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Abstract. A two-strain avian influenza model with distributed delay and environmental spread in humans is

investigated. The model describes well the transmission of avian influenza between poultry and humans. In this

study, we introduce the behavior of both high pathogenic avian influenza (HPAI) as strain two and low pathogenic

avian influenza (LPAI) as strain one in a domestic poultry population. We also include the distribution of the

strain two through the contaminated environment. We compute the strain reproduction numbers R1, R2 and

the invasion R̂1, R̂2. We find that besides the disease-free equilibrium, there exist a dominance equilibrium for

each strain and many coexistence equilibrium of both strain one and strain two if R1 = R2. Using a Lyapunov

functional, we are able to establish global stability of the disease-free equilibrium if max{R1,R2}< 1. If Ri, the

reproduction number of strain i is larger than one, then a single-strain equilibrium, corresponding to strain i exists.

This single-strain equilibrium is locally stable whenever R̂i > 1. Using a Lyapunov functional, we establish that

the corresponding single-strain equilibrium εi is globally stable. When R1 = R2 > 1 and R̂1 = R̂2 = 1, there are

perhaps many coexistence equilibria of both strain one and strain two. Environmental transmission to humans may

explain why avian influenza A (H7N9) virus has appear in humans in different places in China in 2013 and 2014.
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1. Introduction

Avian Influenza (AI) virus chiefly infects birds, both wild and domestic. Avian influenza

viruses of H5 and H7 subtypes have high pathogenic (HPAI) and low pathogenic (LPAI) form.

Both forms infect poultry. Poultry infected with LPAI (strain one) show mild symptoms and

recover. However, HPAI (strain two) is generally extremely virulent to poultry, with mortality

rate 90%-100%. HPAI often kills chickens within two days of onset of symptoms. Highly

pathogenic (strain two) H5N1 avian influenza have shown ability to transmit to humans and

poses a big threat to public health since it may mutate to a pandemic human H5N1 influenza

strain [1].

Human infections with a new strain of the avian influenza A (H7N9) virus were first reported

in China in March in 2013. Most of these infections are believed to result from exposure to

infected poultry or contaminated environment, as H7N9 viruses have also been found in poultry

in China. While some mild illnesses in human H7N9 cases have been seen, most patients have

had severe respiratory illness, with about one-third resulting in death.

In two successive and increasing waves, this virus has moved across China and crossed the

Chinese border into Hong Kong, Taiwan and Malaysia. According to CDC it is possible that

the virus can appear in the US.

The persistence and the pandemic threat of avian influenza as well as the very publicized

cholera outbreak in Haiti have increased the awareness of diseases which transmit both directly

and environmentally. Many recent articles have been devoted to indirectly transmitted diseases

[2,3,4,5,6]. In this article, we investigate a two-strain avian influenza model describing the

transmission of avian influenza between poultry and humans, including both direct and envi-

ronmental transmission to humans.

Our model was inspired by the model introduced in [7]. Compared to the model in [7], our

model includes distributed delay and the transmission between poultry and humans. Further-

more, we consider the environmental transmission. Our results are focused on the number of

the equilibria and their local as well as global stabilities. While the authors in [7] mainly discuss

the coexistence of pathogen strains caused by culling in a influenza model.
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This paper is structured as follows. In section 2, we introduce a two-strain avian influenza

model with distributed delay and environmental transmission. In section 3, we discuss the

equilibria and establish their local stabilities. In section 4, we establish global stability of the

disease-free equilibrium. In section 5, we use Lyapunov functional to derive the global stability

of the single-strain equilibrium. In section 6, we summarizes our results.

2.The two-strain avian influenza model

As in the introduction, we assume the pathogen exists through two strains. LPAI is strain

one and HPAI is strain two. The two-strain model divides poultry under consideration into the

following groups: susceptible poultry, denoted by Sv(t), infected poultry with a strain i, denoted

by Ivi(t) (i = 1,2), and recovered poultry from strain one, denoted by Rv(t). If we let Nv(t) be

the total number of poultry at time t, We have Nv(t) = Sv(t)+ Iv1(t)+ Iv2(t)+Rv(t). Let Nh(t)

be the total number of humans at time t. Nh(t) is composed of the number of susceptible human

individuals Sh(t), the number of infective human individuals Ih(t), and the number of recovered

or immune humans individuals Rh(t). Thus, Nh(t) = Sh(t) + Ih(t) +Rh(t). Let E(t) be the

number of virus of strain two in the contaminated environment.

Because the dynamics of the virus in the human population is subjected to a significant in-

fluence from the incubation period of the pathogen within humans and in reality the incubation

period is not a number but an interval during which the maturation of the parasite occurs in

different individuals, we incorporate distributed delay in the humans to account for the delays.

Let τ be the incubation period of the parasite in humans. Here, we assume that τ is distributed
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parameter (see [8,9]). The model takes the form

dSv

dt
= Λv−βv1SvIv1−βv2SvIv2−µvSv,

dIv1

dt
= βv1SvIv1− (µv + rv)Iv1,

dIv2

dt
= βv2SvIv2− (µv +αv)Iv2 ,

dRv

dt
= rvIv1−µvRv,

dE
dt

= δ Iv2− γE,

dSh

dt
= Λh−βh1Sh

∫
τ

0
f1(s)Iv2(t− s)ds−βh2Sh

∫
τ

0
f2(s)E(t− s)ds−µhSh,

dIh

dt
= βh1Sh

∫
τ

0
f1(s)Iv2(t− s)ds+βh2Sh

∫
τ

0
f2(s)E(t− s)ds− (µh +αh + rh)Ih,

dRh

dt
= rhIh−µhRh(t).

(2.1)

In model (2.1), Λh and Λv are the birth/recruitment rate of humans and poultry, βvi is the trans-

mission coefficient of strain i among poultry, i (i = 1,2). Similarly, βh1 is the transmission

coefficient of strain two from poultry to humans. βh2 is the transmission rate to humans from

the environmental contamination. µh, µv are the natural death rates of humans and poultry, re-

spectively. rv,rh are the recovery rates of poultry and humans. αv,αh are the disease-induced

death rates. The kernel functions f1(τ), f2(τ) expresses the distributed infectivity toward sus-

ceptible individuals during the infectious period of the surviving infectious poultry or the avian

influenza virus in the environment. The term

βh1Sh(t)
∫

τ

0
f1(s)Iv2(t− s)ds+βh2Sh(t)

∫
τ

0
f2(s)E(t− s)ds

gives the incidence of new cases of infection for humans at time t.

To understand the model, notice that susceptible poultry are recruited at a rate Λv. Susceptible

poultry can become infected with strain i (i = 1,2) through a direct contact with an infected

poultry with strain i. The infected poultry with strain one Iv1 can recover with recovery rate

rv, while the infected poultry with strain 2 may die with disease-induced death rate αv. In the

same time, susceptible human individuals are recruited at a rate Λh. Susceptible individuals can

become infected with strain two either through a direct contact with infected poultry infected

with strain two or through coming into contact with viral particles of strain two that are in the
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environment. Furthermore, it is assumed that a susceptible poultry, who has been exposed, may

remain exposed for some period before becoming infectious and may have variable infectivity

toward humans. As a consequence, the force of infection on susceptible human individuals

through direct or indirect contact is given by the integral over all the incubation periods of the

parasite in the poultry. Infected humans have a recovery rate rh and move to the recovered

class Rh(t). Others infected humans may die with disease-induced death rate αh. Infected

poultry with strain two shed the virus into the environment at a rate δ . All viral particles shed

by poultry infected with strain two are given by δ Iv2 . We notice that the equations for the

recovered poultry and recovered humans are decoupled from the system and the analysis of

system (2.1) is equivalent to the analysis of the system.

dSv

dt
= Λv−βv1SvIv1−βv2SvIv2−µvSv,

dIv1

dt
= βv1SvIv1− (µv + rv)Iv1,

dIv2

dt
= βv2SvIv2− (µv +αv)Iv2 ,

dE
dt

= δ Iv2− γE,

dSh

dt
= Λh−βh1Sh

∫
τ

0
f1(s)Iv2(t− s)ds−βh2Sh

∫
τ

0
f2(s)E(t− s)ds−µhSh,

dIh

dt
= βh1Sh

∫
τ

0
f1(s)Iv2(t− s)ds+βh2Sh

∫
τ

0
f2(s)E(t− s)ds− (µh +αh + rh)Ih.

(2.2)

In the remainder of this article we will focus on model (2.2). Model (2.2) is equipped with the

following initial conditions: Sv(0) = Sv0 , Iv1(0) = Iv10
, Iv2(θ) = ψv2(θ),

Sh(0) = Sh0, Ih(0) = Ih0, E(θ) = ψE(θ), θ ∈ [−τ,0].
(2.3)

All parameters in model (2.2) are non-negative. We define the following space of functions

X = R+×R+×
2

∏
i=1

(
C([−τ,0],R+)

)
×R+×R+.

where the Banach space C([−τ,0],R+) of continuous functions mapping the interval [−τ,0]

into R+ is equipped with the sup-norm ||ψ|| = sup−τ≤θ≤0 |ψ(θ)|. By the standard theory of

functional differential equations [10], it can be verified that (2.2) with initial conditions (2.3)

has a unique solution (Sv(t), Iv1(t), Iv2(t),E(t),Sh(t), Ih(t)) which remains non-negative for all
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t ≥ 0. Moreover, we can show the solutions of system (2.2) are ultimately uniformly bounded in

X . In fact, it follows that the total poultry population size Nv(t) = Sv(t)+ Iv1(t)+ Iv2(t) satisfies

d
dt

(
Sv(t)+ Iv1(t)+ Iv2(t)

)
≤ Λv−µv

(
Sv(t)+ Iv1(t)+ Iv2(t)

)
.

Hence,

limsup
t→∞

(
Sv(t)+ Iv1(t)+ Iv2(t)

)
=

Λv

µv
.

Similarly, the total human population size Nh(t) = Sh(t)+ Ih(t) satisfies

d
dt

(
Sh(t)+ Ih(t)

)
≤ Λh−µh

(
Sh(t)+ Ih(t)

)
,

so we have

limsup
t→∞

(
Sh(t)+ Ih(t)

)
≤ Λh

µh
.

The free virus in the environment can be bounded as follows:

E ′ ≤ δ
Λv

µv
− γE.

Hence

limsup
t→∞

E(t)≤
δ

Λv
µv

γ
=

δΛv

γµv
.

Therefore, the following set is positively invariant for system (2.2)

Ω =

{
(Sv, Iv1, Iv2,E,Sh, Ih) ∈ X+ : Sv + Iv1 + Iv2 ≤

Λv

µv
, Sh + Ih ≤

Λh

µh
, E ≤ δΛv

γµv

}
.

All positive semi-orbits in Ω are precompact in X , and thus have non-empty ω-limit sets. We

have the following result.

Lemma 2.1 All positive semi-orbits in Ω have non-empty ω-limit sets.

Furthermore, we impose the following assumptions:

Assumptions 1:

(1) It is assumed that f1(s) and f2(s) are continuous on [0,τ];

(2) f1(s) and f2(s) satisfy∫
τ

0
f1(s)ds = a1,

∫
τ

0
f2(s)ds = a2;

(3) f1(s)≥ 0, f2(s)≥ 0 for 0≤ s≤ τ .
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The reproduction number of strain one and two are given by the following expressions

R1 =
βv1Λv

µv(µv + rv)
, R2 =

βv2Λv

µv(µv +αv)
. (2.4)

respectively. The system has a reproduction number defined as

R0 = max{R1,R2}.

We also introduce the invasion numbers of strain one and strain two. The invasion number of

strain one (two) at the equilibrium of strain two (one) is given by

R̂1 =
R1

R2
, R̂2 =

R2

R1
.

In the next section we compute explicit expressions for the equilibria and establish their local

stability.

3. Equilibria and their local stability

In the positively invariant region

Ω =

{
(Sv, Iv1, Iv2,E,Sh, Ih) ∈ X+ : Sv + Iv1 + Iv2 ≤

Λv

µv
, Sh + Ih ≤

Λh

µh
, E ≤ δΛv

γµv

}
,

system (2.2) always has a unique disease-free equilibrium E0, which is given by

E0 = (
Λv

µv
,0,0,0,

Λh

µh
,0).

In addition, for each i there is a corresponding single-strain equilibrium Ei given by

E1 = (S∗v1
, I∗v1

,0,0,S∗h1
,0), E2 = (S∗v2

,0, I∗v2
,E∗,S∗h2

, I∗h ),

where S∗v1
, I∗v1

,S∗h1
and S∗v2

, I∗v2
,E∗,S∗h2

, I∗h satisfy
Λv−βv1S∗v1

I∗v1
−µvS∗v1

= 0,

βv1S∗v1
I∗v1
− (µv + rv)I∗v1

= 0,

Λh−µhS∗h1
= 0,

(3.1)
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and 

Λv−βv2S∗v2
I∗v2
−µvS∗v2

= 0,

βv2S∗v2
I∗v2
− (µv +αv)I∗v2

= 0,

δ I∗v2
− γE∗ = 0,

Λh−βh1S∗h2
I∗v2

a1−βh2S∗h2
E∗a2−µhS∗h2

= 0,

βh1S∗h2
I∗v2

a1 +βh2S∗h2
E∗a2− (µh +αh + rh)I∗h = 0.

(3.2)

The non-zero components of the equilibrium E j are given by

S∗v1
=

µv + rv

βv1

, I∗v1
=

Λv

µv + rv
(1− 1

R1
), S∗h1

=
Λh

µh
,

S∗v2
=

µv +αv

βv2

, I∗v2
=

Λv

µv +αv
(1− 1

R2
), E∗ =

δ

γ
I∗v2

S∗h2
=

Λh

βh1I∗v2
a1 +βh2E∗a2 +µh

, I∗h =
βh1I∗v2

a1 +βh2E∗a2

µh +αh + rh
S∗h2

.

The endemic equilibrium Ei exists if and only if Ri > 1. So we have the following results.

Theorem 3.1 The model (2.2) has a unique strain 1 dominance equilibrium E1 =(S∗v1
, I∗v1

,0,0,S∗h1
,0)

if R1 > 1, and a unique strain 2 dominance equilibrium E2 = (S∗v2
,0, I∗v2

,E∗,S∗h2
, I∗h ) if R2 > 1.

Concerning the coexistence equilibria, we have:

Theorem 3.2 If R1 = R2 > 1,R̂1 = R̂2 = 1, then there exist many coexistence equilibria

(S̄∗v , Ī
∗
v1
, Ī∗v2

, Ē∗, S̄∗h, Ī
∗
h ), where

S̄∗v = S∗v1
= S∗v2

, Ē∗ =
δ

γ
Ī∗v2

, S̄∗h =
Λh

βh1 Ī∗v2
a1 +βh2Ē∗a2 +µh

, Ī∗h =
βh1 Ī∗v2

a1 +βh2Ē∗a2

µh +αh + rh
S̄∗h,

where Ī∗v1
and Ī∗v2

satisfy the following equation:

βv1 Ī∗v1
+βv2 Ī∗v2

= βv1I∗v1
= βv2I∗v2
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Proof. We assume that (S̄∗v , Ī
∗
v1
, Ī∗v2

, Ē∗, S̄∗h, Ī
∗
h ) is an equilibrium of the system (2.2), then it must

satisfy the following system:

Λv−βv1 S̄∗v Ī∗v1
−βv2 S̄∗v Ī∗v2

−µvS̄∗v = 0,

βv1 S̄∗v Ī∗v1
− (µv + rv)Ī∗v1

= 0,

βv2 S̄∗v Ī∗v2
− (µv +αv)Ī∗v2

= 0,

δ Ī∗v2
− γĒ∗ = 0,

Λh−βh1 S̄∗hĪ∗v2
a1−βh2 S̄∗hĒ∗a2−µhS̄∗h = 0,

βh1 S̄∗hĪ∗v2
a1 +βh2 S̄∗hĒ∗a2− (µh +αh + rh)Ī∗h = 0.

(3.3)

By the second and third equation of (3.3), we obtain

S̄∗v =
µv + rv

βv1

=
µv +αv

βv2

Noticing that

S∗v1
=

µv + rv

βv1

, S∗v2
=

µv +αv

βv2

So we have

S̄∗v = S∗v1
= S∗v2

From the first equation of (3.3), we have

Λv−µvS̄∗v = βv1 S̄∗v Ī∗v1
+βv2 S̄∗v Ī∗v2

.

Using the the first equation of (3.1), satisfied by equilibrium E1, we have the relation

Λv−µvS̄∗v = Λv−µvS∗v1
= βv1S∗v1

I∗v1
= βv1 S̄∗vI∗v1

.

Then we obtain

βv1 S̄∗vI∗v1
= βv1 S̄∗v Ī∗v1

+βv2 S̄∗v Ī∗v2
.

We divide both sides by S̄∗v ,

βv1I∗v1
= βv1 Ī∗v1

+βv2 Ī∗v2
.

Similarly, we have

βv2I∗v2
= βv1 Ī∗v1

+βv2 Ī∗v2
.
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Thus Ī∗v1
and Ī∗v2

satisfy the following equation:

βv1 Ī∗v1
+βv2 Ī∗v2

= βv1I∗v1
= βv2I∗v2

.

Similarly to E∗,S∗h2
, I∗h , we can get Ē∗, S̄∗h and Ī∗h .

Ē∗ =
δ

γ
Ī∗v2

, S̄∗h =
Λh

βh1 Ī∗v2
a1 +βh2Ē∗a2 +µh

, Ī∗h =
βh1 Ī∗v2

a1 +βh2Ē∗a2

µh +αh + rh
S̄∗h.

Since there are many Ī∗v1
and Ī∗v2

that satisfy the equation βv1 Ī∗v1
+βv2 Ī∗v2

= βv1I∗v1
= βv2I∗v2

, the

proof is complete. �

Now we are ready to establish the following result.

Theorem 3.3 If R0 = max{R1,R2}< 1, then the disease-free equilibrium E0 is locally asymp-

totically stable. If R0 > 1, then it is unstable.

Proof. In order to investigate the local stability of the model, let us first linearize system (2.2)

at E0. Let Sv(t) = Λv/µv + xv(t), Iv1(t) = yv1(t), Iv2(t) = yv2(t),E(t) = z(t),Sh(t) = Λh/µh +

xh(t), Ih(t) = yh(t). Thus, we obtain the following linearized system

dxv

dt
=−βv1

Λv

µv
yv1−βv2

Λv

µv
yv2−µvxv,

dyv1

dt
= βv1

Λv

µv
yv1− (µv + rv)yv1 ,

dyv2

dt
= βv2

Λv

µv
yv2− (µv +αv)yv2,

dz
dt

= δyv2− γz,

dxh

dt
=−βh1

Λh

µh

∫
τ

0
f1(s)yv2(t− s)ds−βh2

Λh

µh

∫
τ

0
f2(s)z(t− s)ds−µhxh,

dyh

dt
= βh1

Λh

µh

∫
τ

0
f1(s)yv2(t− s)ds+βh2

Λh

µh

∫
τ

0
f2(s)z(t− s)ds− (µh +αh + rh)yh.

(3.4)

To study system (3.4), we notice that the system for xh and yh is decoupled from the equations

for xv,yv1,yv2 and z. Hence, the equation for xh and yh are independent from the first to the

fourth equation.

We investigate solutions of the form

xv(t) = xveλ t , yv1(t) = yv1eλ t , yv2(t) = yv2eλ t , z(t) = zeλ t .
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This leads to solving the following set of equations.

λxv =−βv1

Λv

µv
yv1−βv2

Λv

µv
yv2−µvxv,

λyv1 = βv1

Λv

µv
yv1− (µv + rv)yv1,

λyv2 = βv2

Λv

µv
yv2− (µv +αv)yv2 ,

λ z = δyv2− γz.

(3.5)

System (3.5) is a linear system. Thus, looking for eigenvalues in the model is equivalent to find

the characteristic roots which are determined by the following equation:∣∣∣∣∣∣∣∣∣∣∣∣∣

λ +µv βv1
Λv
µv

βv2
Λv
µv

0

0 λ +µv + rv−βv1
Λv
µv

0 0

0 0 λ +µv +αv−βv2
Λv
µv

0

0 0 −δ λ + γ

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ +µv βv1
Λv
µv

βv2
Λv
µv

0

0 λ − (µv + rv)(R1−1) 0 0

0 0 λ − (µv +αv)(R2−1) 0

0 0 −δ λ + γ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

(3.6)

It is easy to obtain that the eigenvalues of system (2.2) are

λ1 = (µv + rv)(R1−1), λ2 = (µv +αv)(R2−1), λ3 =−µv, λ4 =−γ.

Note that if R0 =max{R1,R2}< 1, then, all the four eigenvalues λ1,λ2,λ3,λ4 < 0 are negative

real numbers. Therefore, the stability of E0 depends on the eigenvalues of the following system
dxh

dt
=−µhxh,

dyh

dt
=−(µh +αh + rh)yh.

It is easy to obtain that the eigenvalues are λ5 = −µh, λ6 = −(µh +αh + rh) < 0. Hence,

all the eigenvalues of system (2.2) are negative. Thus, the disease free equilibrium is locally

asymptotically stable for max{R1,R2}< 1. However, when max{R1,R2}> 1, we have λ1 or

λ2 > 0. Hence, the disease-free equilibrium is unstable for max{R1,R2}> 1. �
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Now we turn to the local stability of the endemic equilibrium Ei for a fixed i. We assume that

strain j cannot invade the equilibrium of strain i, that is we assume R̂ j < 1 for j 6= i. In this

case we are able to show that the endemic equilibrium is locally stable. That is, the endemic

equilibrium of strain i is locally stable if the other strain cannot invade it. The results on local

stability of single-strain equilibrium Ei are summarized below

Theorem 3.4 Assume Ri > 1. If R̂ j < 1, then the endemic equilibrium Ei is locally asymptoti-

cally stable. If R̂ j > 1, it is unstable.

Proof. Similarly to the proof in Theorem 3.3, let us first linearize system (2.2) at E1. Let

Sv(t) = S∗v1
+ xv(t), Iv1(t) = I∗v1

+ yv1(t), Iv2(t) = yv2(t),E(t) = z(t),Sh(t) = S∗h1
+ xh(t), Ih(t) =

yh(t). Thus, we obtain the following linearized system



dxv

dt
=−βv1S∗v1

yv1−βv1I∗v1
xv−βv2S∗v1

yv2−µvxv,

dyv1

dt
= βv1S∗v1

yv1 +βv1I∗v1
xv− (µv + rv)yv1 ,

dyv2

dt
= βv2S∗v1

yv2− (µv +αv)yv2,

dz
dt

= δyv2− γz,

dxh

dt
=−βh1S∗h1

∫
τ

0
f1(s)yv2(t− s)ds−βh2S∗h1

∫
τ

0
f2(s)z(t− s)ds−µhxh,

dyh

dt
= βh1S∗h1

∫
τ

0
f1(s)yv2(t− s)ds+βh2S∗h1

∫
τ

0
f2(s)z(t− s)ds− (µh +αh + rh)yh.

(3.7)

We get the following characteristic equation:

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ +βv1I∗v1
+µv βv1S∗v1

βv2S∗v1
0

−βv1I∗v1
λ 0 0

0 0 λ −βv2S∗v1
+(µv +αv) 0

0 0 −δ λ + γ

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ +βv1I∗v1
+µv βv1S∗v1

βv2S∗v1
0

−βv1I∗v1
λ 0 0

0 0 λ − (µv +αv)(R̂2−1) 0

0 0 −δ λ + γ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

(3.8)
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It is easy to obtain that λ1 = (µv +αv)(R̂2− 1),λ2 = −γ are two negative real characteristic

roots of system (2.2) for R̂2 < 1. The other two characteristic roots are determined by the

following equation:

λ
2 +(βv1I∗v1

+µv)λ +β
2
v1

S∗v1
I∗v1

= 0. (3.9)

Since βv1I∗v1
+ µv > 0,β 2

v1
S∗v1

I∗v1
> 0, from the Routh-Hurwitz criterion, the eigenvalues λ3,λ4

from equation (3.9) have negative real parts or are negative. Furthermore, λ5 = −µh, λ6 =

−(µh +αh + rh) < 0. Hence all eigenvalues have negative real part. This proves that when

R̂2 < 1, the dominance equilibrium E1 is locally asymptotically stable. Moreover, if R̂2 > 1,

we have λ1 = (µv +αv)(R̂1−1)> 0. Then the equilibrium E1 is unstable for R̂2 > 1.

By a similar argument as above, we can also analyze the stability of the dominance equilib-

rium E2. The characteristic equation at E2 is as follows:∣∣∣∣∣∣∣∣∣∣∣∣∣

λ +βv2I∗v2
+µv βv1S∗v2

βv2S∗v2
0

0 λ −βv1S∗v2
+(µv + rv) 0 0

−βv2I∗v2
0 λ 0

0 0 −δ λ + γ

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ +βv2I∗v2
+µv βv1S∗v2

βv2S∗v2
0

0 λ − (µv + rv)(R̂1−1) 0 0

−βv2I∗v2
0 λ 0

0 0 −δ λ + γ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

(3.10)

It is easy to see that system (2.2) has two negative real number eigenvalues λ1 = (µv+rv)(R̂1−

1)< 0, λ2 =−γ for R̂1 < 1. The others two characteristic roots are determined by the following

equation:

λ
2 +(βv2I∗v2

+µv)λ +β
2
v2

S∗v2
I∗v2

= 0. (3.11)

It is evident that the equation (3.11) have two eigenvalues with negative real parts. Then λ5 =

−µh, λ6 = −(µh +αh + rh) < 0. Hence System (2.2) has six eigenvalues with negative real

part. Therefore, when R̂1 < 1, the dominance equilibrium E2 is locally asymptotically stable.

Otherwise, the equilibrium E2 is unstable for R̂1 > 1. �
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4. Global stability of the disease-free equilibrium

In the previous section we established the local stability of the equilibria, that is, given the

conditions on the parameters, if the initial conditions are close enough to the equilibrium, the

solution will converge to that equilibrium. In this section our objective is to extend these results

to global results. That is, given the conditions on the parameters, convergence to the equilibrium

occurs independent of the initial conditions.

As a first step, we establish the global stability of the disease-free equilibrium.

Theorem4.1 If R0 = max{R1,R2}< 1, the disease-free equilibrium E0 is globally asymptoti-

cally stable.

Proof. For the global stability analysis of the disease-free equilibrium E0, we will use a Lya-

punov function with Lasalle Invariance Principle. Let us consider the function V0 = Iv1 + Iv2 .

Note that the derivative of it along the solutions of the system (2.2) is

dV0

dt
= [βv1Sv(t)− (µv + rv)]Iv1(t)+ [βv2Sv(t)− (µv +αv)]Iv2(t)

≤ [βv1

Λv

µv
− (µv + rv)]Iv1(t)+ [βv2

Λv

µv
− (µv +αv)]Iv2(t)

= (µv + rv)(R1−1)Iv1(t)+(µv +αv)(R2−1)Iv2(t)≤ 0,

since R0 =max{R1,R2}< 1. Hence, by Lasalle Invariance Principle, for any solution (Sv, Iv1, Iv2,

E,Sh, Ih) ∈ Ω, the omega limit set of this solution is a subset of the largest invariant set in

{x ∈ Ω|V ′(x) = 0}. It is easy to see that the largest invariant set in {x ∈ Ω|V ′(x) = 0} is the

singleton set of E0. Then any solution in Ω converges to the DFE when max{R1,R2}< 1. �

5. Global stability of the single-strain equilibrium Ei

From Theorem 3.4 we know that under the specified conditions the equilibrium Ei is locally

asymptotically stable. It remains to be established that Ei is globally stable. We expect to

show this result using a Lyapunov function. With g(x) = x− 1− lnx, we define the following

Lyapunov functions.

V1(t) = S∗v1
g(

Sv

S∗v1

)+ I∗v1
g(

Iv1

I∗v1

)+ Iv2, V2(t) = S∗v2
g(

Sv

S∗v2

)+ I∗v2
g(

Iv2

I∗v2

)+ Iv1.
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We have to establish that V ′(t)≤ 0 along the solution curves of system (2.2). Before proof, let

us make some preparations first. We denote

ϕIv(t) = βh1

∫
τ

0
f1(s)Iv2(t− s)ds, ϕE(t) = βh2

∫
τ

0
f2(s)E(t− s)ds.

From the third equation, we have

E(t) = E0e−γt +δ

∫ t

0
Iv2(σ)e−γ(t−σ)dσ . (5.1)

Similarly, from the fourth and the fifth equation, we obtain

Sh(t) = Sh0e−
∫ t

0(ϕIv(σ)+ϕE(σ)+µh)dσ +Λh

∫ t

0
e−

∫ t
σ
(ϕIv(b)+ϕE(b)+µh)dbdσ , (5.2)

and

Ih(t) = Ih0e−(µh+αh+rh)t +
∫ t

0
Sh(σ)(ϕIv(σ)+ϕE(σ))e−(µh+αh+rh)(t−σ)dσ . (5.3)

The following Theorem summarizes the result.

Theorem 5.1 Assume R̂2 < 1. Then equilibrium E1 is globally asymptotically stable, that is,

for any initial condition x0 ∈ X, the solution of system (2.2) converges to E1.

Proof. Calculating the derivative of the expressions of V1(t) along the system (2.2), we obtain

dV1(t)
dt

= S∗v1
(1−

S∗v1

Sv
)

1
S∗v1

[Λv−βv1SvIv1−βv2SvIv2−µvSv]

+I∗v1
(1−

I∗v1

Iv1

)
1

I∗v1

[βv1SvIv1− (µv + rv)Iv1 ]+ [βv2SvIv2− (µv +αv)Iv2]

= (1−
S∗v1

Sv
)[βv1S∗v1

I∗v1
+µvS∗v1

−βv1SvIv1−βv2SvIv2−µvSv]

+(1−
I∗v1

Iv1

)[βv1SvIv1−βv1S∗v1
Iv1]+ [βv2SvIv2− (µv +αv)Iv2]

=−
µv(Sv−S∗v1

)2

Sv
+βv1S∗v1

I∗v1
(1−

S∗v1

Sv
)(1− SvIv1

S∗v1
I∗v1

)− (1−
S∗v1

Sv
)βv2SvIv2

+βv1S∗v1
I∗v1

(1−
I∗v1

Iv1

)(
SvIv1

S∗v1
I∗v1

− Iv1

I∗v1

)+ [βv2SvIv2− (µv +αv)Iv2]

=−
µv(Sv−S∗v1

)2

Sv
+βv1S∗v1

I∗v1
(1−

S∗v1

Sv
− SvIv1

S∗v1
I∗v1

+
Iv1

I∗v1

)− (βv2SvIv2−βv2S∗v1
Iv2)

+βv1S∗v1
I∗v1

(1+
SvIv1

S∗v1
I∗v1

− Iv1

I∗v1

− Sv

S∗v1

)+ [βv2SvIv2− (µv +αv)Iv2]

=−
µv(Sv−S∗v1

)2

Sv
+βv1S∗v1

I∗v1
(2−

S∗v1

Sv
− Sv

S∗v1

)+ [βv2S∗v1
− (µv +αv)]Iv2
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=−
µv(Sv−S∗v1

)2

Sv
−βv1S∗v1

I∗v1
[g(

S∗v1

Sv
)+g(

Sv

S∗v1

)]+(µv +αv)(R̂2−1)Iv2. (5.4)

Since g(x)≥ 0 for x > 0,R̂2 < 1, we have dV1(t)/dt ≤ 0. Define:

Ω̄ =

{
(Sv, Iv1, Iv2,E,Sh, Ih) ∈Ω

∣∣∣∣ dV1(t)
dt

= 0
}

We want to show that the largest invariant set in Ω̄ is the singleton E1. In fact, from equation

(5.4), dV1(t)/dt = 0, and using the fact that 1− x+ lnx ≤ 0 for all x > 0 with equality holding

if x = 1, we have

Sv(t) = S∗v1
, Iv2(t) = 0. (5.5)

Using Equation (5.5), we obtain

0 =
dSv(t)

dt
= Λv−βv1S∗v1

Iv1(t)−µvS∗v1
.

Rearranging gives

Iv1(t) =
Λv−µvS∗v1

βv1S∗v1

.

Using the fact that the equilibrium ε1 satisfies the relation

Λv−βv1S∗v1
I∗v1
−µvS∗v1

= 0.

we easily obtain

Iv1(t) = I∗v1
, for t ≥ 0.

From the equation (5.1), we obtain

limsup
t→∞

E(t) = limsup
t→∞

(
E0e−γt +δ

∫ t

0
Iv2(σ)e−γ(t−σ)dσ

)
= δ limsup

t→∞

Iv2(t) limsup
t→∞

∫ t

0
e−γ(t−σ)dσ = 0.

Thus we have

limsup
t→∞

ϕIv(t) = limsup
t→∞

βh1

∫
τ

0
f1(s)Iv2(t− s)ds = βh1a1 limsup

t→∞

Iv2(t) = 0,

and

limsup
t→∞

ϕE(t) = limsup
t→∞

βh2

∫
τ

0
f2(s)E(t− s)ds = βh2a2 limsup

t→∞

E(t) = 0,
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From the equation (5.2), we obtain

limsup
t→∞

Sh(t) = limsup
t→∞

(
Sh0e−

∫ t
0(ϕIv(σ)+ϕE(σ)+µh)dσ +Λh

∫ t

0
e−

∫ t
σ
(ϕIv(b)+ϕE(b)+µh)dbdσ

)
= Λh limsup

t→∞

∫ t

0
e−µh(t−σ)dσ =

Λh

µh
= S∗h1

.

From the equation (5.3), we obtain

limsup
t→∞

Ih(t)

= limsup
t→∞

(
Ih0e−(µh+αh+rh)t +

∫ t

0
Sh(σ)(ϕIv(σ)+ϕE(σ))e−(µh+αh+rh)(t−σ)dσ

)
= 0.

Hence, the largest invariant set in Ω̄ is the singleton ε1. By the LaSalle Invariance Principle and

Theorem 3.4, we see that the equilibrium E1 is globally asymptotically stable. �

Using the same proof as in Theorem 5.1, we have the following Theorem.

Theorem 5.2 Assume R̂1 < 1. Then, equilibrium E2 is globally asymptotically stable

Proof. Calculating the derivative of the expressions of V2(t) along the system (2.2), we obtain

dV2(t)
dt

= S∗v2
(1−

S∗v2

Sv
)

1
S∗v2

[Λv−βv1SvIv1−βv2SvIv2−µvSv]

+I∗v2
(1−

I∗v2

Iv2

)
1

I∗v2

[βv2SvIv2− (µv +αv)Iv2]+ [βv1SvIv1− (µv + rv)Iv1]

= (1−
S∗v2

Sv
)[βv2S∗v2

I∗v2
+µvS∗v2

−βv1SvIv1−βv2SvIv2−µvSv]

+(1−
I∗v2

Iv2

)[βv2SvIv2−βv2S∗v2
Iv2]+ [βv1SvIv1− (µv + rv)Iv1]

=−
µv(Sv−S∗v2

)2

Sv
+βv2S∗v2

I∗v2
(1−

S∗v2

Sv
)(1− SvIv2

S∗v2
I∗v2

)− (1−
S∗v2

Sv
)βv1SvIv1

+βv2S∗v2
I∗v2

(1−
I∗v2

Iv2

)(
SvIv2

S∗v2
I∗v2

− Iv2

I∗v2

)+ [βv1SvIv1− (µv + rv)Iv1 ]

=−
µv(Sv−S∗v2

)2

Sv
+βv2S∗v2

I∗v2
(1−

S∗v2

Sv
− SvIv2

S∗v2
I∗v2

+
Iv2

I∗v2

)− (βv1SvIv1−βv1S∗v2
Iv1)

+βv2S∗v2
I∗v2

(1+
SvIv2

S∗v2
I∗v2

− Iv2

I∗v2

− Sv

S∗v2

)+ [βv1SvIv1− (µv + rv)Iv1]

=−
µv(Sv−S∗v2

)2

Sv
+βv2S∗v2

I∗v2
(2−

S∗v2

Sv
− Sv

S∗v2

)+ [βv1S∗v2
− (µv + rv)]Iv1

=−
µv(Sv−S∗v2

)2

Sv
−βv2S∗v2

I∗v2
[g(

S∗v2

Sv
)+g(

Sv

S∗v2

)]+(µv + rv)(R̂1−1)Iv1.

(5.6)
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Since g(x)≥ 0 for x > 0,R̂1 < 1, we have dV2(t)/dt ≤ 0.

Ω̄ =

{
(Sv, Iv1, Iv2,E,Sh, Ih) ∈Ω

∣∣∣∣ dV2(t)
dt

= 0
}
.

We want to show that the largest invariant set in Ω̄ is the singleton E2. In fact, from equation

(5.6), dV2(t)/dt = 0, and using the fact that 1− x+ lnx ≤ 0 for all x > 0 with equality holding

if x = 1, we have

Sv(t) = S∗v2
, Iv1(t) = 0. (5.7)

Using equation (5.7), we obtain

0 =
dSv(t)

dt
= Λv−βv2S∗v2

Iv2(t)−µvS∗v2

Rearranging gives

Iv2(t) =
Λv−µvS∗v2

βv2S∗v2

Using the fact that the equilibrium E2 satisfies the relation

Λv−βv2S∗v2
I∗v2
−µvS∗v2

= 0.

we easily obtain

Iv2(t) = I∗v2
, for t ≥ 0.

From the equation (5.1), we obtain

limsup
t→∞

E(t) = limsup
t→∞

(
E0e−γt +δ

∫ t

0
Iv2(σ)e−γ(t−σ)dσ

)
= δ I∗v2

limsup
t→∞

∫ t

0
e−γ(t−σ)dσ =

δ I∗v2

γ
= E∗.

Thus we have

limsup
t→∞

ϕIv(t) = limsup
t→∞

βh1

∫
τ

0
f1(s)Iv2(t− s)ds = βh1a1I∗v2

,

and

limsup
t→∞

ϕE(t) = limsup
t→∞

βh2

∫
τ

0
f2(s)E(t− s)ds = βh2a2E∗,
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From the equation (5.2), we obtain

limsup
t→∞

Sh(t)

= limsup
t→∞

(
Sh0e−

∫ t
0(ϕIv(σ)+ϕE(σ)+µh)dσ +Λh

∫ t

0
e−

∫ t
σ
(ϕIv(b)+ϕE(b)+µh)dbdσ

)
= Λh limsup

t→∞

∫ t

0
e−(βh1a1I∗v2

+βh2a2E∗+µh)(t−σ)dσ =
Λh

βh1a1I∗v2
+βh2a2E∗+µh

= S∗h2
.

From the equation (5.3), we obtain

limsup
t→∞

Ih(t)

= limsup
t→∞

(
Ih0e−(µh+αh+rh)t +

∫ t

0
Sh(σ)(ϕIv(σ)+ϕE(σ))e−(µh+αh+rh)(t−σ)dσ

)
= S∗h2

(βh1a1I∗v2
+βh2a2E∗) limsup

t→∞

∫ t

0
e−(µh+αh+rh)(t−σ)dσ

=
(βh1a1I∗v2

+βh2a2E∗)
µh +αh + rh

S∗h2
= I∗h .

Hence, the largest invariant set in Ω̄ is the singleton E2. By the LaSalle Invariance Principle and

Theorem 3.4, we see that the equilibrium E2 is globally asymptotically stable. �

6. Discussion

In this paper, we introduce a two-strain avian influenza model with distributed delay and

environmental transmission between poultry and humans. We define the basic reproduction

number R0 of the disease as the maximum of the reproduction numbers of each strain. We

show that if R0 < 1 the disease-free equilibrium E0 is locally and globally stable, that is the

number of infected with each strain goes to zero. Furthermore, we show that if R0 > 1, then

the disease persists. Moreover, the single-strain equilibrium E1 (or E2) is locally asymptotically

stable if the invasion numbers R̂2 (or R̂1) is smaller than one. Furthermore, we show that the

single-strain equilibrium is globally stable, that is the strain 1 persists in poultry (or the strain 2

persists in poultry, the environment and humans). The existence and lack of uniqueness of the

coexistence equilibrium is verified analytically when the invasion numbers R̂1 = R̂2 = 1 and

the reproduction numbers of each strain R1 = R2 > 1.

From the perspective of public health, controlling avian influenza A (H7N9) virus may be

performed by monitoring the reproduction number of strain 2 R2 and the invasion number
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R̂1. If R2 < 1, then the single-strain equilibrium E2 does not exist, and humans cannot be

infected by HPAI strain. Reducing R2 may be done by reducing the transmission rate βv2

through vaccination or increasing the HPAI-generated disease-induced death rate αv through

selective culling of infected poultry. Mass culling which decreases the poultry lifespan 1/µv

is also an effective way to decrease the reproduction number, as long as mass culling is not

only performed in response to an outbreak but is also performed as preventive measure. If

R2 > 1,R̂1 > 1, then the presence of LPAI in poultry will lead to elimination of HPAI in

poultry. Thus, maintaining high levels of LPAI in poultry is a possible, although not very

advisable, strategy to reduce HPAI. If R2 > 1,R̂1 < 1, the single-strain equilibrium not only

exists but also is locally asymptotically and global stable. Humans can be infected with strain

2. If R1 = R2 > 1,R̂2 = R̂2 = 1, then many coexistence equilibria exist.
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