =−(α−−σ)+
m

∑
j=1

β
+
j

1
e2 eστ <−η < 0. (3.7)

We consider the Lyapunov functional

V (t) = z1(t)eσt .

Calculating the upper right derivative of V (t) along the solution zt(t) of (3.6), we have

D+(V (t)) = −α(t)z1(t)eσt +
m
∑
j=1

β j(t)
(
x(t− τ j(t))e−γ j(t)x(t−τ j(t))− x∗(t− τ j(t))e−γ j(t)x∗(t−τ j(t))

)
eσt

−c(t)
(
x(t)u(t−ζ (t))− x∗(t)u∗(t−ζ (t))

)
eσt +σz1(t)eσt

≤
[
(σ −α(t))z1(t)+

m
∑
j=1

β j(t)
(
x(t− τ j(t))e−γ j(t)x(t−τ j(t))

−x∗(t− τ j(t))e−γ j(t)x∗(t−τ j(t))
)]

eσt , for all t > t0.

(3.8)

We claim that

V (t) = z1(t)eσt < eσt0
(

max
t∈[t0−τ,t0]

|ϕ1(t)− x∗(t)|+K1

)
:= M1, for all t > t0 (3.9).

Contrarily, there must exist T1 > t0 such that

V (T1) = M1 and V (t)< M1 for all t ∈ [t0− τ,T1), (3.10)

which implies that

V (T1)−M1 = 0 and V (t)−M1 < 0 for all t ∈ [t0− τ,T1). (3.11)

Together with (3.5), (3.8) and (3.11), we obtain

0 ≤ D+(V (T1−M1))

= D+(V (T1))

≤
[
(σ −α(T1))z1(T1)+

m
∑
j=1

β j(T1)
(
x(T1− τ j(T1))e−γ j(T1)x(T1−τ j(T1))

−x∗(T1− τ j(T1))e−γ j(T1)x∗(T1−τ j(T1))
)]

eσT1

≤ (σ −α(T1))z1(T1)eσT1 +
m
∑
j=1

β j(T1)
1
e2 |z1(T1− τ j(T1))|eσ(T1−τ j(T1))eστ j(T1)

≤
[
− (α−−σ)+

m
∑
j=1

β
+
j

1
e2 eστ

]
M1.

Thus,

0≤−(α−−σ)+
m

∑
j=1

β
+
j

1
e2 eστ ,
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which contradicts with (3.7). Hence, (3.9) holds. It follows that

z1(t)< M1e−σt for all t > t0. (3.12)

Integrating the second equation of (3.6) from T0 to t(≥ T0 + τ), by (3.12), we get

z2(t) = e−
∫ t

T0
λ (s)dsz2(T0)+

∫ t
T0

e−
∫ t

s λ (v)dvg(s)z1(s−δ (s))ds

≤ z2(T0)e−λ−(t−T0)+g+M1
∫ t

T0
eλ−(s−t)e−σ(s−δ (s))ds

= z2(T0)eλ−T0e−λ−t +g+M1e−λ−t ∫ t
T0

e(λ
−−σ)se−σδ (s)ds

≤ z2(T0)eλ−T0e−λ−t +
g+M1e−λ−teστ

λ−−σ

(
e(λ

−−σ)t − e(λ
−−σ)T0

)
≤ z2(T0)eλ−T0e−λ−t +

g+M1eστ

λ−−σ
e−σt

≤
(
z2(T0)eλ−T0e−(λ

−−σ)t +
g+M1eστ

λ−−σ

)
e−σt

≤
(
z2(T0)eλ−T0 +

g+M1eστ

λ−−σ

)
e−σt .

Let M2 = z2(T0)eλ−T0 +
g+M1eστ

λ−−σ
, we have

z2(t)≤M2e−σt for all t > t0. (3.13)

It follows from (3.12) and (3.13) that the solution X(t; t0,ϕ) of (1.3) converges exponentially to X∗(t) as t→+∞.

This completes the proof of Theorem 3.2.

4. An example

The following example shows the feasibility of our main results.

Example 4.1 Consider Nicholson’s blowflies model with feedback control:


x′(t) = −(19+ cos2 t)x(t)+ ee−1(11+0.01|sin(

√
2t)|)x(t− e)e−x(t−e)

+ee−1(11+0.01|cos(
√

3t)|)x(t− e)e−x(t−e)− 1+t2

10+t2 x(t)u(t− e−1),

u′(t) = −(1+0.1cos4 t)u(t)+(0.8+0.1|sin t|)x(t− e−1).

(4.1)

Here corresponding to the system (1.2), we assume that

α
− = 19, α

+ = 20, β
−
j = 11e−1, β

+
j = 11.01e−1, γ

−
j = γ

+
j = 1,

c− = 0, c+ = 0.1, τ = e > 0, λ
− = 1, λ

+ = 1.1, g− = 0.9, g+ = 0.8,

and
2

∑
j=1

(β j

γ j

)+ 1
α−e

= 2×11.01ee−1 1
193

= 2.377 < e,

2

∑
j=1

β
−
j

α+
K1e−γ

+
j K1 − c+K1K2

α+
> 2

11ee−1

20
ee−e− 0.1e2

20
= 1.0631 > 1,
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2
∑
j=1

β
+
j

α−e2 +
c+K2

α−
+

c+K1

α−
= 0.903 < 1,

g+

λ−
= 0.9 < 1.

This implies that Nicholson’s blowflies model (4.1) satisfies the condition (H1) and (3.1) with K1 = K2 = e, k1 =

1, ,k2 = 0.5. Hence, from Theorem 3.1 and 3.2, system (4.1) has a positive almost periodic solution. Numeric

simulation (Fig. 1) strongly imply the above conclusion.

0 10 20 30 40 50

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

time t

so
lut

ion
s

x(t)
u(t)

Fig. 1 Dynamic behavior of the solution (x(t),u(t))T of system (4.1) with the initial value

(ϕ1(θ),ϕ1(θ))
T = (1,0.8)T ,(1.2,1.2)T and (1.6,1.6)T for θ ∈ [−τ,0], respectively.
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