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Abstract. A non-autonomous food-chain system incorporating discrete time delay and stage-structure for each

species has been presented in this paper. The sufficient conditions are derived for permanence and non-permanence

of the considered system by applying the standard comparison theorem. Finally, the ecological meaning of the

conclusions are discussed.
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1. Introduction

The permanence of predation systems have been received much attention in recent years (Seeing

in [1-18]). Many ecological effects are incorporated in the predation systems when scientists in-

vestigate permanence of the considered system with stage-structure and time delay [6-15]. The

pioneering work on a single species growth model with stage structure and time delay, which

represented a mathematically more careful and biologically meaningful formulation approach,

was formulated and discussed by Aiello and Freedman [1]. Motivated by their work, many

authors focused on the permanence of the predation system with stage structure and time delay

[Seeing in 2-18]. Chen et al. [2] proposed the following system

(1)

ẋ1(t) = r1(t)x2(t)−d11x1(t)− r1(t− τ1)e−d11τ1x2(t− τ1)

ẋ2(t) = r1(t− τ1)e−d11τ1x2(t− τ1)−d12x2(t)−b1(t)x2
2(t)− c1(t)x2(t)y2(t)

ẏ1(t) = r2(t)y2(t)−d22y1(t)− r2(t− τ2)e−d22τ2y2(t− τ2)

ẏ2(t)r2(t− τ2)e−d22τ2y2(t− τ2)−d22y2(t)−b2(t)y2
2(t)+ c2(t)x2(t)y2(t)

and obtained a set of novel criteria which ensure the permanence of the considered system by

introducing a new lemma and applying the standard comparison theorem. Their method and

conclusions were novel and interesting. As one type of the predation system, the food-chain

system are more realistic and complex than the prey-predator system. Thus, considering the

food-chain system is more interesting and challenging. Liu et al. [3] proposed an impulsive

reaction-diffusion periodic food-chain system with ratio-dependent functional response, they

obtained the sufficient conditions for the ultimate boundedness and permanence of the food-

chain system by the standard comparison theory and upper and lower solution method. Liao et

al. [4] considered is a delayed discrete time Lotka-Volterra type food-chain model and obtained

the sufficient conditions of the permanence. A food-chain predator-prey model with Holling

IV type functional response is proposed by Shen [5] and the sufficient conditions for the per-

manence and the global attractivity of the system were obtained by applying the comparison

theorem of the differential equation and constructing the suitable Lyapunov function.

However, the food-chain system with stage-structure and time delay are mainly confined to

one or two species having stage-structure in the existing literature. Permanence of the system
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in which three species have stage-structure are received less attention. Motivated by these, our

paper represents the following stage-structured food-chain system with time delay

(2)

İ1(t) = α1M1(t)− γ1I1(t)−α1e−γ1τ1M1(t− τ1)

Ṁ1(t) = α1e−γ1τ1M1(t− τ1)−a11(t)M2
1(t)− c1(t)M1(t)M2(t)

İ2(t) = α2M1(t)M2(t)− γ2I2(t)−α2e−γ2τ2M1(t− τ2)M2(t− τ2)

Ṁ2(t) = α2e−γ2τ2M1(t− τ2)M2(t− τ2)−d2(t)M2(t)−a22(t)M2
2 − c2(t)M2(t)M3(t)

İ3(t) = α3M2(t)M3(t)− γ3I3(t)−α3e−γ3τ3M2(t− τ3)M3(t− τ3)

Ṁ3(t) = α3e−γ3τ3M2(t− τ3)M3(t− τ3)−d3(t)M3(t)−a33(t)M2
3(t)

Where I1(t) and M1(t) denote the immature and mature population densities of the prey at

time t, respectively. I2(t) and M2(t) represent the immature and mature population densities of

the predator at time t, respectively. I3(t) and M3(t) are the immature and mature population

densities of the top predator at time t, respectively. aii(t) (1 = 1,2,3), d j(t) ( j = 2,3), ck(t)

(k = 1,2) are positive and continuous functions for all t ≥ 0. The above system assumes that

mature predators feed only on the mature prey population, and the mature top predators feed

only on the mature predators. The birth rate of the prey population is proportional to the existing

mature population with a proportionality α1 > 0. c1(t) and c2(t) are the capturing rate of mature

predators and top predators, respectively. αi(ci(t))−1 (i= 2,3) is the conversion rate of nutrients

into the reproduction of mature predators and top predators, respectively. aii(t)> 0 (i = 1,2,3)

denotes the intra-species competition rate of mature prey, mature predators and top predators

respectively. γi (i = 1,2,3) is the death rate of immature population of prey, predator and

top predator respectively. d2(t) and d3(t) denote the death rate of mature predators and top

predators, respectively. τi > 0 (i = 1,2,3) is the length of time from birth to maturity of ith

species.

The initial conditions of system (2) are given by

(3)
Ii(θ) = ϕi(θ)> 0, Mi(θ) = ψi(θ)> 0,

ϕi(0)> 0, ψi(0)> 0, θ ∈ [−τ,0], τ = max(τ1,τ2,τ3)
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For the continuity of initial conditions, we require further that

(4) I1(0) =
∫ 0
−τ1

α1eγ1sψ1(s)ds, I2(0) =
∫ 0
−τ2

α2eγ2sψ2(s)ds, I3(0) =
∫ 0
−τ3

α3eγ3sψ3(s)ds.

In this paper, we will mainly consider the stage-structured three species food-chain sys-

tem with discrete time delay, and obtain the sufficient conditions for permanence and non-

permanence of the system (2).

2. Permanence and Non-Permanence

Throughout this paper, we define that

(5)

as
kk = supt∈R1

+
akk(t)> 0, cs

l = supt∈R1
+

cl(t)> 0,

ds
j = supt∈R1

+
d j(t)> 0, ai

kk = inft∈R1
+

ai
kk > 0,

ci
l = inft∈R1

+
cl(t)> 0, di

j = inft∈R1
+

d j(t)( j = 2,3;k = 1,2,3; l = 1,2).

Definition 3.1 [1]. If there exist positive constants Mi and Ms, such that each solution

(I1(t),M1(t), I2(t),M2(t), I3(t),M3(t)) of the system (2) satisfies

(6)
0 < Mi ≤ liminft→+∞ Ii(t)≤ limsupt→+∞ Ii(t)≤Ms(i = 1,2,3),

0 < Mi ≤ liminft→+∞ Mi(t)≤ limsupt→+∞ Mi(t)≤Ms(i = 1,2,3).

Then the system (2) is permanent. Otherwise, it is called non-permanent.

Lemma 3.2 [2] Considering the following equation

(7) v̇(t) = av(t− τ)−bv(t)− cv2(t)

where a,b,c and τ are positive constants, v(t)> 0 for all t ∈ [−τ,0], we have

(1) If a > b, then limt→+∞ v(t) = a−b
c ,

(2) If a < b, then limt→+∞ v(t) = 0.

Theorem 3.3. If the assumptions (H1) and (H2) hold,

(H1). α3(α1α2e−γ1τ1−γ2τ2−ai
11di

2)−ai
11ai

22di
3eγ3τ3 > 0,

(H2). α1α2α3ai
11ai

22di
3e−γ1τ1−γ2τ2−α3(cs

1ai
33α2e−γ2τ2 + cs

2ai
11α3e−γ3τ3)

×(α1α2e−γ1τ1−γ2τ2−ai
11di

2)−as
11ai

11ai
22di

3(α3as
22ds

2 +ds
3eγ3τ3)> 0.
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Then the system (2) is permanent.

Proof. Let (I1(t),M1(t), I2(t),M2(t), I3(t),M3(t)) is a solution of the system (2) with initial

conditions (3) and (4).

From the second equation of the system (2), we have

Ṁ1(t)≤ α1e−γ1τ1M1(t− τ1)−a11(t)M2
1(t)

≤ α1e−γ1τ1M1(t− τ1)−ai
11M2

1(t).

By Lemma 3.2 and standard comparison theorem, we get

limsup
t→+∞

M1(t)≤ α1e−γ1τ1(ai
11)
−1 .

= Ms
1 > 0.

Then for any ε > 0, there exists a T1 > 0, for any t > T1 > 0, we have M1(t)< Ms
1 + ε .

Therefore, for any t > T1 + τ , we obtain from the fourth equation of the system (2)

Ṁ2(t)≤ α2e−γ2τ2(Ms
1 + ε)M2(t− τ2)−d2(t)M2(t)−a22(t)M2

2(t)

≤ α2e−γ2τ2(Ms
1 + ε)M2(t− τ2)−di

2M2(t)−ai
22M2

2(t).

Noticing that α2e−γ2τ2Ms
1− di

2 > 0, by Lemma 3.2 and standard comparison theorem, we

have

limsup
t→+∞

M2(t)≤ [α2e−γ2τ2(Ms
1 + ε)−di

2](a
i
22)
−1

Since ε is sufficiently small, we conclude that

limsup
t→+∞

M2(t)≤ [α1α2e−γ1τ1−γ2τ2−ai
11di

2](a
i
11ai

22)
−1 .

= Ms
2 > 0.

Then for this ε > 0, there exists a T2 > T1 + τ > 0, for any t > T2 > 0, such that M2(t) <

Ms
2 + ε .

For any t > T2 + τ , we drive from the sixth equation of the system (2)

Ṁ3(t)≤ α3e−γ3τ3(Ms
2 + ε)M3(t− τ3)−d3(t)M3(t)−a33(t)M2

3

≤ α3e−γ3τ3(Ms
2 + ε)M3(t− τ3)−di

3M3(t)−ai
33M2

3(t).

Noticing that α3e−γ3τ2Ms
2−di

3 > 0, by Lemma 3.2 and standard comparison theorem, we get

limsup
t→+∞

M3(t)≤ [α3e−γ3τ2(Ms
2 + ε)−di

3](a
i
33)
−1
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Since ε is sufficiently small, we obtain that

limsup
t→+∞

M3(t)≤ [α3e−γ3τ3(α1α2e−γ1τ1−γ2τ2−ai
11di

2)−ai
11ai

22di
3][a

i
11ai

22ai
33]
−1 .

= Ms
3 > 0.

Then for this ε > 0, there exists a T3 > T2 + τ > 0, for any t > T3 > 0, such that M3(t) <

Ms
3 + ε .

Set T4 = T3 + τ > 0, for any t > T4 > 0. Similarly we have

I1(t)≤ α1Ms
1(1− e−γ1τ1)γ−1

1
.
= Is

1 > 0.

I2(t)≤ α2Ms
1Ms

2(1− e−γ2τ2)γ−1
2

.
= Is

2 > 0.

I3(t)≤ α3Ms
2Ms

3(1− e−γ3τ3)γ−1
3

.
= Is

3 > 0.

Again, for t > T4 + τ , we derive from the second equation of the system (2)

Ṁ1(t)≥ α1e−γ1τ1M1(t− τ1)−a11(t)M2
1(t)− c1(t)(Ms

2 + ε)M1(t)

≥ α1e−γ1τ1M1(t− τ1)−as
11M2

1(t)− cs
1(M

s
2 + ε)M1(t).

According to the assumptions (H1) and (H2), it is obtained

α1e−γ1τ1 > cs
1Ms

2.

By Lemma 3.2 and standard comparison theorem, we get

liminf
t→+∞

M1(t)≥ [α1e−γ1τ1− cs
1(M

s
2 + ε)](as

11)
−1.

Since ε is sufficiently small, we have

liminf
t→+∞

M1(t)≥ [α1e−γ1τ1ai
11ai

22− cs
1(α1α2e−γ1τ1−γ2τ2−ai

11di
2)](a

i
11as

11ai
22)
−1 .

= Mi
1 > 0.

Therefore, for this ε > 0, there exists a T5 > T4+τ > 0, for any t > T5 > 0, such that M1(t)>

Mi
1− ε .

Similarly, we have

M2(t)> Mi
2− ε,M3(t)> Mi

3− ε, I1(t)≥ α1Mi
1(1− e−γ1τ1)γ−1

1 > 0,

I2(t)≥ α2Mi
1Mi

2(1− e−γ2τ2)γ−1
2 > 0, I3(t)≥ α1Mi

2Mi
3(1− e−γ3τ3)γ−1

3 > 0.

By the Definition 3.1, the system (2) is permanent. This completes the Proof.

As can be reached from the Definition 3.1, we also obtain that
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Theorem 3.4. If the assumption (H1) and (H2) do not hold, Then the system (2) is non-

permanent.
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