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Abstract. Direct cell-to-cell transmission of HIV-1 is found to be a more efficient means of virus propagation

than virus-to-cell infection. In this paper, a mathematical model combining these two modes of viral infection

with cure rate is investigated. Through calculation, the explicit expression of the basic reproduction number of

the model is obtained. By analyzing the characteristic equations, the local stability of equilibria of the model is

established. It is proven that the model is permanent if the chronic-infection equilibrium exists. By means of

the second additive compound matrix theory, we show that the chronic-infection equilibrium is globally stable if

the basic reproduction number is greater than one. By using Lyapunov function, a sufficient condition of global

stability for the infection-free equilibrium is obtained if the basic reproduction number is less than one.
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In recent years, compared to the cell-free infection mode, direct cell-to-cell transmission is

tending to draw more attention. In the virus-to-cell infection mode, viral particles are released

from infected cells and travel to find new targets to infect. The infection happens during the

process of the attachment between viral particles and T cells. Traditionally, the viral particles

invade the T cells and produce new viral particle fusions inside the target cells. Finally, new viral

particles are released outside the T cells and find new T cells to infect. However, recent studies

revealed a new infection mode, cell-to-cell transmission also played an important role in the

viral spreading and even was found to be a more effective infection mode than the virus-to-cell

infection mode[1]. Cell-to-cell spread not only facilitates rapid viral dissemination but may also

promote immune invasion and, thereby, influence the disease [2]. Actually, through the contact

between cells, multiple viral particles can be transformed from infected cells to uninfected cells

via some structures on cells named virological synapses [3-5]. Dimitrov et.al. [6] studied the

kinetics of HIV-1 accumulation in cell culture supernatants during multiple rounds of infections

by viral production models. They found that the infection rate constant is the critical parameter

that affects the kinetics of HIV-1 infection, and furthermore the infectivity of HIV-1 during cell-

to-cell transmission is greater than the infectivity of cell-to-cell infection. Dixit and Perelson

[7] studied the kinetics of HIV-1 infection by exploring the mechanisms of multiple infections.

They found that multiple infections can be caused by both cell-free infection mode and cell-to-

cell transmission mode. In cell-to-cell transfer mode, by contact of a target cell, an infectious

cell can transfer multiple virions or genomes. However, in cell-free mode, multiple genomes

are acquired one by one in a series of infectious contacts of a target cell with free virions.

In terms of cell-to-cell transmission, Lai and Zou [16] studied the both cell-to-cell transmis-

sion and virus-to-cell infection of HIV-1 by the model

ẋ(t) = sx(t)
(

1− x(t)+αy(t)
xm

)
−βx(t)v(t)−β1x(t)y(t) ,

ẏ(t) = βx(t)v(t)+β1x(t)y(t)−ay(t) ,

v̇(t) = ky(t)−uv(t) ,

(1.1)

where x(t) ,y(t) ,v(t) denote the amount of susceptible CD4+ T cells, productively infected T

cells and free viral particles at time T . s represents a target cell growth rate and this growth rate

is limited by a carrying capacity of target cells xm. The constant α represents the limitation
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of infected cells imposed on the cell growth of target cells, generally α > 1. βx(t)v(t) is the

infection rate of free virus and β1x(t)y(t) is the infection rate of productively infected cells.

The free viral particles are produced from the infected cells at a rate ky(t). The losing rate of

productive infected cells and free viral is ay(t) and uv(t) respectively.

In this paper, based on model (1.1), we study a virus dynamic model that incorporates both

cell-to-cell transmission mechanism and virus-to-cell infection mode. In addition, we also take

account the cure rate of infected cells to uninfected cells. Cure rate is an assumption in many

viral dynamic models and is not clearly possible in the case of HIV as in [8-11]. However,

this assumption gives some desirable features of these models. For example, the speed of the

virus infection is slower and the disease can be controlled if the rate is improved [11-12]. In

addition, Zhang also investigated the global dynamics of cell-cell transmission model with cure

rate[27]. In comparison with the work of Zhang, we prove the global stability of chronic-

infection equilibrium by means of the second additive compound matrix. Here we will adopt a

simpler production mechanism for susceptible cells instead of the logistic growth function. All

these considerations lead to the following model:

ẋ(t) = s−dx(t)−βx(t)v(t)−β1x(t)y(t)+ρy(t) ,

ẏ(t) = βx(t)v(t)+β1x(t)y(t)−ay(t)−ρy(t) ,

v̇(t) = ky(t)−uv(t) ,

(1.2)

where target cells are recruited at a constant rate s. The infected cells will transform to suscep-

tible cells at the rate ρy(t) under certain therapy.

In the rest of the paper, we will analyze the model (1.2). In Section 2, by analyzing the

corresponding characteristic equations, the local stability of each feasible equilibria of model

(1.2) is discussed. In Section 3, by using the persistence theory developed in [13], we prove

that model (1.2) is permanent if the chronic-infection equilibrium exists. In Section 4, by using

Lyapunov function and the second additive compound matrix in [14,15,21], we show that if

chronic-infection equilibrium is not feasible, the infection-free equilibrium is globally asymp-

totically stable, else the chronic-infection equilibrium is globally asymptotically stable.

2. The basic reproduction number and local stability of equilibria
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In this section, we discuss the local stability of an infection-free equilibrium and a chronic-

infection equilibrium of the model (1.2) by analyzing the corresponding characteristic equation-

s, respectively.

Through calculation, model (1.2) always has an infection-free equilibrium E0
( s

d ,0,0
)
. If

s(βk+β1u)> du(a+ρ), then system has a unique chronic-infection equilibrium E∗ (x∗,y∗,v∗),

where

x∗ =
(a+ρ)u
(βk+β1u)

,y∗ =
(βk+β1u)s−du(a+ρ)

(βk+β1u)((a+ρ)−ρ)
,v∗ =

k
u
(βk+β1u)s−du(a+ρ)

(βk+β1u)((a+ρ)−ρ)
.

Let

R0 =
s(βk+β1u)
du(a+ρ)

.

R0 is called the basic reproduction number of model (1.2). It is easy to show that if R0 > 1, the

chronic-infection equilibrium E∗ exists, else E∗ is not feasible.

The characteristic equation of model (1.2) at the infection-free equilibrium E0 takes the form

(λ +d) [(λ −β1x0 +(a+ρ))(λ +u)− kβx0] = 0. (2.1)

Clearly, Eq. (2.1) always has a real root λ = −d < 0. Other roots of (2.1) are given by the

following equation:

(λ −β1x0 +a+ρ)(λ +u)− kβx0 = 0. (2.2)

Let f (λ ) = (λ −β1x0 +a+ρ)(λ +u)− kβx0.

Dividing each side of (2.2) by λ +u when λ 6= u, it follows that

λ +(a+ρ) =
kβx0

(λ +u)
+β1x0. (2.3)

For f (λ ) = 0, we assume that the real parts of its roots are positive or zero, and then take

modulo for each side of (2.3), it follows that

|λ +(a+ρ)|> a+ρ, (2.4)

when R0 < 1 ∣∣∣∣ kβx0

(λ +u)
+β1x0

∣∣∣∣< (kβ +β1u)
s

du
< a+ρ. (2.5)

Here Eq. (2.5) contradicts Eq. (2.4). Hence all roots of f (λ ) = 0 possess negative real parts,

and we can conclude that the infection-free equilibrium is stable when R0 < 1.
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f (0) = u(a+ρ)− (β1u+ kβ ) s
d < 0, f (+∞) = +∞. Hence Eq. (2.2) has at least a positive

real root when R0 > 1, and then the infection-free equilibrium is unstable.

The characteristic equation of model (1.2) at the chronic-infection equilibrium E∗ takes the

form

λ
3 +Aλ

2 +Bλ +C = 0, (2.6)

where
A = a+ρ +u+d +βv∗+β1y∗−β1x∗,

B = d
(

βk(a+ρ)
βk+β1u +u

)
+(βv∗+β1y∗)(a+u) ,

C = au(βv∗+β1y∗) .

When R0 > 1

A = βk(a+ρ)
βk+β1u +u+d +βv∗+β1y∗ > 0,

B = d
(

βk(a+ρ)
βk+β1u +u

)
+(βv∗+β1y∗)(a+u)> 0,

C = au(βv∗+β1y∗)> 0,

AB−C =
(

βk(a+ρ)
βk+β1u +βv∗+β1y∗

)
B+du

(
βk(a+ρ)
βk+β1u +u

)
+u2 (βv∗+β1y∗)

+d2
(

βk(a+ρ)
βk+β1u +u

)
+d (a+u)(βv∗+β1y∗) .

Obviously, AB−C > 0 always holds. Hence by Routh-Hurwitz criterion, we see that the

chronic-infection equilibrium E∗ is locally asymptotically stable when R0 > 1.

3. Permanence

In this section, we are concerned with the permanence of model (1.2) referring to the method

in [13,17].

Definition 3.1. Model (1.2) is permanent (uniformly persistent) if there are positive constants

m1,m2,m3,M1,M2,M3 such that each positive solution of model (1.2) satisfies

m1 ≤ liminf
t→+∞

x(t)≤ limsup
t→+∞

x(t)≤M1,

m2 ≤ liminf
t→+∞

y(t)≤ limsup
t→+∞

y(t)≤M2,

m3 ≤ liminf
t→+∞

v(t)≤ limsup
t→+∞

v(t)≤M3.

In order to study the permanence of model (1.2), we refer to the persistence theory developed

by Hale and Waltman [13].
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Let X be a complete metric space with metric d. Suppose that T is a continuous semiflow on

X , i.e., a continuous mapping T : [0,∞)×X → X with the following properties

Tt ◦Ts = Tt+s, t,s≥ 0,T0 (x) = x,x ∈ X ,

where Tt denotes the mapping from X to X given by Tt (x) = T (t,x). The distance d (x,Y ) of a

point x ∈ X from a subset Y of X is defined by

d (x,Y ) = inf
y∈Y

d (x,y) .

Recall that the positive orbit γ+ (x) through x is defined as γ+ (x) = ∪t≥0 {T (t)x}, and its ω-

limit set is ω (x) =∩s≥0∪t≥s {T (t)x}. Define W s (A) the strong stable set of a compact invariant

set A as

W s (A) = {x : x ∈ A,ω (x) 6= φ ,ω (x)⊂ A} .

(C1) Assume that X0 is open and dense in X and X0 ∪X0 = X ,X0 ∩X0 = φ . Moreover, the

C0-semigroup T (t) on X satisfies

T (t) : X0→ X0,T (t) : X0→ X0.

Let Tb (t) = T (t) |X0 and Ab be the global attractor for Tb (t). Define Ab = ∪x∈Abω (x).

Lemma 3.1. Suppose that T (t) satisfies (C1) and the following conditions:

i. There is a t0 ≥ 0 such that T (t) is compact for t > t0.

ii. T (t) is dissipative in X.

iii. Ab is isolated and has an acyclic covering M =
{

M1,M2, . . . ,Mn
}

.

iv. W s (Mi
)
∩X0 = φ for i = 1,2, . . . ,n.

Then X0 is a uniform repeller with respect to X0, that is, there is an ε > 0 such that for any

x ∈ X0, liminft→+∞d (T (t)x,X0)≥ ε holds.

To study the permanence of model (1.2), we also need the following result.

Lemma 3.2. There is positive constant M such that for any positive solution (x(t) ,y(t) ,v(t))

of model (1.2), the following inequations hold

limsup
t→+∞

x(t)≤M, limsup
t→+∞

y(t)≤M, limsup
t→+∞

v(t)≤M.
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Proof. Let (x(t) ,y(t) ,v(t)) be any positive solution of (1.2). Denote µ = min{d,a− kk1,k1u}.

Define

V (t) = x(t)+ y(t)+ k1v(t) .

Calculating the derivative of V (t) along positive solutions of model (1.2), it follows that

dV (t)
dt

= s−dx(t)−ay(t)+ k1ky(t)− k1uv(t)≤ s−µV (t) .

Take k1 such that 0 < k1 <
a
k , which yields limsup

t→+∞

V (t) = s
µ

. Denote M = max{ s
µ
, s

k1µ
}, so we

have the result of Lemma 3.2. Thus we complete the proof.

Particularly, when k1 = 0,a > d, it follows that

V0 (t) = x(t)+ y(t) .

Calculating the derivative of V0 along the positive solutions of model (1.2), it follows that

dV0 (t)
dt

= s−dx(t)−ay(t)≤ s−dV0 (t) ,

which yields limsup
t→+∞

V0 (t) = s
d , denote M0 =

s
d , it follows that

limsup
t→+∞

x(t)≤M0, limsup
t→+∞

y(t)≤M0. (3.1)

This result will be used in Section 4 to prove the global stability of infection-free equilibrium.

We are now in a position to state and prove our result on the permanence of model (1.2).

Theorem 3.1. If R0 > 1, model (1.2) is permanent.

Proof. We need only to show that the boundaries of R3
+0 repel positive solutions of model (1.2)

uniformly.

Define
C1 =

{
(φ ,ψ1,ψ2) ∈ R3

+0 : φ ≡ 0
}
,

C2 =
{
(φ ,ψ1,ψ2) ∈ R3

+0 : ψi ≡ 0, i = 1,2
}
.

Denote C0 =C1∪C2 and C0 = intR3
+0. By the definition of C0 and C0, it is easy to see that C0

and C0 are positively invariant and the condition ii in Lemma 3.1 is clearly satisfied. Noting

that the functions in the right side of model (1.2) are C1, and the solution of model (1.2) is

ultimately bounded, using the smoothing property of solutions of delay differential equations

introduced in Kuang [18] (Theorem 2.2.8), it follows that condition i in Lemma 3.1 is satisfied.
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Thus, we need only to show that the conditions iii and iv hold. Clearly, there are two constant

solutions E1 and E2 in C0, to x(t) = y(t) = v(t) = 0 and x(t) = s
d ,y(t) = v(t) = 0, respectively.

If (x(t) ,y(t) ,v(t)) is a solution of model (1.2) with initial condition C1, it follows that y′ (t) =

−(a+ρ)y, which yields y(t)→ 0 when t → +∞. If (x(t) ,y(t) ,v(t)) is a solution of model

(1.2) with initiating from C2 with x(0)> 0, it follows that x(t)→ s
d when t→+∞. This shows

that if invariant set E1 and E2 are isolated, {E1,E2} is isolated and an acyclic covering.

We now show that W s (E1)∩C0 = φ and W s (E2)∩C0 = φ . We restrict our attention to the

second equation, since the proof for the first is simple. Assume the contrary, then there exists a

positive solution (x(t) ,y(t) ,v(t)), such that

(x(t) ,y(t) ,v(t))→
( s

d
,0,0

)
, t→+∞.

Choose ε > 0 small enough such that

s
d
− ε >

(a+ρ)u
β1u+βk

. (3.2)

Let t0 > 0 be sufficiently large such that

s
d
− ε < x(t)<

s
d
+ ε, t ≥ t0,

then we have, for t > t0

y′ (t)≥
[
β1
( s

d − ε
)
− (a+ρ)

]
y(t)+β

( s
d − ε

)
v(t) ,

v′ (t) = ky(t)−uv(t) .
(3.3)

Consider the matrix

Aε =

 β1
( s

d − ε
)
− (a+ρ) β

( s
d − ε

)
k −u

 ,
since Aε admits positive off-diagonal elements, the Perron-Frobenius theorem implies that there

is a positive eigenvector η for the maximum eigenvalue α of Aε . By a simple computation we

see that the maximum eigenvalue α is a positive since we have (3.1).

Consider

y′ (t) =
[
β1
( s

d − ε
)
− (a+ρ)

]
y(t)+β

( s
d − ε

)
v(t) ,

v′ (t) = ky(t)−uv(t) .
(3.4)
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let η = (η1,η2) and l > 0 be small enough such that

lη1 < y(t) ,

lη2 < v(t) .

If (y(t) ,v(t)) is a solution of model (3.4) satisfying y(t) = lη1,v(t) = lη2, since the semiflow

of (3.4) is monotone and Aεη > 0, it follows from papers [19-20] that y(t) ,v(t) are strictly

increasing and y(t)→ +∞,v(t)→ +∞. Note that y(t) > y(t) ,v(t) > v(t) for t > t0. We have

y(t)→ +∞,v(t)→ +∞ as t → +∞. This contradicts Lemma 3.2. The above assertion is thus

proved. Now we are able to conclude from Lemma 3.1 that C0 repels the positive solution of

(1.2) uniformly, and the proof of Theorem 3.1 is complete.

4. Global stability of equilibria

In this section, we study the global stability of each feasible equilibria of model (1.2) by

using Lyapunov function and the second additive compound matrix [14,15,21].

Theorem 4.1. The infection-free equilibrium is globally asymptotically stable if R0 > 1 and

a > d.

Proof. Define

V1 (t) = x(t)− x0− x0 ln
x
x0

+ y(t)+
β s
du

v(t) .

Calculating the derivative of V1 (t) along positive solutions of model (1.2), it follows that

d
dtV1 (t) =

(
1− x0

x

)
(s−dx(t)−βxv−β1xy+ρy)+βxv+β1xy− (a+ρ)y+ β s

du (ky−uv)

= dx0

(
2− x

x0
− x0

x

)
+βx0v+β1x0y−ay− x0

x ρy+ β s
du (ky−uv)

= dx0

(
2− x

x0
− x0

x

)
+β1x0y+ βks

du y−ay− x0
x ρy

= dx0

(
2− x

x0
− x0

x

)
+
[
(βk+β1u)s

du −
(
a+ x0

x ρ
)]

y.

When a > d, we have (3.1), which means x≤ x0 =
s
d . It follows that

d
dtV1 (t)≤ dx0

(
2− x

x0
− x0

x

)
+
[
(βk+β1u)s

du − (a+ρ)
]

y

= dx0

(
2− x

x0
− x0

x

)
+(a+ρ)(R0−1)y.

Notice that

2− x
x0
− x0

x
≤ 0
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holds for all x(t) ≥ 0, and the equality holds if and only if x(t) = x0. Hence if R0 < 1, then

V1
′ (t)≤ 0. Let E = {x(t) ,y(t) ,v(t) ,V1

′ (t) = 0} and Ω be the largest invariant set in E. By the

LaSalles invariance principle, all nonnegative solutions tend to Ω. Note that V1
′ (t) = 0 if and

only if x(t) = x0 and y = 0, thus the infection-free equilibrium is globally asymptotically stable

by the LaSalle invariance principle. This completes the proof.

Lemma 4.1. [15] Assume that D is a convex bounded set in R3
+. If model (1.2) satisfies the

conditions in D

i. Model (1.2) is competitive.

ii. Model (1.2) is permanent.

iii. Any periodic orbit of model (1.2) is to be asymptotically orbitally stable.

iv. Model (1.2) has a unique equilibrium E∗, which is locally asymptotically stable.

E∗ is globally asymptotically stable in D.

Theorem 4.2. The chronic-infection equilibrium is globally asymptotically stable if R0 > 1.

Proof. First of all, we need to verify that the model (1.2) is competitive. The jacobian matrix

of model (1.2) is as follows

J =


−d−βv−β1y −β1x+ρ −βx

βv+β1y β1x− (a+ρ) βx

0 k −u

 .
Take the diagonal matrix H = (1,−1,1). Obviously, the diagonal element of HJH is negative.

Thus model (1.2) is competitive in D, and the condition i in Lemma 4.1 is satisfied. In Section

3, we have proved that model (1.2) is permanent when R0 > 1, thus condition ii in Lemma 4.1

is clearly satisfied. Now we are in position to verify the condition iii in Lemma 4.1. The second

compound matrix J[2] (p) of the Jacobian matrix J (p) is
−d−a−ρ−βv−β1y+β1x βx βx

k −d−u−βv−β1y −β1x+ρ

0 βv+β1y β1x−a−ρ−u

 .

Here, we refer Theorem 6.3 and Proposition 6.4 in [21] to prove our result.
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Theorem 4.3. A sufficient condition for a periodic orbit of model (1.2) to be asymptotically

orbitally stable with asymptotic phase is that the periodic linear model

W ′ (t) =
(

J[2]p(t)
)

W (t) (4.1)

is asymptotically stable. Applying Theorem 4.3 to model (1.2), we can prove the following

result.

Proposition 4.1. Any non-constant periodic solution to model (1.2), if one exists, is asymptoti-

cally orbitally stable with asymptotic phase.

Proof. Using the matrix J[2]p(t), we can write the second additive compound model (4.1) for

model (1.2) with respect to a solution (x(t) ,y(t) ,v(t)) as

w′1 = (−d−a−ρ−βv−β1y+β1x)w1 +βxw2 +βxw3,

w′2 = kw1 +(−d−u−βv−β1y)w2 +(−β1x+ρ)w3,

w′3 = (βv+β1y)w2 +(β1x−a−ρ−u)w3.

(4.2)

Let

V (w1 (t) ,w2 (t) ,w3 (t)x(t) ,y(t) ,v(t)) = sup
{
|w1 (t)| , y

v |w2 (t)+w3 (t)|
}
. (4.3)

Take σ =
{

y,v
}

, y(t) ≥ σ ,v(t) ≥ σ . From the result of Lemma 3.2, we have v(t) ≤M. Thus

it follows

V (w1 (t) ,w2 (t) ,w3 (t) ,x(t) ,y(t) ,v(t))

= sup
{
|w1 (t)| , y

v |w2 (t)+w3 (t)|
}

≥ σ

M sup{|w1 (t)| , |w2 (t)+w3 (t)|} .

(4.4)

The right-hand derivative of V (t) exists and its calculation is described in [22]. Direct calcula-

tions lead to the following differential inequalities

D+ |w1 (t)| ≤ (−d−a−ρ−βv−β1y+β1x) |w1|+βx |w2|+βx |w3| ,

D+ |w2 (t)| ≤ kw1 +(−d−u−βv−β1y) |w2|+(−β1x+ρ) |w3| ,

D+ |w3 (t)| ≤ (βv+β1y) |w2|+(β1x−a−ρ−u) |w3| .

(4.5)

Then we have

D+

[y
v
(|w2 (t)|+ |w3 (t)|)

]
≤ k

y
v
|w1|+

(
y′

y
− v′

v
−G

)
y
v
(|w2 (t)|+ |w3 (t)|) , (4.6)
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where G = min{d +u,a+u}, thus

D+V (t)≤ sup{h1 (t) ,h2 (t)}V (t) , (4.7)

where

h1 (t) =
y′
y −d−βv−β1y,

h2 (t) =
y′
y −u−G.

(4.8)

Case 1. If d > a, that means −d <−a. Then G = a+u, it follows

h2 (t) =
y′
y −a > h1 (t) ,

D+V (t)≤ h2 (t)V (t) =
(
−a+ y′

y

)
V (t) .

(4.9)

Case 2. If d < a, that means −d >−a. Then G = d +u, it follows

h2 (t) =
y′
y −d > h1 (t) ,

D+V (t)≤ h2 (t)V (t) =
(
−d + y′

y

)
V (t) .

(4.10)

Let µ = min{a,d}, then we have

D+V (t)≤
(
−µ +

y′

y

)
V (t) . (4.11)

By Gronwall inequality we have the following results

D+V (t)≤V (0)y(t)e−µt ≤V (0)Me−µt .

Thus, V (t)→ 0, when t → +∞. Since we have (4.4), (w1 (t) ,w2 (t) ,w3 (t))→ 0. Thus the

periodic linear model (4.1) is asymptotically stable. The condition iii in Lemma 4.1 is satisfied.

In Section 2, we have proved that E∗ is locally asymptotically stable. Thus the proof of Theorem

4.2 is completed.

5. Discussion

In this paper, based on both cell-to-cell transmission and virus-to-cell infection mode, the

global dynamics of HIV-1 model with cure rate was investigated by using Lyapunov function,

LaSalles invariance principle and second additive compound matrix. The infection-free equi-

librium is globally asymptotically stable if R0 < 1 and a > d. The chronic-infection equilibrium
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is globally asymptotically stable if R0 > 1. In addition, when R0 > 1, model (1.2) is perma-

nent. And we showed the explicit expression of the reproduction number R0 =
s(βk+β1u)
du(a+ρ) . This

indicated a higher spreading ratio of viral and a more precise viral dissemination threshold than

the classical infection mode which only considered virus-to-cell infection [23-26]. In addition,

the expression of the reproduction number also suggested that cure rate also played a important

part in slowing down the viral dissemination, and the greater cure rate ρ was, the slower viral

spread.
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