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Abstract. In this paper, Epidemic models are inevitably influenced by environmental white noise which is an

important component in realism, using stochastic models can provide an additional degree of realism in comparison

to their deterministic counterparts. Furthermore, it is possible for the population to confront emergency or sudden

environmental changes such like chemical leak, abnormal weather, natural disaster and pestilence. In this paper,

a toxoplasmosis spread model between cat and oocyst populations with independent stochastic perturbations and

a jump process is proposed, the existence of global positive solution is derived. By the method of stochastic

Lyapunov functions, we study its asymptotic behavior. When the perturbations about the the susceptible and

infective cats are sufficiently small, as well as magnitude of the reproductive number is less than one, the infective

cats, recovered cats and population oocysts decay to zero whilst the susceptible components converge to a class

of explicit stationary distributions regardless of the perturbations on the recovered cats and population oocysts.

When all the perturbations are small and the reproductive number is larger than one, we construct a new class of

stochastic Lyapunov functions to show the positive recurrence, and our results reveal some cycling phenomena

of recurrent diseases. These results mean that stochastic system has the similar property with the corresponding

deterministic system when the white noise is small.
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1. Introduction

Variational inequalities, which include many important problems in nonlinear analysis and

optimization such as the Nash equilibrium problem, complementarity problems, vector opti-

mization problems, fixed point problems, saddle point problems and game theory, recently have

been studied as an effective and powerful tool for studying many real world problems which

arise in economics, finance, image reconstruction, ecology, transportation, and network; see

[1-8] and the references therein.

Toxoplasma gondii, often referred to as T. gondii, is a parasite that is able to infect a wide

range of hosts, including all mammals and birds[1]. Up to one third of the world human popu-

lation are estimated to carry a Toxoplasma infection[2]. The increasing prevalence of infection

in human population is probably due to the increase in the number of cats[3]. Cats are the

key to control T. gondii due to the fact they shed, via feces[4], millions of oocysts, which after

sporulation in the environment might infect warm-blooded animals including human beings.

Mathematical models are often used to research the transmission dynamics of diseases in

population from an epidemiological point of view[5−8]. Abraham et al.[8] presented an epidemi-

ological model to study the transmission dynamics of toxoplasmosis in a cat population under

a continuous vaccination schedule. In this paper, authors assumed that the total number of cat

population remains constant. But for many cases, taking into consideration the size of popula-

tion varies is more reasonable. Furthermore, we assume that the vaccination rate of susceptible

cats equals to zero. Then model formulated by Abraham et al. [8] is revised as follows:

Ṡ(t) = Λ−βS(t)O(t)−µS(t),

İ(t) = βS(t)O(t)− (α +µ)I(t),

Ṙ(t) = αI(t)−µR(t),

Ȯ(t) = kI(t)−µ0O(t).

(1.1)

In model (1.1), the total population of cats is divided into three disjoint subpopulations: cats

who may become infected (Susceptible S(t)), cats infected by T. gondii (Infected I(t)), and

cats who have immunity ( Recovered R(t)). O(t): number of oocysts in the environment. Λ:
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the recruitment rate of susceptible cats. β : the rate of a susceptible cat transits to the infected

subpopulation. µ: the natural death rate of cats. α: the rate of an infected cat transits to the

recovered subpopulation. µ0: the death rate of oocysts. k: the rate of appearance of new oocysts

in the environment per infected cat.

The basic reproduction number

R0 = kβΛ/(µµ0(α +µ)) (1.2)

measures the average number of new infections generated by a single infected in a completely

susceptible population. After a simple calculation, we find that the basic reproductive number

R0 controls completely the dynamics of the infection. In detail, system (1.1) has a disease-free

equilibrium E0 = (Λ/µ,0,0,0), which is stable when R0 ≤ 1, whereas system (1.1) admits an

epidemic equilibrium E∗ = (S∗, I∗,R∗,O∗), which is stable when R0 > 1, where

S∗ = (α +µ)µ0/βk, I∗ = µ0O∗/k, R∗ = αµ0O∗/kµ, O∗ = Λk/(α +µ)µ0−µ/β . (1.3)

Thus the basic reproduction number R0 is often considered as the threshold quantity that de-

termines when an infection can invade and persist in a new host population. The disease-free

equilibrium corresponds to maximal levels of susceptible, no infected and no recovered cats

or oocysts. The epidemic equilibrium corresponds to positive levels of all four components

including susceptible, infected, recovered cats as well as oocysts.

In fact epidemic models are inevitably influenced by environmental white noise which is an

important component in realism, using stochastic models can provide an additional degree of

realism in comparison to their deterministic counterparts. Many stochastic models for epidemic

populations have been developed in Refs. [12−16]. Dalal et al.[12] previously used the technique

of parameter perturbation to examine the effect of environmental stochasticity in a model of

AIDS and condom use. Yu et al.[14] proved that the endemic equilibrium of the two-group SIR

model with random perturbation is stochastic asymptotically stable. Meng [15] presented the sta-

bility conditions of the disease- free equilibrium of the SIR model without and with stochastic

perturbation. Zhao et al.[16] investigated the extinction and persistence of the stochastic SIS epi-

demic model with vaccination. These results reveal the significant effect of the environmental

noise on some epidemic models.
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Furthermore, it is possible for the population to confront emergency or sudden environmen-

tal changes such like chemical leak, abnormal weather, natural disaster[19] and pestilence. For

example, in 2000, the pesticides pollution problems led to the largest ever fish deaths in Rock

Creek Park of Washington; in 2010, lightning or high-altitude hail resulted in about 3,000 birds

suddenly falling to the ground and death in Arkansas; in 1999, Escherichia coli caused thou-

sands of Americas Black Feather starlings being killed in northern Louisiana. But, a mathe-

matical model only with stochastic extension cannot describe the situations above. In order to

make our model more in line with the actual situation we need to introduce a jump process into

underlying population dynamic model[20] .

However, to the best of our knowledge, few authors study the dynamics of a toxoplasmosis

spread model between cat and oocyst populations, involving independent stochastic perturba-

tions and a jump process. In this paper, first we explore the effect of randomly fluctuating envi-

ronment on populations by a four dimensional Wiener process B(t)= (B1(t),B2(t),B3(t),B4(t)).

Furthermore we use the jump diffusion to model the evolutions of population dynamics when

they suffer emergency or sudden environmental shocks. Then the stochastic version correspond-

ing to the deterministic model (1.1) takes the following form:

dS(t) = (Λ−βS(t)O(t)−µS(t))dt +σ1S(t)dB1(t)+
∫

zC1(z)S(t−)Ñ(dt,dz),

dI(t) = (βS(t)O(t)− (α +µ)I(t))dt +σ2I(t)dB2(t)+
∫

zC2(z)I(t−)Ñ(dt,dz),

dR(t) = (αI(t)−µR(t))dt +σ3R(t)dB3(t)+
∫

zC3(z)R(t−)Ñ(dt,dz),

dO(t) = (kI(t)−µ0O(t))dt +σ4O(t)dB4(t)+
∫

zC4(z)O(t−)Ñ(dt,dz),

(1.3)

where the non-negative constants σi(i = 1, · · · ,4) denotes the intensity of the stochastic per-

turbations, respectively; X(t−) means the left limit of X(t); Ñ(dt,dz) is a Poisson counting

measure with the stationary compensator π(dz)dt and π is defined on a measurable subset Z of

[0,∞) with π(Z)< ∞, Ci(z)>−1(i = 1, · · · ,4).

Model (1.3) is the infectious diseases model with Wiener Process and jump perturbation.

If Ci(z) = 0, model (1.3) degenerates into a stochastic model with only white noise. But when

encountered with emergency situations like collective food poisoning, radiation and temperature

plunge, such a disturbance may destroy the continuity of the solution. That is why we employ
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the stochastic differential equation with jump to imitate the dynamical behavior of the model.

The main task of this paper is to study the effect of random disturbances and sudden fluctuations

in the spread of toxoplasmosis in cat populations.

The section division of this article is as follows. In Section 2 the existence of global and non-

negative solutions for system (1.3) is proven. Since system (1.3) is constructed by adding sto-

chastic perturbation in a deterministic system (1.1), it seems reasonable to investigate whether

there are similar properties as in system (1.1). However seeing that there exists no disease-free

or endemic equilibrium for system (1.3), it is essential to discuss the behavior of model (1.3)

around E0 and E∗ to show the stability to some extent, which will be shown in Sections 3 and 4.

We present numerical illustrations of the theoretical results in section 5. Finally, a concluding

discussion is presented in Section 6.

2. Global positive solution

Before we discuss a stochastic model, firstly we should consider if there exists a solution

for the system. Furthermore, a nonnegative solution is needed for a biological model. Jiang

et al.[7] presented an SIR model only with white noise to study properties of the solution. It

gives a method to prove the global nonnegativity of the solutions. However this model does not

involve jump processes. In this part, through the Lyapunov analysis method[8], we shall show

the jump processes can suppress the explosion and the solution of model (1.3) is positive and

global.

For the jump diffusion coefficient we assume that for each m > 0 there exists Lm > 0 such

that

(H1)
∫

Z |Hi(x,z)−Hi(y,z)|2π(dz) ≤ Lm|x− y|2(i = 1, · · · ,4) where H1(x,z) = C1(z)S(t−),

H2(x,z) =C2(z)I(t−),H3(x,z) =C3(z)R(t−) and H4(x,z) =C4(z)O(t−) with |x|∨ |y| ≤ m.

(H2) | log(1+Ci(z))| ≤ K1, for Ci(z)≥−1(i = 1, · · · ,4), where K1 is positive constant.

Theorem 2.1. Let the assumption (H1) and (H2) hold, for any given initial value (S(0), I(0),

R(0),O(0)) ∈ R4
+ there is a unique positive solution (S(t), I(t), R(t),O(t)) of model (1.3) on t ≥ 0
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and the solution will remain in R+ with probability 1, namely (S(t), I(t),R(t),O(t))∈ R4
+ for all

t ≥ 0 almost surely.

Proof. By (H1) and the drift and the diffusion are locally Lipschitz, there is a unique local solu-

tion (S(t), I(t),R(t),O(t)) ∈ R4
+ on t∈ [0,τe], for any given initial value (S(0), I(0), R(0),O(0))

∈ R4
+, where τe is the explosion time [20]. To prove this solution is global, it is necessary to

show that τe = ∞ a.s. At first, one confirms S(t), I(t) and O(t) do not explode to infinity in

a finite time. Set k0 > 0 be sufficiently large such that S(0) ∈ [1/k0,k0], I(0) ∈ [1/k0,k0] and

O(0) ∈ [1/k0,k0]. For each integer k ≥ k0, define the stopping time

τk = inf{t ∈ [0,τe] : S(t)∈̄(1/k,k), I(t)∈̄(1/k,k) or O(t)∈̄(1/k,k)}.

Here we set inf /0 = ∞ ( /0 denotes the empty set). Obviously, τk is increasing as k → ∞.

Set τ∞ = limk→∞ τk, therefore τ∞ ≤ τe a.s. If τ∞ = ∞ a.s. is true, then τe = ∞ a.s. and

(S(t), I(t)),O(t) ∈ R3
+ a.s. for t ≥ 0. Hence, to complete the proof it is required to show that

τ∞ = ∞ a.s. If this statement is false, then there exist a pair of constants T > 0 and ε ∈ (0,1)

such that P{τ∞ ≤ T} > ε. Thus there is an integer k1 ≥ k0 such that P{τ∞ ≤ T} > ε for all

k ≥ k1.

Let us define a C2 function V : R2
+→ R+ as follows

V (S, I) = S+ I− log I.

The nonnegativity of this function can be seen in view of I− log I ≥ 0 for I > 0. Applying Itô

formula, we obtain

dV (S, I) = LV (S, I)dt +σ1S(t)dB1(t)+(1−1/I)σ2I(t)dB2(t)

+[
∫

zC1(z)S(t−)+
∫

zC2(z)I(t−)− log(1+C2(z))]Ñ(dt,dz),
(2.1)
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where LV :R2
+ −→ R+ is defined by

LV (S, I) = Λ−βS(t)O(t)−µS(t)+(1−1/I)(βS(t)O(t)− (α +µ)I(t))+ 1
2σ2

2

+
∫

z[C2(z)I(t−)− log(1+C2(z))]π(dz)

= Λ+α +µ +σ2
2/2− (α +µ)I−µS−βSO/I +

∫
z[C2(z)I(t−)− log(1+C2(z))]π(dz)

≤ Λ+α +µ +σ2
2/2+K2 = K,

(2.2)

where K2 =
∫

z[C2(z)I(t−)− log(1+C2(z))]π(dz).

Therefore,

dV (S, I)≤ Kdt +[σ1S(t)dB1(t)+(1−1/I)σ2I(t)dB2(t)]. (2.3)

Integrating the both sides of equation (2.3) from 0 to τk∧T and taking the expectation, yields

EV (S(τk∧T ), I(τk∧T ))≤ EV (S(0), I(0))+KE(τk∧T ).

As a result

EV (S(τk∧T ), I(τk∧T ))≤ EV (S(0), I(0))+KT. (2.4)

Let Ωk = {τk ≤ T} for k≥ k1. By(2.1) P(Ωk)≥ ε. Note that for every ω ∈Ωk, we get S(τk,ω)

or I(τk,ω) equals either k or 1
k . Hence V (S(τk,ω), I(τk,ω)) is no less than either k− logk or

1/k− log(1/k) = 1/k+ logk. That is

V (S(τk,ω), I(τk,ω))≥ [k− logk]∧ [1/k+ logk].

It then follows from (2.4) that

V (S(0), I(0))+KT ≥ E[1Ωk(ω)V (S(τk,ω)I(τk,ω))]≥ ε[k− logk]∧ [1/k+ logk],

where 1Ωk is the indicator function of Ωk. Letting k→ ∞, it follows that

V (S(0), I(0))+KT ≥ ∞,

which is impossible, then we must have τ∞ = ∞. As a result S(t), I(t) and O(t) will not explode

in a finite time with probability one. At the same time, through the last two equations of system
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(1.3), we can have solutions of R(t) and O(t) in the form of

R(t) = R(0)φ(t)+φ(t)−1 ∫ t
0 αI(s)ds,

where

φ(t) = exp
∫ t

0[−(µ +σ2
3/2)t +σ3B3(t)+

∫
z(log(1+C3(z))−C3(z))π(dz)]ds

+
∫ t

0 σ3B3(s)+
∫

z(log(1+C3(z)))π(dz)ds.

Since I(t) has been proved to be global and positive, as a result R(t) is also global and

positive. This completes the proof.

3.Asymptotic behavior around the disease-free equilibrium of the deter-
ministic model

As mentioned in the introduction, system (1.1) has a disease-free equilibrium E0 =(Λ/µ,0,0,0)

and it is globally stable if R0 ≤ 1. While for the stochastic system (1.3), E0 is no longer the

disease-free equilibrium, and the stochastic solutions do not converge to E0. In this section, we

will study the asymptotic behavior around E0.

Theorem 3.1. If R0 < 1 and the following conditions are satisfied

σ
2
1 +

∫
Z
(2C2

1(z)+C1(z)C2(z))π(dz)< 2µ, σ
2
2 +

∫
Z
(2C2

2(z)+C1(z)C2(z))π(dz)< 2(α +µ).

(3.1)

Then for any given initial value (S(0), I(0),R(0),O(0)) ∈ R+, the solution of model (1.3) has

the property

limsup
t→∞

1/tE
∫ t

0
[(S(r)−Λ/µ)2+I(r)2+R(r)+O(r)]dr≤Λ

2/K3µ
2[2σ

2
1 +

∫
Z

2C2
1(z)+C1(z)C2(z)π(dz)]

where

K3 = min{(2µ−σ2
1 )−

∫
Z(2C2

1(z)+C1(z)C2(z))π(dz),

2(α +µ)−σ2
2 −

∫
Z(2C2

2(z)+C1(z)C2(z))π(dz),e2,e3}.
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Proof. First, change the variables u = S−Λ/µ, v = I, w = R, x = O then system (1.3) can

be written as

du(t) = (−µu(t)−βu(t)x(t)−βΛ/µx(t))dt

+σ1(u(t)+Λ/µ)dB1(t)+
∫

zC1(z)(u(t−)+Λ/µ)Ñ(dt,dz),

dv(t) = (βu(t)x(t)+βΛ/µx(t)− (α +µ)v(t))dt +σ2vdB2(t)+
∫

zC2(z)v(t−)Ñ(dt,dz),

dw(t) = (αv(t)−µw(t))dt +σ3wdB3(t)+
∫

zC3(z)w(t−)Ñ(dt,dz),

dx(t) = (kv(t)−µ0x(t))dt +σ4xdB4(t)+
∫

zC4(z)x(t−)Ñ(dt,dz).
(3.2)

and u ∈ R,v > 0,w > 0,x > 0. Define a function

V (u,v,w,x) = (u+ v)2 + e1(u+ v)+ e2w+ e3x,

where e1,e2,e3 are three positive constants to be defined later. Applying Itô formula, we obtain

dV = LV dt +[2(u+ v)+ e1]σ1(u+Λ/µ)dB1(t)

+(2(u+ v)+ e1)σ2vdB2(t)+ e2σ3wdB3(t)+ e3σ4xdB4(t)

+
∫

Z{[C1(z)(u(t)+Λ/µ)+C2(z)v(t−)]2 + e1[C1(z)(u(t)+Λ/µ)+C2(z)v(t−)]

+2(u(t−)+ v(t−))[C1(z)(u(t)+Λ/µ)+C2(z)v(t−)]

+e2C3(z)w(t−)+ e3C4(z)x(t−)}Ñ(dt,dz),
(3.3)

where

LV = (−2µ +σ2
1 )u

2− [2(α +µ)−σ2
2 ]v

2 +(2σ2
1 Λ/µ− e1µ)u+σ2

1 (Λ/µ)2

−e2µw− e3µ0x+[e2α + e3k− e1(α +µ)]v

+u2 ∫
Z C2

1(z)π(dz)+2uΛ/µ
∫

Z C2
1(z)π(dz)+ Λ2

µ2

∫
Z C2

1(z)π(dz)

+2uv
∫

Z C1(z)C2(z)π(dz)+2vΛ/µ
∫

Z C1(z)C2(z)π(dz)

+v2 ∫
Z C2

2(z)π(dz).

We choose e1 such that 2σ2
1 Λ/µ − e1 = 0, i.e e1 = 2σ2

1 Λ/µ , next we can find appropriate

e2,e3 such that [e2α +e3k−e1(α +µ)]v≤ 0 and use the basic inequality 2ab≤ a2+b2, we can

obtain
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LV ≤−[(2µ−σ2
1 )−

∫
Z(2C2

1(z)+C1(z)C2(z))π(dz)]u2

−[2(α +µ)−σ2
2 −

∫
Z(2C2

2(z)+C1(z)C2(z))π(dz)]v2

−e2µw− e3µ0x

+(Λ/µ)2[2σ2
1 +

∫
Z 2C2

1(z)+C1(z)C2(z)π(dz)],

(3.4)

therefore

dV ≤ (−2µ−σ2
1 )u

2− [2(α +µ)−σ2
2 ]v

2 +σ2
1 (Λ/µ)2− e2µw− e3µ0x

+[2(u+ v)+ e1]σ1(u+Λ/µ)dB1(t)+(2(u+ v)+ e1)σ2vdB2(t)

+e2σ3wdB3(t)+ e3σ4xdB4(t).

(3.5)

We can now integrate both sides of (3.5) from 0 to t and then take expectation. This yields

0 ≤ E[V (u(t),v(t),w(t),x(t))]

≤ E[V (u(0),v(0),w(0),x(0))]

+E
∫ t

0{−[(2µ−σ2
1 )−

∫
Z(2C2

1(z)+C1(z)C2(z))π(dz)]u2

−[2(α +µ)−σ2
2 −

∫
Z(2C2

2(z)+C1(z)C2(z))π(dz)]v2

−e2µw− e3µ0x}ds

+(Λ/µ)2[2σ2
1 +

∫
Z 2C2

1(z)+C1(z)C2(z)π(dz)],

(3.6)

which implies

E
∫ t

0[(2µ−σ2
1 )−

∫
Z(2C2

1(z)+C1(z)C2(z))π(dz)]u2 +[2(α +µ)−σ2
2 −

∫
Z(2C2

2(z)

+C1(z)C2(z))π(dz)]v2 + e2µw+ e3µ0x

≤V (u(0),v(0),w(0),x(0))+(Λ/µ)2[2σ2
1 +

∫
Z 2C2

1(z)+C1(z)C2(z)π(dz)]t.

(3.7)

Therefore

limsupt→∞
1
t E
∫ t

0[(2µ−σ2
1 )−

∫
Z(2C2

1(z)+C1(z)C2(z))π(dz)]u2

+[2(α +µ)−σ2
2 −

∫
Z(2C2

2(z)+C1(z)C2(z))π(dz)]v2 + e2µw+ e3µ0x

≤ (Λ/µ)2[2σ2
1 +

∫
Z 2C2

1(z)+C1(z)C2(z)π(dz)].

(3.8)
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According to the conditions (3.1) we can guarantee that

(2µ−σ
2
1 )−

∫
Z
(2C2

1(z)+C1(z)C2(z))π(dz)> 0, 2(α+µ)−σ
2
2−

∫
Z
(2C2

2(z)+C1(z)C2(z))π(dz)> 0.

If letting

K3 = min{(2µ−σ2
1 )−

∫
Z(2C2

1(z)+C1(z)C2(z))π(dz),

2(α +µ)−σ2
2 −

∫
Z(2C2

2(z)+C1(z)C2(z))π(dz),e2,e3},

then

limsup
t→∞

1
t

E
∫ t

0
[(S(r)−Λ/µ)2+I(r)2+R(r)+O(r)]dr≤Λ

2/K3µ
2[2σ

2
1 +

∫
Z

2C2
1(z)+C1(z)C2(z)π(dz)].

This completes the proof.

4. Asymptotic behavior around the endemic equilibrium of the determin-
istic model

In this part, we assume R0 > 1. This guarantees the existence of the endemic equilibrium E∗

for model (1.1) but not the endemic equilibrium E∗ for model (1.3), since this is no endemic

equilibrium for model (1.3). As in section 3, we will investigate the asymptotic behavior around

the endemic equilibrium of the deterministic model.

Theorem 4.1. If R0 > 1 and the following conditions are satisfied

σ
2
1 +

∫
Z
(2C2

1(z)+C1(z)C2(z))π(dz)< 2µ,σ2
3 +

∫
Z

C2
3(z)π(dz)< µ,

σ
2
4 +

∫
Z

C2
4(z)π(dz)< µ0. (4.1)

and appropriate positive constants p,q such that

α +µ− pα
2/2µ−qk2/2µ0 > σ

2
2/2+

∫
Z

C2
2π(dz)

then for any given initial value (S(0), I(0),R(0),O(0)) ∈ R+, the solution of system (1.3) has

the property

limsupt→∞ 1/tE
∫ t

0[S(r)−2µ/A1S∗]2 +[I(r)− (α +µ− pα2/2µ +qk2/2µ0)/A2I∗]2

+[R(r)−µ/2A3R∗]2 +[O(r)−µ0/2A4O∗]2}dr ≤M/Kσ ,
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where

Kσ = min{A1/2,A2A3,A4}

A1 = 2µ−σ
2
1 −

∫
Z
(2C2

1(z)+C1(z)C2(z))π(dz)

A2 = α +µ− pα
2/2µ−qk2/2µ0−σ

2
2/2−

∫
Z

C2
2π(dz)

A3 = p(µ−σ
2
3 −

∫
Z

C2
3(z))π(dz))/2

A4 = q(µ0−σ
2
4 −

∫
Z

C2
4(z))π(dz))/2

M = (µσ2
1 +2µ

∫
Z C2

1(z)π(dz))/A1S∗2

+(α +µ− pα2/2µ−qk2/2µ0)(σ
2
2/2+

∫
Z C2

1(z)π(dz))/A2I∗2

+pµ[pσ2
4 + p

∫
Z C2

3(z)π(dz)]/(4A3)R∗2 +qµ0[qσ2
4 +q

∫
Z C2

4(z)π(dz)]/(4A4)O∗2

Proof. Define a C2 function V :R4
+→ R+ by

V (S, I,R,O) = (S−S∗+ I− I∗)2/2+w1(S+ I)+ p(R−R∗)2/2+q(O−O∗)2/2, (4.2)

where w1 > 0, p > 0,q > 0 are positive constants to be chosen later.

In order to make the proof more clear, we divide (4.2) into two parts:

V (x) =V1(x)+V2(x),

where

V1(x) = (S−S∗+ I− I∗)2/2+w1(S+ I),V2(x) = p(R−R∗)2/2+q(O−O∗)2/2.

Applying Itô formula, we obtain

dV1(x) = LV1dt +(S(t)−S∗+ I(t)− I∗+w1)(σ1S(t)dB1(t)+σ2I(t)dB2t)

+
∫

Z{(S(t−)−S∗+ I(t−)− I∗+w1)(C1(z)S(t−)+C2(z)I(t−))

+(C1(z)S(t−)+C2(z)I(t−))2/2}Ñ(dt,dz),
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dV2(x) = LV2dt + p(R(t)−R∗)RdB3(t)+q(O(t)−O∗)OdB4(t)

+
∫

Z{C2
3(z)R

2(t−)/2+ pC3(z)R(t−)(R(t−)−R∗)

+C2
4(z)O

2(t−)/2+qC3(z)O(t−)(O(t−)−O∗)}Ñ(dt,dz).

In detail

LV1 = (S(t)−S∗+ I(t)− I∗)[Λ−µS(t)− (α +µ)I(t)]

+w1[Λ−µS(t)− (α +µ)I(t)]+(σ2
1 S(t)2 +σ2

2 I(t)2)/2

+
∫

Z((C1(z)S(t−)+C2(z)I(t−))2)/2π(dz)

=−µ(S(t)−S∗)2− (α +µ)(I(t)− I∗)2 +w1Λ+[(α +µ +µ)I∗−w1µ]S(t)

+[(α +µ +µ)S∗− (α +µ)w1]I(t)+(σ2
1 S(t)2 +σ2

2 I(t)2)/2

−(α +µ +µ)(S(t)I(t)+S∗I∗)+
∫

Z((C1(z)S(t−)+C2(z)I(t−))2)/2π(dz),

(4.3)

and

LV2 = p(R−R∗)(αI−µR)+ pσ2
3 R2/2+q(O−O∗)(kI−µ0O)+qσ2

4 O2/2

+p
∫

Z C2
3(z)R

2π(dz)/2+q
∫

Z C2
4(z)O

2π(dz)/2

= p(R−R∗)[α(I− I∗)−µ(R−R∗)]+ pσ2
3 R2/2

+q(O−O∗)[K(I− I∗)−µ0(O−O∗)]+qσ2
4 O2/2

+p
∫

Z C2
3(z)R

2π(dz)/2+q
∫

Z C2
4(z)O

2π(dz)/2

≤ pα2/2µ(I− I∗)2 +( pµ

2 − pµ)(R−R∗)2 + pσ2
3 R2/2

+qk2/2µ0(I− I∗)2 +(qµ0
2 −qµ0)(O−O∗)2 +qσ2

4 O2/2

+p
∫

Z C2
3(z)R

2π(dz)/2+q
∫

Z C2
4(z)O

2π(dz)/2

= (pα2/2µ +qk2/2µ0)(I− I∗)2− pµ

2 (R−R∗)2− qµ0
2 (O−O∗)2 + pσ2

3 R2/2+qσ2
4 O2/2

+p
∫

Z C2
3(z)R

2π(dz)/2+q
∫

Z C2
4(z)O

2π(dz)/2.
(4.4)

Choose w1 =max{(α+µ+µ)I∗/µ,(α+µ+µ)S∗/(α+µ)}. Hence (α+µ+µ)I∗−w1µ]S≤

0 and (α + µ + µ)S∗− (α + µ)w1 ≤ 0. Next by using the basic inequality 2ab ≤ a2 + b2, we
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can obtain

LV1 =−µ(S(t)−S∗)2− (α +µ)(I(t)− I∗)2 +(σ2
1 S(t)2 +σ2

2 I(t)2)/2

+S(t)2 ∫
Z C2

1(z)π(dz)+ I(t)2 ∫
Z C2

2(z)π(dz).
(4.5)

Taking (4.4) and (4.5) together, we get

LV = LV1 +LV2 ≤−µ(S−S∗)2− (α +µ + pα2/2µ +qk2/2µ0)(I− I∗)2

+(σ2
1 S2 +σ2

2 I2 + pσ2
3 R2 +σ2

4 O2)/2− pµ(R−R∗)2/2−qµ0(O−O∗)2/2

+S(t)2 ∫
Z C2

1(z)π(dz)+ I(t)2 ∫
Z C2

2(z)π(dz)

=−(µ−σ2
1/2)S2 +2µSS∗−µS∗2

−(2µµ0(α +µ)−µ0 pα2−µqk2−µµ0σ2
2 )I

2

+(4µµ0(α +µ)−µ0 pα2−µqk2)II∗

−(2µµ0(α +µ)−µ0 pα2−µqk2)I∗2

−(pµ/2− pσ2
3/2)R2 + pµRR∗− pµR∗2/2

−(qµ0/2−qσ2
4/2)R2 +qµ0OO∗−qµ0O∗2/2

+S(t)2 ∫
Z C2

1(z)π(dz)+ I(t)2 ∫
Z C2

2(z)π(dz)

=−A1/2[S(r)−2µ/A1S∗]2

−A2[I(r)− (α +µ− pα2/2µ +qk2/2µ0)/A2I∗]2

−A3[R(r)−µ/2A3R∗]2− [O(r)−µ0/2A4O∗]2}dr ≤M/Kσ .

(4.6)

Note that p,q are positive constants and satisfy

α +µ− pα
2/2µ−qk2/2µ0 > σ

2
2/2+

∫
Z

C2
2π(dz).

Besides, the condition (4.1) implies implies A1,A2,A3, and A4 are positive constants.

Since

dV (x(t)) = LV (x)dt +(S−S∗+ I− I∗+w1)(σ1S(t)dB1(t)+σ2I(t)dB2t)

+p(R−R∗)RdB3(t)+q(O−O∗)OdB4(t),
(4.7)
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we can now integrate both sides of (4.7) from 0 to t and take the expectation, next consider

(4.6), one gets

0 ≤ E[V (S(t), I(t),R(t),O(t))]

≤ E[V (S(0), I(0),R(0),O(0))]

+E
∫ t

0{−A1/2[S(r)−2µ/A1S∗]2−A2[I(r)− (α +µ− pα2/2µ +qk2/2µ0)/A2I∗]2

−A3[R(r)−µ/2A3R∗]2− [O(r)−µ0/2A4O∗]2}dr+Mt,
(4.8)

where

M = (µσ2
1 +2µ

∫
Z C2

1(z)π(dz))/A1S∗2

+(α +µ− pα2/2µ−qk2/2µ0)(σ
2
2/2+

∫
Z C2

1(z)π(dz))/A2I∗2

+pµ[pσ2
4 + p

∫
Z C2

3(z)π(dz)]/(4A3)R∗2 +qµ0[qσ2
4 +q

∫
Z C2

4(z)π(dz)]/(4A4)O∗2,

which implies that

E
∫ t

0{A1/2[S(r)−2µ/A1S∗]2 +A2[I(r)− (α +µ− pα2/2µ +qk2/2µ0)/A2I∗]2

+A3[R(r)−µ/2A3R∗]2 +[O(r)−µ0/2A4O∗]2}dr

≤ E[V (S(0), I(0),R(0),O(0))]+Mt.

(4.9)

We can now divide both sides by t and let t→ ∞, yields

limsupt→∞
1
t E

∫ t
0{A1/2[S(r)−2µ/A1S∗]2

+A2[I(r)− (α +µ− pα2/2µ +qk2/2µ0)/A2I∗]2

+A3[R(r)−µ/2A3R∗]2 +[O(r)−µ0/2A4O∗]2}dr

≤M.

(4.10)

Set

Kσ = min{A1/2,A2A3,A4},

then it is easy to obtain
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limsupt→∞
1
t E

∫ t
0{[S(r)−2µ/A1S∗]2 +[I(r)− (α +µ− pα2/2µ +qk2/2µ0)/A2I∗]2

+[R(r)−µ/2A3R∗]2 +[O(r)−µ0/2A4O∗]2}dr ≤M/Kσ .

The proof is complete.

5. Numerical Simulation
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FIGURE 1. Solutions of system (1.3) with R0 < 1. The parameter values are

used as follows λ = 1, β = 0.52/54, k = 1/40, µ = 0.6/52, µ0 = 7/100, α =

0.5, σ1 = 0.004, σ2 = 0.003, σ3 = 0.002, σ4 = 0.001.

In this section, we present numerical illustrations of the theoretical results. From Theorem

3.1, if the basic reproduction number is less than one, it is obtained that the numbers of all

populations oscillate around the disease-free equilibrium. The smaller the values are, the weaker

the fluctuation is. In other words, if the stochastic perturbations become small, the solution of

Eq. (1.3) will be close to the disease-free equilibrium of Eq. (1.1). From the proof of Theorem
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FIGURE 2. Solutions of system (1.3) with R0 > 1. The parameter values

are used as follows λ = 1.154, β = 0.52/54, k = 1/20, µ = 0.6/52, µ0 =

7/100, α = 0.5, σ1 = 0.004, σ2 = 0.003, σ3 = 0.002, σ4 = 0.001.

3.1, we can obtain

LV ≤−[2(µ−σ2
1 )−

∫
Z(2C2

1(z)+C1(z)C2(z))π(dz)]u2

−[2(α +µ)−σ2
2 −

∫
Z(2C2

2(z)+C1(z)C2(z))π(dz)]v2

−e2µw− e3µ0x,

which is negative-definite, therefore E0 is stochastically asymptotically stable in the large which

can be seen from figure 1). Theorem 4.1 shows that the solution of model (1.3) fluctuates around

the certain level which is relevant to

P∗
(
2µ/A1S∗,(α +µ− pα

2/2µ +qk2/2µ0)/A2I∗,µ/2A3R∗,µ0/2A4O∗
)

and σi, for i = 1,2,3. With the value of σi decreasing, P∗ will be closing to E∗ (which is the

epidemic equilibrium of system (1.1)) and the difference between the solution of system (1.3)

and P∗ also decreases(see figure 2).
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6. Conclusion

Based on [8], we get a revised mathematical model to simulate the toxoplasmosis spread be-

tween cat and oocyst populations. To deterministic epidemic models we often investigate the

behavior of equilibrium since by this mean we can better understand the stability of the system.

However, as for stochastic differential equations there in no any equilibrium. As an alternative,

we may discuss asymptotic behaviors around the equilibrium corresponding to its deterministic

system. To make the discuss meaningful firstly the global existence and nonnegativity of the

solutions are guaranteed. By the method of stochastic Lyapunov functions, we study its asymp-

totic behavior. When the reproductive number is less than one, the disease-free equilibrium

is stochastically asymptotically stable in the large. When all the perturbations are small and

the reproductive number is larger than one, we construct a new class of stochastic Lyapunov

functions to show the positive recurrence, and our results reveal some cycling phenomena of

recurrent diseases. These results mean that stochastic system has the similar property with the

corresponding deterministic system when the white noise is small.
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