
Available online at http://scik.org

Commun. Math. Biol. Neurosci. 2015, 2015:3

ISSN: 2052-2541

DYNAMIC BEHAVIORS OF A PERIODIC LOTKA-VOLTERRA COMMENSAL
SYMBIOSIS MODEL WITH IMPULSIVE

ZHANSHUAI MIAO1, XIANGDONG XIE2,∗, LIQIONG PU1

1College of Mathematics and Computer Science, Fuzhou University, Fuzhou, Fujian 350002, China

2Department of Mathematics, Ningde Normal University, Ningde, Fujian 352300, China

Copyright c© 2015 Miao, Xie and Pu. This is an open access article distributed under the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, the dynamic behaviors of an impulsive periodic Lotka-Volterra commensal symbiosis

model is studied in this paper. Firstly, by constructing a suitable Lyapunov function and using the comparison

theorem of impulsive differential equation, some sufficient conditions which ensure the permanence and global

attractivity of the system are obtained; Secondly, conditions which guarantee that one species in the system are

permanent while the remaining species is driven to extinction is obtained. Thirdly, conditions which ensure the

extinction of the system are also obtained. Our results show that, for Lotka-Volterra commensal symbiosis model,

impulsive is one of the important reasons that can change the long time behaviors of species.
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During the past decade, the dynamic behaviors of the mutualism model has been extensively

investigated [1-12] and many excellent works concerned with the persistence, existence of pos-

itive periodic solution, and stability of the system were obtained. However, there are still few

study on the commensal symbiosis model.

To describe the intraspecific commensal relationship, Sun and Wei[13] proposed the follow-

ing model:
dx
dt

= r1x
(k1− x+ay

k1

)
,

dy
dt

= r2y
(k2− y

k2

)
.

(1.1)

The authors investigated the local stability of all equilibrium points. They showed that there is

only one local stable equilibrium point in the system.

As was pointed out by He and Chen [14], the ecological system is often deeply perturbed by

human exploit activities such as planting and harvesting etc., which are not suitable to be con-

sidered continually. To accurate describe the system, one needs to use the impulsive differential

equations.

Stimulated by the works of Sun and Wei [13] and He and Chen [14], in this paper, we study

the dynamic behaviors of the following periodic Lotka-Volterra commensal symbiosis model

with impulsive. 

dx1

dt
= x1

(
a1(t)−b1(t)x1 + c1(t)x2

)
,

dx2

dt
= x2

(
a2(t)−b2(t)x2

)
, t 6= τk,

xi(τ
+
k ) = (1+hik)xi(τk), t = τk, k = 1,2, · · ·

(1.2)

where i = 1,2; xi(t) denotes the density of the i-th species Xi at time t; ai(t), bi(t) and c(t)

are continuous strictly positive periodic functions defined on [0,+∞) with a common period

T > 0; τk → +∞(t → +∞) and 0 = τ0 < τ1 < τ2 < τ3 < · · · < τk < τk+1 < · · · . Assume that

hik, i = 1,2, · · · ,n, k = 1,2, · · · , are constants and there exists an integer q > 0 such that

hi(k+q) = hik, τk+q = τk +T.

It is natural for biological meanings:

1+hik > 0(i = 1,2).
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Definition 1.1. The system (1.2) is called permanent, if for any positive solution F(t) =

(x1(t),x2(t))T of (1.2), there exist positive constants λi and θi such that

λi ≤ liminf
t→+∞

xi(t)≤ limsup
t→+∞

xi(t)≤ θi, (i = 1,2).

Definition 1.2. The system (1.2) is said to be globally attractive if any two positive solutions

F(t) = (x1(t),x2(t))T and W (t) = (u1(t),u2(t))T of system (1.2) satisfy

lim
t→+∞

|xi(t)−ui(t)|= 0, i = 1,2.

Definition 1.3. For any (t,F(t)) ∈ [τk−1,τk)×ℜ2
+, the right-hand derivative

D+V (t,F(t)) along the solution F(t,F0) of system (1.2) is defined by

D+V (t,F(t)) = liminf
h→0+

1
h
[V (t +h,F(t +h))−V (t,F(t))].

By the basic theories of impulsive differential equations in [15, 16], system (1.2) has a unique

solution F(t) = F(t,F0) ∈ PC([0,+∞),R2) and PC([0,+∞),R2)

= {φ : [0,+∞)→ R2,φ is continuous for t 6= τk, φ(τ−k ) and φ(τ+k ) exist and φ(τ−k ) = φ(τk), k =

1,2, · · ·} for each initial value F(0) = F0 ∈ R2.

Throughout this paper, for a continuous T -periodic function f (t), we set

m[ f ] =
1
T

∫ T

0
f (t)dt, f l = min

t∈[0,T ]
{ f (t)}, f u = max

t∈[0,T ]
{ f (t)}.

The organization of this paper is as follows: In Section 2, necessary preliminaries are pre-

sented. The dynamic behaviors such as the permanence, extinction and the globally attractivity

of the system are investigated in Section 3, and we end this paper by a briefly discussion.

2. Preliminaries

Now let us state several lemmas which will be useful in the proving of the main theorems.
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Firstly, we introduce an important comparison theorem on impulsive differential equation

[16].

Lemma 2.1. Assume that m ∈ PC[R+,R] with points of discontinuity at t = tk and is left contin-

uous at t = tk, k = 1,2, · · · , and Dm(t)≤ g(t,m(t)), t 6= tk, k = 1,2, · · · ,

m(t+k )≤ φk(m(tk)), t = tk, k = 1,2, · · · ,
(2.1)

where g ∈ C[R+×R+,R], φk ∈ C[R,R] and φk(u) is nondecreasing in u for each k = 1,2, · · · .

Let r(t) be the maximal solution of the scalar impulsive differential equation
u̇ = g(t,u), t 6= tk, k = 1,2, · · · ,

u(t+k ) = φk(u(tk))≥ 0, t = tk, tk > t0, k = 1,2, · · · ,

u(t+0 ) = u0,

(2.2)

existing on [t0,∞), then m(t+0 )≤ u0 implies m(t)≤ r(t), t ≥ t0.

Remark 2.1. In Lemma 2.1, assume the inequalities (2.1) reversed. Let p(t) be the minimal

solution of (2.2) existing on (t0,+∞). Then, m(t+0 )≥ u0 implies m(t)≥ p(t), t ≥ t0.

Lemma 2.2. Let F(t) = (x1(t),x2(t))T be any solution of system (1.2) such that xi(0+) > 0,

(i = 1,2), then xi(t)> 0 for all t ≥ 0.

Proof. From the i-th equation of (1.2), one has

x′i(t) = Pi(t)xi(t), t 6= τk, i = 1,2,

where

P1(t) = a1(t)−b1(t)x1 + c1(t)x2; P2(t) = a2(t)−b2(t)x2.

Thus we have

xi(t) = ∏
0<τk<t

(1+hik)xi(0+)exp
(∫ t

0
Pi(s)ds

)
> 0,

because of xi(0+)> 0. Consider the periodic logistic equation with impulsive x′(t) = x(t)(b(t)−a(t)(x(t))) , t 6= τk,

x(τ+k ) = (1+hk)x(τk), t = τk, k = 1,2, · · · ,
(2.3)
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where a(t), b(t) are continuous T -periodic function with a(t)> 0, m[b]> 0 and hk+q = hk, τk+q =

τk +T .

Lemma 2.3. [17] (1) If
q

∑
k=1

ln(1+hk)+T m[b]> 0, (2.4)

then system (2.3) has a unique T -periodic solution x∗(t), and x∗(t) is global asymptotically

stable in the sense that

lim
t→+∞

|x(t)− x∗(t)|= 0,

where x(t) is any solution of system (2.3) with initial value x(0+)> 0.

(2) If
q

∑
k=1

ln(1+hk)+T m[b]< 0, (2.5)

then

lim
t→∞

x(t) = 0,

where x(t) is any solution of system (2.3) with the initial value x(0+)> 0.

From Theorem 3.1 in [18], we can get the following lemma.

Lemma 2.4. If x∗(t) is the unique T -periodic positive solution of system (2.3), and x̃∗(t) is the

unique T -periodic positive solution of the following system x′(t) = x(t)
(
b̃(t)−a(t)(x(t))

)
, t 6= τk,

x(τ+k ) = (1+hk)x(τk), t = τk, k = 1,2, · · · ,

where b̃ is the continuous T -periodic function with m[b̃] > 0 and b̃ is a function asymptotic to

b. Then

lim
t→+∞

|x̃∗(t)− x∗(t)|= 0.

(I) Consider the periodic logistic equation with impulsive x′i(t) = xi(t)(ai(t)−bi(t)xi(t)) , t 6= τk,

xi(τ
+
k ) = (1+hik)xi(τk), t = τk, k = 1,2, · · ·

(2.6)
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where i = 1,2.

From Lemma 2.3, we notice that if
q

∑
k=1

ln(1+ hik) + T m[ai] > 0, then system (2.6) has a

unique T -periodic solution X∗i (t), and X∗i (t) is global asymptotically stable in the sense that

lim
t→+∞

|xi(t)−X∗i (t)|= 0,

where xi(t) is any solution of system (2.6) with initial value xi(0+)> 0.

(II) Consider the periodic logistic equation with impulsive
dx1

dt
= x1

(
a1(t)−b1(t)x1 + c1(t)X∗2 (t)

)
, t 6= τk,

x1(τ
+
k ) = (1+h1k)x1(τk), t = τk, k = 1,2, · · ·

(2.7)

From Lemma 2.3, we notice that if
q

∑
k=1

ln(1+h1k)+T m[a1(t)+ c1(t)X∗2 (t)]> 0,

then system (2.7) has a unique T -periodic solution X1∗(t), and X1∗(t) is global asymptotically

stable in the sense that

lim
t→+∞

|x1(t)−X1∗(t)|= 0,

where x1(t) is any solution of system (2.7) with initial value x1(0+)> 0.

3. Main results

In this section, we present out our main results for system (1.2).

Let

αi =
q

∑
k=1

ln(1+hik)+T m[ai], i = 1,2,

β1 =
q

∑
k=1

ln(1+h1k)+T m[a1(t)+ c1(t)X∗2 (t)].

Assume that

α2 > 0, β1 > 0; (H1)

α2 > 0, β1 < 0; (H2)

α2 < 0, α1 > 0. (H3)

α2 < 0, α1 < 0. (H4)
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Under the condition (H1), we study the permanence and global attractivity of system (1.2).

Theorem 3.1. Assume that (H1) holds, let F(t) = (x1(t),x2(t))T be any solution of system (1.2)

with xi(0+)> 0 (i = 1,2), then there exist constants θi > 0,λi > 0(i = 1,2) such that

λi ≤ liminf
t→+∞

xi(t)≤ limsup
t→+∞

xi(t)≤ θi, i = 1,2.

Proof. From the second equation of system (1.2), we obtain x′2(t) = x2(t)(a2(t)−b2(t)x2(t)) , t 6= τk,

x2(τ
+
k ) = (1+h2k)x2(τk), t = τk, k = 1,2, · · ·

(3.1)

By α2 > 0, from Lemma 2.3, system (3.1) has a unique T -periodic solution X∗2 (t) which is

global asymptotically stable. Let θ2 = sup
{

X∗2 (t)
∣∣∣t ∈ [0,T ]

}
, λ2 = inf

{
X∗2 (t)

∣∣∣t ∈ [0,T ]
}
, let

ε > 0 small enough such that ε < 1
2λ2 and

q

∑
k=1

ln(1+h1k)+T m[a1(t)+ c1(t)(X∗2 (t)− ε)] > 0,

there exists a T1 > 0 such that

λ2− ε ≤ X∗2 (t)− ε < x2(t)< X∗2 (t)+ ε ≤ θ2 + ε for all t > T1. (3.2)

Setting ε → 0, we obtain

λ2 < liminf
t→+∞

x2(t)≤ limsup
t→+∞

x2(t)≤ θ2.

From the first equation of system (1.2), for t > T1 and t 6= τk (k = 1,2, · · ·), we obtain

x′1(t)≤ x1(t)(a1(t)+ c1(t)(X∗2 (t)+ ε)−b1(t)x1(t)) . (3.3)

Consider the following system w′1(t) = w1(t)x1(t)(a1(t)+ c1(t)(X∗2 (t)+ ε)−b1(t)w1(t)) , t 6= τk,

w1(τ
+
k ) = (1+h1k)w1(τk), t = τk, k = 1,2, · · ·

(3.4)

By Lemma 2.1, we have x1(t) ≤ w1(t), where w1(t) is any solution of (3.4) with w1(T+
1 ) =

x1(T+
1 ). By (H1) and Lemma 2.3, system (3.4) has a unique T -periodic solution X∗1ε

(t) which

is global asymptotically stable. Setting ε → 0, from Lemma 2.4, we have

X∗1ε(t)→ X1∗(t).
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Let θ1 = sup
{

X1∗(t)
∣∣∣t ∈ [0,T ]

}
, and for any positive constant ε > 0, there exists a T2 > T1

such that

x1(t)≤ w1(t)< X1∗(t)+ ε0 ≤ θ1 + ε0, for all t > T2.

Setting ε0→ 0, we obtain

limsup
t→+∞

x1(t)≤ θ1.

From the first equation of system (1.2), for t > T1 and t 6= τk (k = 1,2, · · ·), we also have

x′1(t)≥ x1(t)(a1(t)+ c1(t)(X∗2 (t)− ε)−b1(t)x1(t)) . (3.5)

Consider the following system w′2(t) = w2(t)(a1(t)+ c1(t)(X∗2 (t)− ε)−b1(t)w2(t)) , t 6= τk,

w2(τ
+
k ) = (1+h1k)w2(τk), t = τk, k = 1,2, · · ·

(3.6)

By Lemma 2.1, we have x1(t) ≥ w2(t), where w2(t) is any solution of (3.6) with w2(T+
1 ) =

x2(T+
1 ). Since

q

∑
k=1

ln(1+h1k)+T m[a1(t)+ c1(t)(X∗2 (t)− ε)]> 0, by Lemma 2.3, system (3.6)

has a unique T -periodic solution X1∗ε(t), which is global asymptotically stable. Setting ε → 0,

from Lemma 2.4, we have

X1∗ε(t)→ X1∗(t).

Let λ1 = inf
{

X1∗(t)
∣∣∣t ∈ [0,T ]

}
, and for any positive constant ε0 > 0(ε0 <

1
2λ1), there exists a

T3 > T2 such that

x1(t)≥ w1(t)> X1∗(t)− ε0 ≥ λ1− ε0 for all t > T3.

Setting ε0→ 0, we obtain

liminf
t→+∞

x1(t)≥ λ1.

The proof is completed.

Now let us consider the global attractivity of xi(t)(i = 1,2) of system (1.2), we can obtain the

following result.

Theorem 3.2. Suppose that (H1) holds. Assume further that

bl
2 > cu

1, (H5)
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then the species xi (i = 1,2) are globally attractive, i.e., for any positive solutions F(t) =

(x1(t),x2(t))T and W (t) = (u1(t),u2(t))T of (1.2), one has

lim
t→+∞

|xi(t)−ui(t)|= 0, i = 1,2.

Proof. Let F(t) = (x1(t),x2(t))T and W (t) = (u1(t),u2(t))T be any solutions of system (1.2).

For any positive constant ε < min{λi,
∣∣ i = 1,2}, from Theorem 3.1, it immediately follows that

there exists an enough large T0 > 0 such that for all t > T0, one has

λi− ε ≤ xi(t),ui(t)≤ θi + ε, i = 1,2. (3.7)

Set

V (t) =
2

∑
i=1
| lnui(t)− lnxi(t)|.

For t ≥ 0, and t 6= τk, k = 1,2, · · · , calculating the upper right derivative of V (t), we have

D+V (t) =
2

∑
i=1

(
u′i(t)
ui(t)

− x′i(t)
xi(t)

)
sgn(ui(t)− xi(t))

≤ −bl
1|x1(t)−u1(t)|− (bl

2− cu
1)|x2(t)−u2(t)|

}
,

By using the Mean Value Theorem and (3.7), for any closed interval contained in t ∈ (τk,τk+1], k=

p, p+1, · · · and τp > T0, it follows that

1
θi + ε

|xi(t)−ui(t)| ≤ | lnxi(t)− lnui(t)| ≤
1

λi− ε
|xi(t)−ui(t)|, i = 1,2. (3.8)

Therefore, for t ∈ (τk,τk+1], k = p, p+1, · · · and τp > T0, it follows from conditions (H5) and

(3.8) that

D+V (t) ≤ −min{bl
1,b

l
2− cu

1}
2

∑
i=1
|xi(t)−ui(t)|

≤ −min{bl
1,b

l
2− cu

1}
2

∑
i=1

(λi− ε)| lnxi(t)− lnui(t)|

≤ −φεV (t),

(3.9)

where

φε = min{bl
1,b

l
2− cu

1} ·min
{

λ1− ε,λ2− ε

}
.
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For t = τk, k = 1,2, · · · , we have

V (τ+k ) =
2
∑

i=1
| lnui(τ

+
k )− lnxi(τ

+
k )|

=
2
∑

i=1
| ln[(1+hik)ui(τk)]− ln[(1+hik)xi(τk)]|=V (τk).

Above analysis show that, for all t > τp > T0,

D+V (t)<−φεV (t). (3.10)

Applying the differential inequality theorem and the variation of constants formula of solutions

of first-order linear differential equation, we have

V (t)≤V (τp)exp(−φε(t− τp)). (3.11)

It obvious that V (t)→ 0 as t→+∞, that is

2

∑
i=1
| lnui(t)− lnxi(t)| → 0 as t→+∞. (3.12)

From (3.12) and (3.8), one could easily see that

2

∑
i=1

1
θi + ε

|ui(t)− xi(t)| → 0 as t→+∞.

And so

lim
t→+∞

|xi(t)−ui(t)|= 0, i = 1,2.

The proof is completed.

From Theorem 3.1 and 3.2, we consider the permanence and stability of system (1.2) with

α2 > 0, β1 > 0. But with the impulsive perturbations in system (1.2), the property of the system

(1.2) will be changed with α2 < 0 or β1 < 0, then we have the following results.

Theorem 3.3. Assume that (H2) holds, let F(t) = (x1(t),x2(t))T be any solution of system (1.2)

with xi(0+)> 0 (i = 1,2), then there exist constants θi > 0,λi > 0(i = 1,2) such that

λ2 ≤ liminf
t→+∞

x2(t)≤ limsup
t→+∞

x2(t)≤ θ2.

lim
t→+∞

x1(t) = 0.
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Proof. From β1 < 0, for positive constant ε > 0 small enough,

β1ε =
q

∑
k=1

ln(1+h1k)+T m[a1(t)+ c1(t)(X∗2 (t)+ ε)]< 0. (3.13)

By α2 > 0, similarly to the analysis of (3.1)-(3.2), we have

λ2 < liminf
t→+∞

x2(t)≤ limsup
t→+∞

x2(t)≤ θ2. (3.14)

From the first equation of system (1.2), for t > T1 and t 6= τk (k = 1,2, · · ·), we obtain

x′1(t)≤ x1(t)(a1(t)+ c1(t)(X∗2 (t)+ ε)−b1(t)x1(t)) . (3.15)

Consider the following system w′3(t) = w3(t)(a1(t)+ c1(t)(X∗2 (t)+ ε)−b1(t)w3(t)) , t 6= τk,

w3(τ
+
k ) = (1+h1k)w3(τk), t = τk, k = 1,2, · · ·

(3.16)

By Lemma 2.1, we have x1(t) ≤ w3(t), where w3(t) is any solution of (3.16) with w3(T+
1 ) =

x1(T+
1 ). By (3.13) and Lemma 2.3, we find that lim

t→+∞
w3(t) = 0. This combine with the posi-

tivity of x1(t), implies that lim
t→+∞

x1(t) = 0. The proof is completed.

Theorem 3.4. Assume that (H3) holds and let F(t) = (x1(t),x2(t))T be any solution of system

(1.2) with xi(0+)> 0 (i = 1,2), then there exist constants θ11 > 0,λ11 > 0 such that

λ11 ≤ liminf
t→+∞

x1(t)≤ limsup
t→+∞

x1(t)≤ θ11.

lim
t→+∞

x2(t) = 0.

Proof. Since α2 < 0, by Lemma 2.3 (2),

lim
t→+∞

x2(t) = 0. (3.17)

Also, α1 > 0 implies that for positive constant ε small enough,

α1ε =
q

∑
k=1

ln(1+h1k)+T m[a1(t)+ c1(t)ε]> 0. (3.18)

It follows from (3.17) that there exists a T1 > 0 such that

x2(t)< ε for all t ≥ T1. (3.19)
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From the first equation of system (1.2), for t > T1 and t 6= τk (k = 1,2, · · ·), we obtain

x′1(t)≤ x1(t)(a1(t)+ c1(t)ε−b1(t)x1(t)) . (3.20)

Consider the following system w′4(t) = w4(t)(a1(t)+ c1(t)ε−b1(t)w4(t)) , t 6= τk,

w4(τ
+
k ) = (1+h1k)w4(τk), t = τk, k = 1,2, · · ·

(3.21)

By Lemma 2.1, we have x1(t) ≤ w4(t), where w4(t) is any solution of (3.21) with w4(T+
1 ) =

x1(T+
1 ). By (3.18) and Lemma 2.3, system (3.21) has a unique T -periodic solution X∗1ε

(t),

which is global asymptotically stable. Setting ε → 0, from Lemma 2.4, we have

X∗1ε(t)→ X∗1 (t).

Let θ11 = sup
{

X∗1 (t)
∣∣∣t ∈ [0,T ]

}
, and for any positive constant ε0 > 0, there exists a T2 > T1

such that

x1(t)≤ w1(t)< X∗1 (t)+ ε0 ≤ θ11 + ε0 for all t > T2.

Setting ε0→ 0, we obtain

limsup
t→+∞

x1(t)≤ θ11. (3.22)

From the first equation of system (1.2) and the positivity of x2(t), for t > T1 and t 6= τk (k =

1,2, · · ·), we also have

x′1(t)≥ x1(t)(a1(t)−b1(t)x1(t)) . (3.23)

Consider the following system w′5(t) = w5(t)(a1(t)−b1(t)w5(t)) , t 6= τk,

w5(τ
+
k ) = (1+h1k)w5(τk), t = τk, k = 1,2, · · ·

(3.24)

By Lemma 2.1, we have x1(t) ≥ w5(t), where w5(t) is any solution of (3.24) with w5(T+
1 ) =

x2(T+
1 ). By (H3) and Lemma 2.3, system (3.24) has a unique T -periodic solution X∗1 (t), which

is global asymptotically stable. Let λ11 = inf
{

X∗1 (t)
∣∣∣t ∈ [0,T ]

}
, and for any positive constant

ε0 > 0(ε0 <
1
2λ11), there exists a T3 > T2 such that

x1(t)≥ w5(t)> X∗1 (t)− ε0 ≥ λ11− ε0 for all t > T3.
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Setting ε0→ 0, we obtain

liminf
t→+∞

x1(t)≥ λ11.

The proof is completed.

Theorem 3.5. Assume that (H4) holds, let F(t) = (x1(t),x2(t))T be any solution of system (1.2)

with xi(0+)> 0 (i = 1,2), then

lim
t→+∞

xi(t) = 0, i = 1,2.

Proof. Since α2 < 0, by Lemma 2.3 (2),

lim
t→+∞

x2(t) = 0. (3.25)

Also, α1 < 0 implies that for positive constant ε small enough,

α1ε =
q

∑
k=1

ln(1+h1k)+T m[a1(t)+ c1(t)ε]< 0. (3.26)

It follows from (3.25) that there exists a T1 > 0 such that

x2(t)< ε for all t ≥ T1. (3.27)

From the first equation of system (1.2), for t > T1 and t 6= τk (k = 1,2, · · ·), we obtain

x′1(t)≤ x1(t)(a1(t)+ c1(t)ε−b1(t)x1(t)) . (3.28)

Consider the following system w′6(t) = w6(t)(a1(t)+ c1(t)ε−b1(t)w6(t)) , t 6= τk,

w6(τ
+
k ) = (1+h1k)w6(τk), t = τk, k = 1,2, · · ·

(3.29)

By Lemma 2.1, we have x1(t) ≤ w6(t), where w6(t) is any solution of (3.29) with w6(T+
1 ) =

x3(T+
1 ). By (3.26) and Lemma 2.3,

lim
t→+∞

w6(t) = 0.

This combine with the positivity of x1(t), implies that

lim
t→+∞

x1(t) = 0.

The proof is completed.
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4. Discussion
Sun and Wei [13] proposed the commensal symbiosis model (1.1). They showed that the

positive equilibrium of the system is locally stable. In this paper, we further incorporate the

impulsive to the system (1.1) and propose the system (1.2). We found that depending on the

choice of impulsive, the system could still be permanence and globally attractivity, or some of

the species be extinct while the other one still permanent, or all the species will be driven to

extinction. That is, impulsive is one of the important reasons that can change the long time

behaviors of species.
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