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Abstract. In this paper, a predator-prey eco-epidemiological model with Beddington-DeAngelis functional re-

sponse is investigated. In the model, it is assumed that the predator population suffers a transmissible disease. By

means of Lyapunov functions and LaSalle’s invariance principle, sufficient conditions are derived for the global

stability of the endemic-coexistence equilibrium, the disease-free equilibrium and the predator-extinction equilib-

rium of the system, respectively.
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1. Introduction

In recent years, great attention has been paid by many researchers to study the effect of dis-

ease transmission in ecological system (see, for example, [1-7]). Most of these works dealt

with predator-prey models with disease in the prey. Recently, several authors proposed differ-

ent eco-epidemiological predator-prey models by assuming that the predator population suffers

∗Corresponding author

E-mail address: tianxh-2008@163.com

Received May 8, 2015

1



2 X. TIAN, R. XU, Z. WANG

a transmissible disease (see, for example, [8-11]). In [12], by assuming that a transmissible

disease spreads among the predator population, Sun and Yuan considered the following eco-

epidemiological model:

ẋ(t) =x(t)(r−a11x(t))−a12x(t)S(t),

Ṡ(t) =ka12x(t)S(t)− r1S(t)−βS(t)I(t),

İ(t) =βS(t)I(t)− r2I(t),

(1.1)

where x(t),S(t) and I(t) represent the densities of the prey, susceptible (sound) predator and the

infected predator population at time t, respectively. The parameters k,a11,a12,r,r1,r2 and β are

positive constants. In system (1.1), the following assumptions have been made:

(A1) In the absence of predation, the prey population x(t) grows logistically with the intrin-

sic growth rate r > 0 and carrying capacity r/a11, in which a11 measures intraspecific

competition of the prey.

(A2) The total predator population N is composed of two population classes: one is the class

of susceptible (sound) predator, denoted by S, and the other is the class of infected

predator, denoted by I.

(A3) The disease spreads among the predator species only by contact and the disease can not

be transmitted vertically. The infected predator population do not recover or become

immune. The disease incidence is assumed to be the simple mass action incidence βSI,

where β > 0 is called the disease transmission coefficient.

(A4) The parameter a12 is the capturing rate of the sound predator, and k is the conversion

rate of nutrients into the reproduction of the sound and infected predators by consuming

prey, r1 is the natural death rate of the sound predator, r2 is the natural and disease-

related mortality rate of the infected predator. Here, r1 ≤ r2 is reasonable for biological

meaning.

In [12], by using suitable Lyapunov function and LaSalle’s invariance principle, the global

asymptotic stability of the disease-free equilibrium and the endemic equilibrium were given.
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In population dynamics, the functional response plays an important role in the research of

predator-prey interactions. In [13], based on experiment, Holling suggested three kinds of func-

tional response for different species to model the phenomena of predation as follows:

(1) φ1(x) = ax, (2) φ2(x) =
ax

b+ x
, (3) φ3(x) =

ax2

b+ x2 ,

where x represents the density of prey. Functions φ1(x),φ2(x) and φ3(x) are now referred to as

Holling type I, II and III functional responses. Here a > 0 denotes the search rate of the preda-

tor and b > 0 is the half-saturation constant. In classical predator-prey models, Holling type

functional responses are frequently used. However, these functional responses fail to model the

interference among predators, and have been facing challenges from the biology and physiology

communities [14,15].

We note that many predators compete for prey. This can result in time wasted in interfering

each other’s effort of capturing and consuming prey [16]. For this reason, some works have

shown that the functional response in a prey-predator model should be predator-dependent [17].

In 1975, Beddington [18] and DeAngelis et al. [19] introduced a generalisation of the Holling

functional response as follows:

ϕ(x,y) =
kx

1+ax+by
,

where the term by measures the mutual interference between predators. When a > 0,b = 0, the

Beddington-DeAngelis functional response is simplified to Holling type II functional response

[13]. Compared with Holling type II functional response, this functional response takes into

account the delay in time incurred by the predators as a result of interspecific competition for

the same prey species.

Motivated by the works of Sun and Yuan [12], Beddington [18] and DeAngelis et al. [19],

in this paper, we are concerned with the combined effects of the disease transmission in the

predator population and Beddington-DeAngelis functional response on the global dynamics of
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a predator-prey model. To this end, we study the following eco-epidemiological model:

ẋ(t) = x(t)(r−a11x(t))− a12x(t)S(t)
1+ax(t)+bS(t)

,

Ṡ(t) =
a21x(t)S(t)

1+ax(t)+bS(t)
− r1S(t)−βS(t)I(t),

İ(t) = βS(t)I(t)− r2I(t),

(1.2)

where x/(1+ ax+ bS) describes the Beddington-DeAngelis functional response which incor-

porates mutual interference by predators. a21/a12 is the conversion rate of nutrients into the

reproduction of the predator by consuming prey. All other parameters are defined as in (A1)-

(A4).

The initial conditions for system (1.2) takes the form

x(0)> 0, S(0)> 0, I(0)> 0. (1.3)

It is easy to show that all solutions of system (1.2) with initial condition (1.3) are defined on

[0,+∞) and remain positive for all t ≥ 0.

The organization of this paper is as follows. In Section 2, by means of suitable Lyapunov

functions and LaSalle’s invariance principle, we establish sufficient conditions for the global

stability of the endemic-coexistence equilibrium, the disease-free equilibrium and the predator-

extinction equilibrium of system (1.2), respectively. In Section 3, numerical simulations are

carried out to illustrate the main theoretical results in Section 2. A brief discussion is given in

Section 4 to end this work.

2. Global stability

In this section, we are concerned with the global stability of each of feasible equilibria of

system (1.2). The technique of proofs is to construct suitable Lyapunov functions and LaSalle’s

invariance principle.

Clearly, system (1.2) always has a trivial equilibrium E0(0,0,0) and a predator-extinction

equilibrium E1(r/a11,0,0). If the following holds:

(H1) a21r > r1(a11 +ar),
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then system (1.2) has a disease-free equilibrium E2(x2,S2,0), where

x2 =
−(a12a21−aa12r1−a21br)+

√
41

2a11a21b
, S2 =

a21x2(r−a11x2)

a12r1
,

here41 = (a12a21−aa12r1−a21br)2 +4a11a12a21br1. Further, if the following holds:

(H2)
β [aa12r1r2 +a21(brr2 + rβ −a12r2)]

2 +a11a12a21r1r2(br2 +β )2

a21β r(br2 +β )[aa12r1r2 +a21(brr2 + rβ −a12r2)]
< 1,

in addition to the equilibria E0,E1 and E2, system (1.2) has a unique endemic-coexistence equi-

librium E∗(x∗,S∗, I∗), where

x∗ =
−(a11br2 +a11β −arβ )+

√
42

2aa11β
, S∗ =

r2

β
, I∗ =

a21βx∗(r−a11x∗)−a12r1r2

a12r2β
,

here42 = (a11br2 +a11β −arβ )2−4aa11β (a12r2−brr2− rβ ).

It is easy to show that the equilibrium E0(0,0,0) is always unstable.

We now give a result on the upper bound of positive solutions of system (1.2).

Lemma 2.1. There are positive constants M1 and M2 such that for any positive solution

(x(t),S(t), I(t)) of system (1.2) with initial conditions (1.3),

limsup
t→+∞

x(t)< M1, limsup
t→+∞

S(t)< M2, limsup
t→+∞

I(t)< M2. (2.1)

Proof. Let (x(t),S(t), I(t)) be any positive solution of system (1.2) with initial conditions (1.3).

Define

V0(t) = x(t)+
a12

a21
(S(t)+ I(t)).

Calculating the derivative of V0(t) along positive solutions of system (1.2), it follows that

d
dt

V0(t) =x(t)(r−a11x(t))− a12

a21
(r1S(t)+ r2I(t))

=− r1V0(t)+ x(t)(r+ r1−a11x(t))+
a12

a21
(r1− r2)I(t)

≤− r1V0(t)+
(r+ r1)

2

4a11
,

which yields limsupt→+∞V0(t)≤ k(r+ r1)
2/(4a11r1). If we choose

M1 =
(r+ r1)

2

4a11r1
, M2 =

a21(r+ r1)
2

4a11a12r1
, (2.2)

then (2.1) follows. This completes the proof.
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Lemma 2.2. Assume that 4a11rr1 > a21(r+r1)
2. Then for any positive solution (x(t),S(t), I(t))

of system (1.2) with initial conditions (1.3), we have that

liminf
t→+∞

x(t)> x :=
r−a12M2

a11
, (2.3)

where M2 is defined in (2.2).

Proof. Let (x(t),S(t), I(t)) be any positive solution of system (1.2) with initial conditions (1.3).

By Lemma it follows that limsupt→+∞ S(t) ≤ M2. Hence, for ε > 0 being sufficiently small,

there is a T0 > 0 such that if t > T0,S(t) < M2 + ε . Accordingly, for ε > 0 being sufficiently

small, we derive from the first equation of system (1.2) that, for t > T0,

ẋ(t)≥ x(t)[r−a11x(t)−a12(M2 + ε)],

which yields

liminf
t→+∞

x(t)≥ x :=
r−a12M2

a11
.

This completes the proof.

We now investigate the global stability of the endemic-coexistence equilibrium E∗(x∗,S∗, I∗)

of system (1.2).

Theorem 2.1. If (H2) holds, then the endemic-coexistence equilibrium E∗(x∗,S∗, I∗) of system

(1.2) is globally asymptotically stable provided that

(H3) x > r/(2a11).

Here, x > 0 is defined in (2.3).

Proof. Let (x(t),S(t), I(t)) be any positive solution of system (1.2) with initial conditions (1.3).

Define

V1(t) =
a21

a12

(
x(t)− x∗− (r1S∗+ r2I∗)

∫ x(t)

x∗

1+aτ +bS∗

a21τS∗
dτ

)
+S(t)−S∗−S∗ ln

S(t)
S∗

+ I(t)− I∗− I∗ ln
I(t)
I∗

.

(2.4)
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Calculating the derivative of V1(t) along positive solutions to system (1.2), it follows that

d
dt

V1(t) =
a21

a12

(
1− (r1S∗+ r2I∗)

1+ax(t)+bS∗

a21x(t)S∗

)
×
(

x(t)(r−a11x(t))− a12x(t)S(t)
1+ax(t)+bS(t)

)
+

(
1− S∗

S(t)

)(
a21x(t)S(t)

1+ax(t)+bS(t)
− r1S(t)−βS(t)I(t)

)
+

(
1− I∗

I(t)

)
(βS(t)I(t)− r2I(t)).

(2.5)

Noting that x∗(r−a11x∗) = a12x∗S∗/(1+ax∗+bS∗) and r1S∗+r2I∗= a21x∗S∗/(1+ax∗+bS∗),

then Eq. (2.5) can be rewritten as

d
dt

V1(t) =
a21

a12

(
1− (r1S∗+ r2I∗)

1+ax(t)+bS∗

a21x(t)S∗

)
×
[

x(t)(r−a11x(t))− x∗(r−a11x∗)+
a12x∗S∗

1+ax∗+bS∗

]
− a21

a12

(
1− (r1S∗+ r2I∗)

1+ax(t)+bS∗

a21x(t)S∗

)
a12x(t)S(t)

1+ax(t)+bS(t)

+
a21x(t)S(t)

1+ax(t)+bS(t)
− S∗

S(t)
a21x(t)S(t)

1+ax(t)+bS(t)

− r1S(t)−βS(t)I∗+(r1S∗+ r2I∗)

=
a21

a12

(
1− x∗

x(t)
1+ax(t)+bS∗

1+ax∗+bS∗

)
×
[
(x(t)− x∗)[r−a11(x(t)+ x∗)]+

a12x∗S∗

1+ax∗+bS∗

]
+(r1S∗+ r2I∗)

S(t)
S∗

1+ax(t)+bS∗

1+ax(t)+bS(t)
− S∗

S(t)
a21x(t)S(t)

1+ax(t)+bS(t)

− r1S∗
S(t)
S∗
−βS∗I∗

S(t)
S∗

+(r1S∗+ r2I∗).

(2.6)
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On substituting a21x∗S∗/(1+ax∗+bS∗) = r1S∗+βS∗I∗ into Eq. (2.6), we obtain

d
dt

V1(t) =
a21(1+bS∗)(x(t)− x∗)2

a12x(t)(1+ax∗+bS∗)
[r−a11(x(t)+ x∗)]

+(r1S∗+ r2I∗)
(1+bS∗)(x(t)− x∗)
x(t)(1+ax∗+bS∗)

+(r1S∗+ r2I∗)
[

S(t)
S∗

1+ax(t)+bS∗

1+ax(t)+bS(t)
− S(t)

S∗
−1+

1+ax(t)+bS(t)
1+ax(t)+bS∗

]
+2(r1S∗+ r2I∗)− S∗

S(t)
a21x(t)S(t)

1+ax(t)+bS(t)
− (r1S∗+ r2I∗)

1+ax(t)+bS(t)
1+ax(t)+bS∗

=
a21(1+bS∗)(x(t)− x∗)2

a12x(t)(1+ax∗+bS∗)
[r−a11(x(t)+ x∗)]

− b(r1S∗+ r2I∗)(1+ax(t))(S(t)−S∗)2

S∗(1+ax(t)+bS∗)(1+ax(t)+bS(t))

+(r1S∗+ r2I∗)
[

2− 1+ax(t)+bS(t)
1+ax(t)+bS∗

− x(t)
x∗

1+ax∗+bS∗

1+ax(t)+bS(t)

]
+(r1S∗+ r2I∗)

1+bS∗

1+ax∗+bS∗
− (r1S∗+ r2I∗)

x∗

x(t)
1+bS∗

1+ax∗+bS∗
.

(2.7)

It follows from Eqs. (2.5)-(2.7) that

d
dt

V1(t) =
a21(1+bS∗)(x(t)− x∗)2

a12x(t)(1+ax∗+bS∗)
[r−a11(x(t)+ x∗)]

− b(r1S∗+ r2I∗)(1+ax(t))(S(t)−S∗)2

S∗(1+ax(t)+bS∗)(1+ax(t)+bS(t))

+(r1S∗+ r2I∗)
[

3− x∗

x(t)
1+ax(t)+bS∗

1+ax∗+bS∗

−x(t)
x∗

1+ax∗+bS∗

1+ax(t)+bS(t)
− 1+ax(t)+bS(t)

1+ax(t)+bS∗

]
.

(2.8)

Since (H3) holds, there is a constant T > 0 such that if t ≥ T , x(t)> r1/(2a11). In this case, we

have that, for t ≥ T ,

a21(1+bS∗)(x(t)− x∗)2

a12x(t)(1+ax∗+bS∗)
[r−a11(x(t)+ x∗)]≤ 0

with equality if and only if x = x∗. Further, since the arithmetic mean is greater than or equal to

the geometric mean, it is clear that

x∗

x
1+ax+bS∗

1+ax∗+bS∗
+

x
x∗

1+ax∗+bS∗

1+ax+bS
+

1+ax+bS
1+ax+bS∗

≥ 3,
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and the equality holds only for x = x∗,S = S∗. Therefore, we have that if t ≥ T , V ′1(t) ≤ 0. By

Theorem 4.1 in [20], solutions limit M , the largest invariant subset of {V ′1(t)}= 0. Clearly, we

see from (2.8) that V ′1(t) = 0 if and only if x = x∗,S = S∗. It therefore follows from the second

equation of system (1.2) that

0 = Ṡ(t) = S∗
(

a21x∗

1+ax∗+bS∗
− r1−β I(t)

)
,

which yields I = I∗. Hence, V ′1(t) = 0 if and only if (x,S, I) = (x∗,S∗, I∗). Therefore, the

global asymptotic stability of E∗ follows from LaSalle’s invariance principle. This completes

the proof.

Theorem 2.2. If (H1) holds, then the disease-free equilibrium E2(x2,S2,0) of system (1.2) is

globally asymptotically stable provided that

(H3) x > r/(2a11).

Here, x > 0 is defined in (2.3).

Proof. Let (x(t),S(t), I(t)) be any positive solution of system (1.2) with initial conditions (1.3).

Define

V2(t) =
a21

a12

(
x(t)− x2− r1S2

∫ x(t)

x2

1+aτ +bS2

a21τS2
dτ

)
+S(t)−S2−S2 ln

S(t)
S2

+ I(t).

(2.9)

Calculating the derivative of V2(t) along positive solutions to system (1.2), we obtain that

d
dt

V2(t) =
a21

a12

(
1− r1S2

1+ax(t)+bS2

a21x(t)S2

)[
x(t)(r−a11x(t))− a12x(t)S(t)

1+ax(t)+bS(t)

]
+

a21x(t)S(t)
1+ax(t)+bS(t)

− S2

S(t)
a21x(t)S(t)

1+ax(t)+bS(t)
− r1S(t)+ r1S2 +(βS2− r2)I(t).

(2.10)
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Noting that x2(r−a11x2) = a12x2S2/(1+ax2 +bS2), then Eq. (2.10) can be rewritten as

d
dt

V2(t) =
a21

a12

(
1− r1S2

1+ax(t)+bS2

a21x(t)S2

)
×
[

x(t)(r−a11x(t))− x2(r−a11x2)+
a12x2S2

1+ax2 +bS2

]
− a21

a12

(
1− r1S2

1+ax(t)+bS2

a21x(t)S2

)
a12x(t)S(t)

1+ax(t)+bS(t)

+
a21x(t)S(t)

1+ax(t)+bS(t)
− S2

S(t)
a21x(t)S(t)

1+ax(t)+bS(t)
− r1S2

S(t)
S2

+ r1S2 +(βS2− r2)I(t).

(2.11)

On substituting a21x2S2/(1+ax2 +bS2) = r1S2 into Eq. (2.11), we derive that

d
dt

V2(t) =
a21

a12

(
1− x2

x(t)
1+ax(t)+bS2

1+ax2 +bS2

)
(x(t)− x2)[r−a11(x(t)+ x2)]

+ r1S2

(
1− x2

x(t)
1+ax(t)+bS2

1+ax2 +bS2

)
+ r1S2

(
S(t)
S2

1+ax(t)+bS2

1+ax(t)+bS(t)
− S(t)

S2

)
+ r1S2

− r1S2
x(t)
x2

1+ax2 +bS2

1+ax(t)+bS(t)
+(βS2− r2)I(t)

=
a21(1+bS2)(x(t)− x2)

2

a12x(t)(1+ax2 +bS2)
[r−a11(x(t)+ x2)]+(βS2− r2)I(t)

+ r1S2

(
2− x2

x(t)
1+ax(t)+bS2

1+ax2 +bS2
− x(t)

x2

1+ax2 +bS2

1+ax(t)+bS(t)

)
+ r1S2

(
S(t)
S2

1+ax(t)+bS2

1+ax(t)+bS(t)
− S(t)

S2

)
.

(2.12)

It follows from Eqs. (2.10)-(2.12) that

d
dt

V2(t) =
a21(1+bS2)(x(t)− x2)

2

a12x(t)(1+ax2 +bS2)
[r−a11(x(t)+ x2)]+(βS2− r2)I(t)

− br1(1+ax(t))(S(t)−S2)
2

(1+ax(t)+bS(t))(1+ax(t)+bS2)

+ r1S2

[
3− x2

x(t)
1+ax(t)+bS2

1+ax2 +bS2

−x(t)
x2

1+ax2 +bS2

1+ax(t)+bS(t)
− 1+ax(t)+bS(t)

1+ax(t)+bS2

]
.

(2.13)
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Since the arithmetic mean is greater than or equal to the geometric mean, it is clear that

x2

x
1+ax+bS2

1+ax2 +bS2
+

x
x2

1+ax2 +bS2

1+ax+bS
+

1+ax+bS
1+ax+bS2

≥ 3,

and the equality holds only for x = x2,S = S2. If (H1) holds, then βS2− r2 < 0. Therefore, if

(H1) holds, then V ′2(t) ≤ 0 for t ≥ T , with equality if and only if x = x2,S = S2, I = 0. Using

a similar argument as that in the proof of Theorem 2.1, we show that the only invariant set in

M = {(x,S, I) : V ′1(t) = 0} is M = {(x2,S2,0)}. Therefore, the global asymptotic stability of

E2 follows from LaSalle’s invariance principle. This completes the proof.

Theorem 2.3. If a21r < r1(a11 + ar), then the predator-extinction equilibrium E1(r/a11,0, 0)

of system (1.2) is globally asymptotically stable.

Proof. Let (x(t),S(t), I(t)) be any positive solution of system (1.2) with initial conditions (1.3).

Denote x1 = r/a11.

Define

V3(t) =
a21

a12(1+ax1)

(
x(t)− x1− x1 ln

x(t)
x1

)
+S(t)+ I(t). (2.14)

Calculating the derivative of V3(t) along positive solutions to system (1.2), it follows that

d
dt

V3(t) =
a21

a12(1+ax1)

(
1− x1

x(t)

)(
x(t)(r−a11x(t))− a12x(t)S(t)

1+ax(t)+bS(t)

)
+

a21x(t)S(t)
1+ax(t)+bS(t)

− r1S(t)− r2I(t).
(2.15)

On substituting r = a11x1 into (2.15), one obtains

d
dt

V3(t) =−
a11a21

a12(1+ax1)
(x(t)− x1)

2− r2I(t)− r1S(t)+
(1+ax(t))S(t)

1+ax(t)+bS(t)
a21x1

1+ax1
.

=− a11a21

a12(1+ax1)
(x(t)− x1)

2− r2I(t)− br1S2(t)
1+ax(t)+bS(t)

+
r1(1+ax(t))S(t)
1+ax(t)+bS(t)

a21r− r1(a11 +ar)
r1(a11 +ar)

.

(2.16)

Let M be the largest invariant subset of {V ′3(t) = 0}. Clearly, if a21r < r1(a11 +ar), we derive

from (2.16) that V ′3(t) ≤ 0, with equality if and only if x = x1,S = 0, I = 0. Noting that M is

invariant, for each element in M , we have x = x1,S = 0, I = 0. Hence, V ′3(t) = 0 if and only if

(x,S, I)= (x1,0,0). Therefore, the predator-extinction equilibrium E1 is globally asymptotically

stable. This completes the proof.
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3. Numerical examples

In this section, we give some examples to illustrate the main theoretical results above.

Example 1. In system (1.2), let a11 = 4.5,a12 = 0.1,a21 = 1.3,a = 0.1,b = 0.1,r = 4.5,r1 =

1,r2 = 1.2 and β = 0.9. By calculation, we have

β [aa12r1r2 +a21(brr2 + rβ −a12r2)]
2 +a11a12a21r1r2(br2 +β )2

a21β r(br2 +β )[aa12r1r2 +a21(brr2 + rβ −a12r2)]
≈ 0.9751 < 1.

In this case, system (1.2) has an endemic-coexistence equilibrium E∗(0.9759,1.3333,0.0341).

Further, we obtain x− r/(2a11) ≈ 0.0145 > 0. By Theorem 2.1, we see that E∗ is globally

asymptotically stable. Numerical simulation illustrates the above result (see, Fig. 1).

Example 2. In system (1.2), let a11 = 12,a12 = 0.5,a21 = 3.5,a = 0.5,b = 0.5,r = 2,r1 =

0.5,r2 = 0.9 and β = 0.25. It is easy to show that (H1) holds true. In this case, system (1.2)

has a disease-free equilibrium E2(0.1625,0.1129,0). By calculation, we have x− r/(2a11) ≈

0.0074 > 0. By Theorem 2.2, we see that E2 is globally asymptotically stable. Numerical

simulation illustrates this fact (see, Fig. 2).

Example 3. In system (1.2), let a11 = 1,a12 = 0.5,a21 = 0.5,a = 0.25,b = 0.25,r = 1,r1 =

0.5,r2 = 1 and β = 0.5. Clearly, system (1.2) has a predator-extinction equilibrium E1(0.1250,0,0).

By calculation, it is easy to show that r1(a11 + ar)− a21r = 0.1250 > 0. By Theorem 2.3, we

see that E1 is globally asymptotically stable. Numerical simulation illustrates the above result

(see, Fig. 3).

4. Discussion

In this paper, we have investigated the delayed predator-prey model with Beddington-DeAngelis

functional response and a transmissible disease spreading among the predator population. By

using suitable Lyapunov functions and LaSalle’s invariance principle, for system (1.2), the glob-

al asymptotic stability of each of feasible equilibria has been established.

By Theorem we see that if the prey population is always abundant enough, the coefficient

of the mutual interference between predators b and the disease transmission coefficient β are

large enough satisfying (H2), then the solutions of system (1.2) tend to the endemic-coexistence
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equilibrium which means that the disease becomes endemic in the predator population and the

prey, sound predator and the infected predator populations coexist. By Theorem 2.2, we see

that if the prey population is always abundant enough, the disease transmission coefficient β is

small enough and the conversion rate of the sound predator is large enough, the disease among

the predator population dies out and the prey and the sound predator populations coexist. We

rewrite a21r < r1(a11 +ar) as a21 < r1(a11/r+a). By Theorem 2.3, we see that if the carrying

capacity of the prey and the conversion rate of the sound predators are small enough, and the

death rate of the infected predator is sufficiently large, then the prey population persists and the

predator population goes to extinction.

We note that when a = b = 0, system (1.2) reduces to system (5) in [12] . In this case, it can

be seen that the condition in Theorem 6 in [12] is a special case of Theorem 2.3. Furthermore,

the condition (H2) in this paper can be rewritten as a21(rβ−a12r2)
2+a11a12r1r2β

rβ [a21(rβ−a12r2)]
< 1 if a = b = 0.

Compared with the result in Theorem 7 in [12] , our work can be viewed as a generalization and

improvement of the work developed by Sun and Yuan [12].

Conflict of Interests

The authors declare that there is no conflict of interests.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11371368,

11071254), the Natural Science Foundation of Hebei Province of China (No. A2014506015)

and the Natural Science Foundation for Young Scientists of Hebei Province (No. A2013506012).

REFERENCES

[1] R.M. Anderson, R.M. May, Regulation and stability of host-parasite population interactions: I. Regulatory

processes, J. Anim. Ecol. 47 (1978), 219-267.

[2] R.M. Anderson, R.M. May, The invasion and spread of infectious diseases within animal and plant commu-

nities, Philos. Trans. R. Soc. Lond. Ser. B, 314 (1986), 533-570.

[3] J. Chattopadhyay, O. Arino, A predator-prey model with disease in the prey, Nonlinear Anal. 36 (1999),

747-766.

[4] M. Haque, D. Greenhalgh, When predator avoids infected prey: a model based theoretical studies, IMA J.

Math. Med. Biol. 27 (2009), 95-94.



14 X. TIAN, R. XU, Z. WANG

[5] H.W. Hethcote, W. Wang, Z. Ma, A predator prey model with infected prey, J. Theor. Pop. Biol. 66 (2004),

259-268.

[6] S. Sarwardi, M. Haque, E. Venturino, A Leslie-Gower Holling-type II ecoepidemic model, IMA J. Math.

Med. Biol. 35 (2011), 263-280.

[7] Y. Xiao, L. Chen, Modeling and analysis of a predator-prey model with disease in prey, Math. Biosci. 171

(2001), 59-82.

[8] M. Haque, E. Venturino, An eco-epidemiological model with disease in predator: the ratio-dependent case,

Math. Methods Appl. Sci. 30 (2007), 1791-1809.

[9] A. Hugo, E.S. Massawe, O.D. Makinde, An eco-epidemiological mathematical model with treatment and

disease infection in both prey and predator population, J. Ecology Nat. Environ. 4 (2012), 266-279.

[10] P.J. Pal, M. Haque, P.K. Mandal, Dynamics of a predator-prey model with disease in the predator, Math.

Meth. Appl. Sci. 37 (2014), 2429-2450.

[11] R. Xu, S. Zhang, Modelling and analysis of a delayed predator-prey model with disease in the predator, Appl.

Math. Comput. 224 (2013), 372-386.

[12] S. Sun, C. Yuan, On the analysis of predator-prey model with epidemic in the predator, J. Biomath. 21 (2006),

97-104.

[13] C.S. Holling, The functional response of predator to prey density and its role in mimicry and population

regulation. Mem. Ent. Soc. Canada, 45 (1965), 1-60.

[14] R. Arditi, L.R. Ginzburg, Coupling in predator-prey dynamics: ratio-dependence, J. Theoret. Biol. 139

(1989), 311-326.

[15] M. Fan, Y. Kuang, Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis

functional response, J. Math. Anal. Appl. 295 (2004), 15-39.

[16] Y. Kuang, Some mechanistically derived functional response, Math. Biosci. Eng. 4 (2007), 1-11.

[17] J. Zhang, S. Sun, Analysis of eco-epidemiological model with epidemic in the predator, J. Biomath. 20

(2005), 157-164.

[18] J.R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J.

Anim. Ecol. 44 (1975), 331-340.

[19] D.L. DeAngelis, R.A. Goldstein, R.V. O’Neill, A model for trophic interaction, Ecology, 56 (1975), 881-892.

[20] X. Liao, Theory Methods and Application of Stability, Huazhong University of Science and Technology

Press, Wuhan (2001).



GLOBAL DYNAMICS OF AN ECO-EPIDEMIOLOGICAL MODEL 15

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

time t

so
lu

tio
n

 

 
x(t)
S(t)
I(t)

FIGURE 1. The solution and phase portrait found by numerical integration of the

system (1.2) with a11 = 4.5,a12 = 0.1,a21 = 1.3,a = 0.1,b = 0.1,r = 4.5,r1 =

1,r2 = 1.2,β = 0.9 and (φ1,φ2,φ3) = (1.2,2,0.1).
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FIGURE 2. The solution and phase portrait found by numerical integration of

the system (1.2) with a11 = 12,a12 = 0.5,a21 = 3.5,a = 0.5,b = 0.5,r = 2,r1 =

0.5,r2 = 0.9,β = 0.25 and (φ1,φ2,φ3) = (0.5,0.5,1).
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FIGURE 3. The solution and phase portrait found by numerical integration of

the system (1.2) with a11 = 1,a12 = 0.5,a21 = 0.5,a= 0.25,b= 0.25,r = 1,r1 =

0.5,r2 = 1,β = 0.5 and (φ1,φ2,φ3) = (1,1,1).


