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Abstract. This paper intends to develop a theoretical framework for investigating the evolutionary adaptive dy-

namics of a stochastic differential system. The key to the question is how to build an evolutionary fitness function.

Firstly, we propose a stochastic predator-prey model with disease in the prey and discuss the asymptotic behavior

around the positive equilibrium of its deterministic equation. Secondly, by using stochastic population dynamics

and adaptive dynamics methods, we propose a fitness function based on stochastic impact and investigate the con-

ditions for evolutionary branching and the evolution of pathogen strains in the infective prey. Our results show that

(1) large stochastic impact can lead to rapidly stable evolution towards smaller toxicity of pathogen strains, which

implies that stochastic disturbance is beneficial to epidemic control; (2) stochastic disturbance can go against evo-

lutionary branching and promote evolutionary stability. Finally, we carry on the evolutionary analysis and make

some numerical simulations to illustrate our main results. The developed methodologies could potentially be used

to investigate the evolutionary adaptive dynamics of the stochastic differential systems.
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1. Introduction

After the pioneering work of Hadeler and Freedman [1] on three species eco-epidemiological

systems, namely, sound prey (susceptible), infected prey (infective) and predator have been

studied extensively by researchers. The three species eco-epidemiological system describes a

predator-prey model where the prey is infected, and the predator preys on only the infected prey

since infected prey may be weaker or less active. There are so many references in this context,

we have just cited here some of them (e.g. see, [2-8] and the references therein). The main

works include Hopf bifurcation [2-3], the stability of equilibrium points [4-6], extinction and

permanence [7], and so on.

Recently, the evolution of predator-prey community has received much attention from sci-

entists (e.g. see, [9-13] and the references therein). The adaptive dynamics method provides a

useful tool to investigate the long-term evolutionary outcomes of a small mutation in the traits

expressing the phenotypes. A classical method of building the evolutionary fitness function

is based on a globally asymptotically stable positive equilibrium point of the autonomous dif-

ferential system (e.g. see, [9-12]). Moreover, many researchers are interested in the adaptive

evolution based on nonequilibrium population dynamics. Meng et al. [13] have constructed an

invasion fitness function, which involves the average growth rate and settles in a nonequilibrium

attractor of non-autonomous differential system.

The species in the natural world are often affected by environmental noises. For better un-

derstanding the dynamic behaviors of the predator-prey system, many authors formulated some

stochastic systems of the predator-prey models and discussed the effects of the environmental

disturbance on the dynamic behaviors of the stochastic models (e.g. see, [14-20] and the ref-

erences therein). Zhang et al. [15] introduced a stochastic predator-prey system with infected

prey. They studied the stationary distribution and the ergodicity of the predator-prey model.

Recently, Dieckmann and Law [21] introduced environmental stochastic impacts on the evo-

lutionary process. But little attention has been paid so far to merge these two important areas

of research. Taking all above mentioned into account, the research on evolutionary dynamics

for stochastic differential systems is very interesting. However, to the best of our knowledge,

the research on evolutionary analysis of a stochastic predator-prey system is not too much yet.
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Therefore, according to a deterministic predator-prey system, this paper proposes a stochas-

tic predator-prey evolutionary model with infected prey, to explore the influence of stochastic

disturbance on the evolution of toxicity of pathogen strains.

Our main goal of this paper is to build an evolutionary fitness function which is based on

stochastic differential system and investigates the adaptive dynamics of the proposed model. To

this end, the rest of the paper is organized as follows. In the next section, we first propose a

stochastic predator-prey system with infected prey, then we study the global asymptotic behav-

ior around the equilibrium of the deterministic predator-prey system. In Section 3, we build

a fitness function to study the evolutionary dynamics of a single state. In the last section, we

summarize our main results and focus our discussion on biological meaning.

2. Model and demographic properties

2.1. Population dynamics

We first consider a deterministic predator-prey system [2, 5], which reads


dS
dt = rS(t)

(
1− S(t)

K

)
−βS(t)I(t),

dI
dt = βS(t)I(t)− cI(t)− pI(t)Y (t)−aI2(t),

dY
dt = kpI(t)Y (t)−dY (t),

(2.1)

where S(t) and I(t), respectively, stand for the density of susceptible prey and infected prey at

time t, Y (t) represents the population density of predator at time t. K represents the environ-

mental maximum capacity, β is the infection rate from susceptible prey S(t) to infected prey

I(t), k(0≤ k ≤ 1) is the conversion rate from prey to a predator, r is the intrinsic growth rate of

S(t), p is the probability that infected prey is attacked by predator, a is the intraspecific compe-

tition coefficient of I(t), c is the diseased death rate of I(t), d represents the natural death rate

of predator.

Easy, if

R =
kp
d

r− cr
βK

β + a
βK

> 1,
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system (2.1) has a positive equilibrium (S∗, I∗,Y ∗) with

S∗ =
K (rkp−βd)

rkp
, I∗ =

d
kp

, Y ∗ =
βK (rkp−βd)− rkpc− rda

rkp2 .

In the real world, biological populations are often disturbed by environmental interference.

Therefore, it is important to investigate the effects of environmental noises on the properties of

the systems. In this paper, we firstly study the following stochastic population dynamics system
dS =

[
rS(t)

(
1− S(t)

K

)
−βS(t)I(t)

]
dt +σ1S(t)dB1(t),

dI =
[
βS(t)I(t)− cI(t)− pI(t)Y (t)−aI2(t)

]
dt +σ2I(t)dB2(t),

dY = [kpI(t)Y (t)−dY (t)]dt +σ3Y (t)dB3(t),

(2.2)

where Bi(t)(i = 1,2,3) is independent Brownian motions with intensity σ2
i (i = 1,2,3).

Throughout this paper, let (Ω,F ,{F}t≥0,P) be a complete probability space with a filtra-

tion {Ft}t≥0 satisfying the usual conditions (i.e. it is increasing and right continuous while

F0 contains all P−null sets. Function Bi(t)(i = 1,2,3) is a Brownian motion defined on the

complete probability space Ω. For an integrable function f on [0,+∞), we define 〈 f (t)〉 =

t−1 ∫ t
0 f (s)ds.

2.2. Asymptotic behavior around the equilibrium E = (S∗, I∗,Y ∗) of system (2.1)

In this subsection, we consider the asymptotic behavior around the equilibrium E =(S∗, I∗,Y ∗)

of system (2.1).

X(t) is a temporally homogeneous Markov process in El , which is given by the stochastic

differential equation

dX(t) = b(X)dt +
k

∑
m=1

σm(x)dBm(t),

where El ⊂ Rl represents a l-dimensional Euclidean space.

The diffusion matrix of X(t) is given by

Λ(x) = (ai, j(x)),ai, j(x) =
k

∑
m=1

σ
i
m(x)σ

j
m(x).

Assumption 2.1. [22] Assume that there is a bounded domain U ⊂ El with regular boundary,

satisfying the following conditions:
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(1) In the domain U and some of its neighbors, the minimum eigenvalue of the diffusion

matrix A(x) is nonezero.

(2) When x ∈ El\U, the mean time τ at which a path starting from x to the set U is limited,

and sup
x∈H

Exτ < ∞ for every compact subset H ⊂ El .

Lemma 2.1. [22] When Assumption 2.1 holds, the Markov process X(t) has a stationary distri-

bution µ(·) with density in El . Let f (x) be a function integrable with respect to the measure µ ,

where x ∈ El , then for any Borel set B⊂ El , we have

lim
t→∞

P(t,x,B) = µ(B),

and

Px

{
lim

T→∞

1
T

∫ T

0
f (x(t))dt =

∫
El

f (x)µ(dx)
}
= 1.

Theorem 2.1. Let (S(t), I(t),Y (t) be the solution of model (2.2). If R > 1,σi > 0,1≤ i≤ 3 and

0< δ <min{m1S∗2,m2I∗2,m3Y ∗2}, then model (2.2) has a unique stationary distribution µ and

it is ergodic. Here E = (S∗, I∗,Y ∗) is the positive equilibrium of system (1), (S(0), I(0),Y (0) ∈

R3
+ is the initial value,

η =
2K
r

(
r− r

K
S∗+

r
K

I∗+
1
k

r
K

Y ∗+
(r− 2r

K S∗− c−2aI∗)2

2c
+

(r− 2r
K S∗−d)2

2d

)
,

ϖ = aη +aI∗+
c
2
−aS∗− a

k
Y ∗,

m1 =
rη

2K
−σ

2
1 ,m2 = ϖ −σ

2
2 ,m3 =

1
2k2

(
d−2σ

2
3
)

and

δ = σ
2
1 S∗2 +σ

2
2 I∗2 +

1
k2 σ

2
3Y ∗2 +

(c+2aI∗+d)σ2
3Y ∗

2k2 p
+

η

2
(σ2

1 S∗+σ
2
2 I∗+

1
k

σ
2
3Y ∗).

Also we have

lim
t→∞

sup
1
t

E
∫ t

0

[
m1(S(s)−S∗)2 +m2(I(s)− I∗)2 +m3(Y (s)−Y ∗)2]ds≤ δ .

Proof. Noting that (S∗, I∗,Y ∗) is the positive equilibrium of model (2.1), one sees that

r
(

1− S∗

K

)
= β I∗,βS∗− c−aI∗ = pY ∗,kpI∗ = d.
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Let us now define

V (S, I,Y ) =η

[
S−S∗−S∗ log

S
S∗

+ I− I∗− I∗ log
I
I∗

+
1
k

(
Y −Y ∗−Y ∗ log

Y
Y ∗

)]
+

1
2

[
S−S∗+ I− I∗+

1
k
(Y −Y ∗)

]2

+
1
k2

c+2aI∗+d
p

(
Y −Y ∗−Y ∗ log

Y
Y ∗

)
:=ηV1 +V2 +

1
k2

c+2aI∗+d
p

V3.

Applying Itô’s formula to stochastic differential system (2.2) yields

dV1 =

{
(S−S∗)

[
r
(

1− S
K

)
−β I

]
+

S∗σ2
1

2

}
dt +σ1(S−S∗)dB1(t)

+

{
(I− I∗) [βS− c−aI− pY ]+

I∗σ2
2

2

}
dt +σ2(I− I∗)dB2(t)

+
1
k

{
(Y −Y ∗) [kpI−d]+

Y ∗σ2
3

2
dt +σ3(Y −Y ∗)dB3(t)

}
:=LV1dt +σ1(S−S∗)dB1(t)+σ2(I− I∗)dB2(t)+

1
k

σ3(Y −Y ∗)dB3(t),

where

LV1 =(S−S∗)
[

r
(

1− S
K

)
−β I

]
+

S∗σ2
1

2
+(I− I∗) [βS− c−aI− pY ]+

I∗σ2
2

2

+
1
k

[
(Y −Y ∗)(kpI−d)+

Y ∗σ2
3

2

]
=r(S−S∗)− r

K
(S−S∗)2− r

K
(S−S∗)S∗−β (S−S∗)(I− I∗)−β (S−S∗)I∗

+
S∗σ2

1
2
−a(I− I∗)2−a(I− I∗)I∗+β (S−S∗)(I− I∗)+β (I− I∗)S∗

− c(I− I∗)− p(I− I∗)(Y −Y ∗)+
I∗σ2

2
2
− pY ∗(I− I∗)

+
1
k

[
kp(Y −Y ∗)(I− I∗)+ kpI∗(Y −Y ∗)−d(Y −Y ∗)+

Y ∗σ2
3

2

]
=− r

K
(S−S∗)2−a(I− I∗)2 +

1
2

(
σ

2
1 S∗+σ

2
2 I∗+

1
k

σ
2
3Y ∗
)
.

(2.3)

Let

dV3 =

[
(Y −Y ∗)(kpI−d)+

Y ∗σ2
3

2

]
dt +(Y −Y ∗)σ3dB3(t)

:=LV3dt +(Y −Y ∗)σ3dB3(t),



ADAPTIVE EVOLUTION OF A STOCHASTIC PREDATOR-PREY MODEL 7

then

LV3 = (Y −Y ∗)(kpI−d)+
Y ∗σ2

3
2

= kp(Y −Y ∗)(I− I∗)+
Y ∗σ2

3
2

.

Let

Z = S−S∗+ I− I∗+
1
k
(Y −Y ∗),

then

dZ =

[
rS− r

K
S2− cI−aI2− d

k
Y
]

dt +σ1SdB1(t)+σ2IdB2(t)+
1
k

σ3Y dB3(t).

Easy,

dV2 =

[
S−S∗+ I− I∗+

1
k
(Y −Y ∗)

]{[
rS− r

K
S2− cI−aI2− d

k
Y
]

dt +σ1SdB1(t)

+σ2IdB2(t)+
1
k

σ3Y dB3(t)

}
+

1
2

(
σ

2
1 S2 +σ

2
2 I2 +

1
k2 σ

2
3Y 2
)

dt

:=LV2dt +
[

S−S∗+ I− I∗+
1
k
(Y −Y ∗)

](
σ1SdB1(t)+σ2IdB2(t)+

1
k

σ3Y dB3(t)
)
,

where

LV2 =

[
S−S∗+ I− I∗+

1
k
(Y −Y ∗)

][
rS− r

K
S2− cI−aI2− d

k
Y
]

+
1
2

(
σ

2
1 S2 +σ

2
2 I2 +

1
k2 σ

2
3Y 2
)
.

Since

rS− r
K

S2− cI−aI2− d
k

Y

=rS− r
K
(S−S∗)2 +

r
K

S∗2− 2r
K

SS∗− cI−a(I− I∗)2 +aI∗2−2aII∗− d
k

Y

=− r
K
(S−S∗)2 +

(
r− 2r

K
S∗
)

S+
r
K

S∗2− cI−a(I− I∗)2 +aI∗2−2aII∗− d
k

Y

=− r
K
(S−S∗)2 +

(
r− 2r

K
S∗
)
(S−S∗)+

(
r− r

K
S∗
)

S∗− c(I− I∗)− cI∗

−a(I− I∗)2−aI∗2−2a(I− I∗)I∗− d
k
(Y −Y ∗)− d

k
Y ∗

=− r
K
(S−S∗)2 +

(
r− 2r

K
S∗
)
(S−S∗)− (c+2aI∗)(I− I∗)−a(I− I∗)2− pI∗(Y −Y ∗),
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we have

LV2 =

[
S−S∗+ I− I∗+

1
k
(Y −Y ∗)

][
− r

K
(S−S∗)2 +

(
r− 2r

K
S∗
)
(S−S∗)

− pI∗(Y −Y ∗)−
(

c+2aI∗
)
(I− I∗)−a(I− I∗)2

]

+
1
2

(
σ

2
1 S2 +σ

2
2 I2 +

1
k2 σ

2
3Y 2
)

=− r
K

(
S+ I +

1
k

Y
)
(S−S∗)2 +

(
r− r

K
S∗+

r
K

I∗+
1
k

r
K

Y ∗
)
(S−S∗)2

−a
(

S+ I +
1
k

Y
)
(I− I∗)2 +

(
aS∗−aI∗+

a
k

Y ∗− c
)
(I− I∗)2

+

(
r− 2r

K
S∗− c−2aI∗

)
(S−S∗)(I− I∗)

+
1
k

(
r− 2r

K
S∗−d

)
(S−S∗)(Y −Y ∗)− 1

k
(c+2aI∗+d)(I− I∗)(Y −Y ∗)

− d
k2 (Y −Y ∗)2 +

1
2

(
σ

2
1 S2 +σ

2
2 (x)I

2 +
1
k2 σ

2
3Y 2
)

≤
(

r− r
K

S∗+
r
K

I∗+
1
k

r
K

Y ∗
)
(S−S∗)2 +

(
aS∗−aI∗+

a
k

Y ∗− c
)
(I− I∗)2

+

(
r− 2r

K
S∗− c−2aI∗

)
(S−S∗)(I− I∗)+

1
2

(
σ

2
1 S2 +σ

2
2 I2 +

1
k2 σ

2
3Y 2
)

+
1
k

(
r− 2r

K
S∗−d

)
(S−S∗)(Y −Y ∗)− 1

k
(c+2aI∗+d)(I− I∗)(Y −Y ∗)

− d
k2 (Y −Y ∗)2.

(2.4)

By the Cauchy inequality, it is easy to show that

(
r− 2r

K
S∗− c−2aI∗

)
(S−S∗)(I− I∗)≤ c

2
(I− I∗)2 +

(r− 2r
K S∗− c−2aI∗)2

2c
(S−S∗)2

and

1
k

(
r− 2r

K
S∗−d

)
(S−S∗)(Y −Y ∗)≤ d

2k2 (Y −Y ∗)2 +
(r− 2r

K S∗−d)2

2d
(S−S∗)2.
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We can show from (2.4) that

LV2 ≤

(
r− r

K
S∗+

r
K

I∗+
1
k

r
K

Y ∗+
(r− 2r

K S∗− c−2aI∗)2

2c
+

(r− 2r
K S∗−d)2

2d
+σ

2
1

)
(S−S∗)2

+
(

aS∗−aI∗+
a
k

Y ∗− c
2
+σ

2
2

)
(I− I∗)2− 1

2k2 (d−2σ
2
3 )(Y −Y ∗)2

− 1
k
(c+2aI∗+d)(I− I∗)(Y −Y ∗)+σ

2
1 S∗2 +σ

2
2 (x)I

∗2 +
1
k2 σ

2
3Y ∗2.

(2.5)

Easy, we have

LV4 =LV2 +
c+2aI∗+d

k2 p
LV3

≤

(
r− r

K
S∗+

r
K

I∗+
1
k

r
K

Y ∗+
(r− 2r

K S∗− c−2aI∗)2

2c
+

(r− 2r
K S∗−d)2

2d
+σ

2
1

)
(S−S∗)2

+
(

aS∗−aI∗+
a
k

Y ∗− c
2
+σ

2
2

)
(I− I∗)2− 1

2k2 (d−2σ
2
3 )(Y −Y ∗)2

+σ
2
1 S∗2 +σ

2
2 (x)I

∗2 +
1
k2 σ

2
3Y ∗2 +

(c+2aI∗+d)σ2
3Y ∗

2k2 p
.

(2.6)

Consequently, from (2.3) and (2.6), one has

LV =ηLV1 +LV4

≤−
( rη

2K
−σ

2
1

)
(S−S∗)2−

(
ϖ −σ

2
2
)
(I− I∗)2− 1

2k2 (d−2σ
2
3 )(Y −Y ∗)2

+σ
2
1 S∗2 +σ

2
2 I∗2 +

1
k2 σ

2
3Y ∗2 +

(c+2aI∗+d)σ2
3Y ∗

2k2 p
+

η

2
(σ2

1 S∗+σ
2
2 I∗+

1
k

σ
2
3Y ∗)

=−m1(S−S∗)2−m2(I− I∗)2−m3(Y −Y ∗)2 +δ .

(2.7)

For any δ < min{m1S∗,m2I∗,m3Y ∗}, the ellipsoid

−m1(S−S∗)2−m2(I− I∗)2−m3(Y −Y ∗)2 +δ = 0

lies entirely in R3
+. Let U to be any neighborhood of the ellipsoid with Ū ⊆ E3 = R3

+, thus for

any x ∈U\El ,LV ≤−M (M is a positive constant). Therefore, condition (2) in Assumption 2.1

is satisfied. Moreover, there exists a G = min{σ2
1 x2

1,σ
2
2 x2

2,σ
2
3 x2

3,(x1,x2,x3) ∈U}> 0 such that

3

∑
i, j=1

(
3

∑
k=1

aik(x)a jk(x)

)
ξiξ j = σ

2
1 x2

1ξ
2
1 +σ

2
2 x2

2ξ
2
2 +σ

2
3 x2

3ξ
2
3 ≥ G‖ξ‖2
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for all x ∈ Ū ,ξ ∈ R3, which means condition (1) in Assumption 2.1 is satisfied. Therefore, the

stochastic model (2.2) has a unique stationary distribution µ(·), it also has the ergodic property.

Since

dV =LV dt +η

[
(S−S∗)σ1dB1(t)+(I− I∗)σ2dB2(t)+

1
k
(Y −Y ∗)σ3dB3(t)

]
+

[
S−S∗+ I− I∗+

1
k
(Y −Y ∗)

][
σ1SdB1(t)+σ2IdB2(t)+

1
k

σ3Y dB3(t)
]

+
c+2aI∗+d

k2 p
σ3(Y −Y ∗)dB3(t).

(2.8)

Integrating system (2.8) from 0 to t and taking the expectation on both sides yields

EV (t)−EV (0)≤−m1E
∫ t

0
(S(s)−S∗)2ds−m2E

∫ t

0
(I(s)− I∗)2ds

−m3E
∫ t

0
(Y (s)−Y ∗)2ds+δ t.

(2.9)

Dividing both sides of (2.9) by t and let t→+∞ yields

lim
t→∞

EV (t)−EV (0)
t

≤− 1
t

[
m1E

∫ t

0
(S(s)−S∗)2ds+m2E

∫ t

0
(I(s)− I∗)2ds+m3E

∫ t

0
(Y (s)−Y ∗)2

]
ds+δ .

Easy,

lim
t→∞

sup
1
t

E
∫ t

0

[
m1(S(s)−S∗)2 +m2(I(s)− I∗)2 +m3(Y (s)−Y ∗)2]ds≤ δ . (2.10)

This completes the proof.

Theorem 2.2. Assume that the conditions in Theorem 2.1 are met. Let (S(t), I(t),Y (t)) be a

solution of model (2.2) with initial value (S(0), I(0),Y (0)) ∈ R3
+. If

r >
σ2

1
2

and

kp

β (d +
σ2

3
2 )

r−
σ2

1
2
− r

Kβ

a(d +
σ2

2
2 )

kp
+ c+

σ2
2

2

> 1,
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then the solution (S(t), I(t),Y (t)) of model (2.2) satisfies

P
{

lim
t→∞

1
t

∫ t

0
S(s)ds =

∫
R3
+

z1µ(dz1,dz2,dz3) = S̃∗
}
= 1,

P
{

lim
t→∞

1
t

∫ t

0
I(s)ds =

∫
R3
+

z2µ(dz1,dz2,dz3) = Ĩ∗
}
= 1,

P
{

lim
t→∞

1
t

∫ t

0
Y (s)ds =

∫
R3
+

z3µ(dz1,dz2,dz3) = Ỹ ∗
}
= 1,

(2.11)

where 

S̃∗ =
K
r

r−
σ2

1
2
−

β

(
d +

σ2
3

2

)
kp

 ,
Ĩ∗ =

d +
σ2

3
2

kp
,

Ỹ ∗ =
1
p

Kβ

r

r−
σ2

1
2
−

β

(
d +

σ2
3

2

)
kp

− a(d +
σ2

3
2 )

kp
− c−

σ2
2

2

 .
Proof. By the definition of ergodic property, for any w (w is a positive constant), one has

lim
t→∞

1
t

∫ t

0
(S2(s)∧w)ds =

∫
R3
+

(z2
1∧w)µ(dz1,dz2,dz3) a.s. (2.12)

Using the dominated convergence theorem and equation (2.12), one can see that

E

[
lim
t→∞

1
t

∫ t

0
(S2(s)∧w)ds

]
= lim

t→∞

1
t

∫ t

0
E

(
S2(s)∧w

)
ds < ∞, (2.13)

Easy, ∫
R3
+

(z2
1∧w)µ(dz1,dz2,dz3)< ∞.

Let w→ ∞, one has ∫
R3
+

z2
1µ(dz1,dz2,dz3)< ∞.

In other words, S2 is integrable with respect to the measure µ . By using the property of ergod-

icity, one sees that

lim
t→∞

1
t

∫ t

0
S(s)ds =

∫
R3
+

z1µ(dz1,dz2,dz3) a.s. (2.14)

Similarly, one can derive that

lim
t→∞

1
t

∫ t

0
I(s)ds =

∫
R3
+

z2µ(dz1,dz2,dz3) a.s.
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and

lim
t→∞

1
t

∫ t

0
Y (s)ds =

∫
R3
+

z3µ(dz1,dz2,dz3) a.s.

An application of Itô’s formula implies

d logS =

[
r− 1

2
σ

2
1 −

r
K

S−β I
]

dt +σ1dB1(t),

Integrating the above equation from 0 to t yields

logS(t)− logS(0) =
(

r− 1
2

σ
2
1

)
t− r

K

∫ t

0
S(s)ds−β

∫ t

0
I(s)ds+σ1B1(t).

Dividing both sides of the above equation by t and let t→+∞, we have

lim
t→∞

logS(t)
t

= r− 1
2

σ
2
1 −

r
K

∫
R3
+

z1µ(dz1,dz2,dz3)−β

∫
R3
+

z2µ(dz1,dz2,dz3) := ρ1.

If ρ1 > 0, there exists a T = T (ω) for any t > T one has

logS(t)>
ρ1

2
t.

Then

lim
t→∞

1
t

∫ t

0
S(s)ds→ ∞,

which is in contradiction with equation (2.14).

If ρ1 < 0, there exists a T = T (ω) for t > T one gets that

lim
t→∞

1
t

∫ t

0
S(s)d < 0,

which is in contradiction with equation (2.14).

Therefore

lim
t→∞

logS(t)
t

= 0.

Similarly, one can derive that

lim
t→∞

log I(t)
t

= 0, lim
t→∞

logY (t)
t

= 0.

So we have
r− σ2

1
2 −

r
K
∫

R3
+

z1µ(dz1,dz2,dz3)−β
∫

R3
+

z2µ(dz1,dz2,dz3) = 0,

−c− σ2
2

2 +β
∫

R3
+

z1µ(dz1,dz2,dz3)−a
∫

R3
+

z2µ(dz1,dz2,dz3)− p
∫

R3
+

z3µ(dz1,dz2,dz3) = 0,

−d− σ2
3

2 + kp
∫

R3
+

z2µ(dz1,dz2,dz3) = 0.
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Moreover, there exists a positive solution (S̃∗, Ĩ∗,Ỹ ∗) of equation
r− σ2

1
2 −

r
K S−β I = 0,

−c− σ2
2

2 +βS−aI− pY = 0,

−d− σ2
3

2 + kpI = 0,

(2.15)

if r >
σ2

1
2

and
kp

β (d +
σ2

3
2 )

r−
σ2

1
2
− r

Kβ

a(d +
σ2

2
2 )

kp
+ c+

σ2
2

2

> 1 are fulfilled.

The above discussion gives

P
{

lim
t→∞

1
t

∫ t

0
S(s)ds =

∫
R3
+

z1µ(dz1,dz2,dz3) = S̃∗
}
= 1,

P
{

lim
t→∞

1
t

∫ t

0
I(s)ds =

∫
R3
+

z2µ(dz1,dz2,dz3) = Ĩ∗
}
= 1,

P
{

lim
t→∞

1
t

∫ t

0
Y (s)ds =

∫
R3
+

z3µ(dz1,dz2,dz3) = Ỹ ∗
}
= 1.

(2.16)

This completes the proof.

3. Evolutionary adaptive dynamics

3.1. The model

When the resident population(the infected prey with trait x) was invaded by a rare mutant

prey population with a markedly different trait y, the predator-prey system (2.2) becomes

dS = S(t)
[

r
(

1− S(t)
K

)
−β (x)I(t)−β (y)Imut(t)

]
dt +σ1S(t)dB1(t),

dI = I(t) [β (x)S(t)− c(x)− p(x)Y (t)−a(x,x)I(t)−a(x,y)Imut ]dt +σ2(x)I(t)dB2(t),

dImut = Imut(t) [β (y)S(t)− c(y)− p(y)Y (t)−a(y,y)Imut(t)−a(y,x)I(t)]dt

+σ2(y)Imut(t)dB2(t),

dY = Y (t)
[
kp(x)I(t)+ k′p(y)Imut(t)−d

]
dt +σ3Y (t)dB3(t),

(3.1)

where the phenotypic traits x,y stand for the severity of the disease in I(t) and Imut(t), respec-

tively. S(t), I(t) and Imut(t), respectively, stand for the densities of susceptible prey, infected

prey with trait x, infected prey with trait y at time t, Y (t) represents the population density of
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predator at time t. β (x) and β (y) stand for the infection rates from susceptible S(t) to infected

I(t) with trait x and infected Imut(t) with trait y, respectively. c(x) and c(y) are the diseased

death rates of I(t) and Imut(t), respectively. p(x) and p(y) represent the attack rates on infected

prey I(t) and infected prey Imut(t), respectively. The competition coefficient a(x,y) denotes the

influence of trait x on trait y, a(x,x) and a(y,y) are the intraspecific competition coefficients of

I(t) and Imut(t), respectively. Bi(t)(i = 1,2,3) are independent Brownian motions with intensity

σ2
i (i = 1,2,3), K represents the environmental maximum capacity, r is the intrinsic growth rate

of S(t), d represents the natural death rate of predator. k and k′ (0 ≤ k,k′ ≤ 1) stand for the

conversion rates from I(t) to Y (t) and from Imut(t) to Y (t), respectively.

Generally speaking, the more severe the disease is, the weaker the population’s ability to

resist disturbance is. That is to say, the more severe the disease is, the more the dead diseased

prey is. Therefore, we choose the following interference intensity function:

σ2(x) = v
[
1− (1+0.2δx)exp(−0.2δx)

]
, (3.2)

where δ is a coefficient that is positively correlated with the intensity of stochastic perturbation,

v > 0 is a constant. See Fig. 1.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Trait value x

σ
2
(x

)

 

 

δ=1

δ=2

δ=5

FIG. 1. Convex-concave shape of the intensity of noises σ2(xi) as given by system

(3.2)(v = 1).

The greater pathogenic toxicity of the virus in infected prey implies the greater infection rate,

diseased death rate and predation rate. Therefore, in system (3.1), we choose the following

infection rate function, diseased death rate function, attack rate function:

β (x) = x+ l,c(x) = e1x, p(x) = e2x,
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where l,e1,e2 are positive constants.

It is widely accepted that prey with serious disease is at a disadvantage to survive when

competes with prey who has light disease. Therefore, the competition coefficient a(xi,x j) which

denotes the influence of trait x j on trait xi is an increasing function, which is given by

a(xi,x j) = f
(

1− 1
1+mexp(w(xi− x j))

)
, (3.3)

where f ,m,w are positive constants. See Fig. 2.

−5 0 5
0

0.5

1

1.5

2

x
i
−x

j

a(
x

i,x
j)

 

 

m=0.5

m=1

m=2

FIG. 2. Concave-convex shape of a(xi,x j) as given by (3.3)(m = 0.5;1;2; f = 2;w = 1.2).

Letting Imut = 0 and using the well-known Itô’s formula in the third equation of model (3.1),

we get

dImut

Imut
= d ln Imut =

[
β (y)S(t)− c(y)− p(y)Y (t)−a(y,x)I(t)−

σ2
2 (y)
2

]
dt +σ2(y)dB2(t).

Let

F(x,y) =
[
β (y)S(t)− c(y)− p(y)Y (t)−a(y,x)I(t)−

σ2
2 (y)
2

]
dt +σ2(y)dB2(t). (3.4)

Integrating both sides of equation (3.4) from 0 to t leads to∫ t

0
F(x,y)dt =β (y)

∫ t

0
S(s)ds−

∫ t

0
c(y)ds− p(y)

∫ t

0
Y (s)ds−a(y,x)

∫ t

0
I(s)ds−

∫ t

0

σ2
2 (y)
2

ds

+σ2(y)
(
B2(t)−B2(0)

)
.

(3.5)

Dividing both sides of equation (3.5) by t yields

〈F(x,y)〉= β (y)〈S(t)〉− c(y)− p(y)〈Y (t)〉−a(y,x)〈I(t)〉−
σ2

2 (y)
2

+
σ2(y)

(
B2(t)−B2(0)

)
t

.
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Letting t→ ∞, using limt→∞ t−1B(t) = 0 and limt→∞ t−1B(0) = 0, we see that

f (x,y)≡ lim
t→∞
〈F(x,y)〉= β (y)S̃∗− c(y)− p(y)Ỹ ∗−a(y,x)Ĩ∗−

σ2
2 (y)
2

, a.s. (3.6)

Note that f (x,y) is the long-term average exponential growth rate of the mutant population.

Hence, if f (x,y) is positive, then the mutant prey can invade, otherwise the resident prey can

not be invaded and the mutant prey will die out. So f (x,y) is the fitness function[23]. Then we

can obtain a local fitness gradient D(x) which determines the direction of evolution, and D(x)

is given by

D(x) =
∂ f (x,y)

∂y

∣∣∣∣∣
y=x

=
Kβ ′(x)

r

r−
σ2

1
2
−

β (x)
(

d +
σ2

3
2

)
kp(x)

− c′(x)−a′(x,x)
d +

σ2
3

2
kp(x)

− p′(x)
p(x)

×

Kβ (x)
r

r−
σ2

1
2
−

β (x)
(

d +
σ2

3
2

)
kp(x)

− a(x,x)(d +
σ2

3
2 )

kp(x)
− c(x)−

σ2
2 (x)
2


−σ2(x)σ ′2(x).

(3.7)

If D(x)> 0, the mutant infectious prey with trait y which is obviously bigger than x can invade

and replace the resident infectious prey population, otherwise if the fitness gradient D(x) < 0,

the resident infectious prey population can be invaded and took over by the mutant infectious

prey with trait y which is obviously smaller than x. Thus, we know that the direction of evolution

is determined by D(x). Since mutations are random and sufficiently small, so the evolutionary

dynamics of trait x can expressed as [9]

dx
dt

=
1
2

µσ
2Ĩ(x)

∗
D(x), (3.8)

where D(x) is the fitness gradient in equation (3.7), Ĩ(x)
∗

is the ecological equilibrium popula-

tion size of infected prey which is given by (2.16), µ represents the rate that a resident infectious

prey give birth to a mutant infectious prey, 1
2 µσ2 is the mutation rate of the infectious prey.

3.2. Evolutionary analysis
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When D(x∗) = 0, the trait x∗ is called an evolutionary singular strategy. At the evolutionary

singular strategy point x∗, whether the evolution continues depends on its evolutionary stability

and convergence stability. In the neighborhood of the evolutionary singular strategy x∗, if the

resident population with strategy x was invaded by the nearby mutant strategy y, then x∗ is called

the convergence stable strategy.

According to (3.7), we know that in the vicinity of x∗, if x < x∗, then D(x)> 0, otherwise if

x > x∗, then D(x)> 0. Therefore, the condition for convergence stable is as follows

dD(x)
dx

∣∣∣∣∣
x=x∗

=− Kβ ′(x∗)
rk2 p2(x∗)

[
β
′(x∗)

(
d +

σ2
3

2

)
kp(x∗)−β (x∗)

(
d +

σ2
3

2

)
kp′(x∗)

]

− p′′(x∗)p(x∗)− p′2(x∗)
p2(x∗)

[
Kβ (x∗)

r

(
r−

σ2
1

2
−

β (x∗)
(

d +
σ2

3
2

)
kp(x∗)

)

−
a(x∗,x∗)(d +

σ2
3

2 )

kp(x∗)
− c(x∗)− σ2(x∗)2

2

]
− c′′(x∗)−a′′(x∗,x∗)

d +
σ2

3
2

kp(x∗)

+a′(x∗,x∗)
d +

σ2
3

2
kp2(x∗)

− p′(x∗)
p(x∗)

[
Kβ ′(x∗)

r

(
r−

σ2
1

2
−

β (x∗)
(

d +
σ2

3
2

)
kp(x∗)

)

−
Kβ (x∗)

(
d +

σ2
3

2

)
rkp2(x∗)

(
β
′(x∗)p(x∗)−β (x∗)p′(x∗)

)

−

(
d +

σ2
3

2

)
kp2(x∗)

(
a′(x∗,x∗)p(x∗)−a(x∗,x∗)p′(x∗)

)
− c′(x∗)−σ2(x∗)σ ′2(x

∗)

]

−σ
′2
2 (x∗)−σ2(x∗)σ ′′2 (x

∗)+
Kβ ′′(x∗)

r

[
r−

σ2
1

2
−

β (x∗)
(

d +
σ2

3
2

)
kp(x∗)

]
< 0.

(3.9)

The singular strategy x∗ is evolutionary stable (i.e. ESS) if it satisfies

∂ f 2(x,y)
∂y

∣∣∣∣∣
y=x=x∗

=
Kβ ′′(x∗)

r

[
r−

σ2
1

2
−

β (x∗)
(

d +
σ2

3
2

)
kp(x∗)

]
− c′′(x∗)−a′′(x∗,x∗)

d +
σ2

3
2

kp(x∗)

− p′′(x∗)
p(x∗)

[Kβ (x∗)
r

(
r−

σ2
1

2
−

β (x∗)
(

d +
σ2

3
2

)
kp(x∗)

)
−

a(x∗,x∗)(d +
σ2

3
2 )

kp(x∗)

− c(x∗)− σ2(x∗)2

2

]
−σ

′2
2 (x∗)−σ2(x∗)σ ′′2 (x

∗)< 0.

(3.10)
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The singular strategy x∗ is a continuously stable strategy (i.e. CSS) if it is both convergence

stable and evolutionary stable, which will bring the endpoint of the evolution. If the evolu-

tionary singular point x∗ satisfies convergence stable but lacks evolutionary stable, it will brings

evolutionary branching. In other words, the single population will become two different species.

Otherwise, if the evolutionary singular strategy x∗ is both convergence stable and evolutionary

stable, the evolution will stop.

Proposition 3.1. If the singularity x∗ of (3.8) satisfies inequalities (3.9) and (3.10), the evolu-

tionary singular point x∗ is a continuously stable strategy (CSS); If the singularity x∗ of (3.8)

satisfies (3.9) but does not satisfy (3.10), the evolutionary singular point x∗ is a branching

point.
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FIG. 3. Pairwise invasibility plots. The dashed areas marked with ‘+’ indicate

that the fitness function f (x,y) > 0, in contrast, the areas marked with ‘−’ say

f (x,y) < 0. A is an evolutionary stable point, B is a branching point, C is a

repeller. (a) Multisingular strategies when δ = 5; (b) The singular strategy is an

evolutionary branching point when δ = 0.4;

We utilize ”pairwise invasibility plot” (PIP) to investigate how the intensity of noises affects

the results of evolution. Therefore, we use two different values of δ and obtained two PIPs,

see Fig. 3. Here we choose K = 1,k = 0.1,d = 0.1,r = 0.1,σ1 = 0.1,σ3 = 0.2,v = 1,m =

2,w = 1.2, f = 1, l = 0.5,e1 = 0.05,e2 = 0.05. In Fig. 3(a), we choose δ = 5, one sees that the

singular strategy x∗ is both evolutionarily stable and convergence. Thus x∗ is the endpoint of

the evolutionary process and is a CSS. In Fig. 3(b), we choose δ = 0.4, the singular strategy x∗



ADAPTIVE EVOLUTION OF A STOCHASTIC PREDATOR-PREY MODEL 19

is convergence stable but evolutionarily stable. Thus x∗ is an evolutionary branching point, and

all nearby mutant population can invade.

Repeller

Evolutionary branching

css
0 2 4 6 8 10

0

5

10

15

20

∆

x

FIG. 4. Bifurcation diagram for evolutionary singular strategy x and the intensity of

noise δ . Red solid line represents unstable singular strategy x, black solid line represents

the CSS, and read dashed line represents the repeller. The parameter values are K =

1,k = 0.1,d = 0.1,r = 0.1,σ1 = 0.1,σ3 = 0.2,v = 1,m = 2,w = 1.2, f = 1, l = 0.5,e1 =

0.05,e2 = 0.05.
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FIG. 5. Fitness landscape at the singular x∗. (a) δ = 0.4; (b) δ = 5; Other

parameter values: K = 1,k = 0.1,d = 0.1,r = 0.1,σ1 = 0.1,σ3 = 0.2,v = 1,m =

2,w = 1.2, f = 1, l = 0.5,e1 = 0.05,e2 = 0.05.

We next study the effect of different intensity of noise to the evolutionary stability and evolu-

tionary branching of the singular strategy. We first plot a bifurcation diagram, see Fig. 4. From

Fig. 4, an increase of the intensity of noise will lead to the decrease of singular strategy x. Once

the intensity of the noise exceeds the threshold value δ = 0.448, the evolutionary stability of
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the singular strategy will be changed. That is to say, noise with small intensity can lead to the

evolutionary branching, in contrast, noise with large intensity may cause a continuous stability

strategy (CSS). In Fig.5 (a), we choose δ = 0.4, it is easy to see that f (y,x) near strategy x∗ is

positive and convex, thus the strategy can experience evolutionary branching. In Fig.5(b), we

choose δ = 5, we can see that f (y,x) near strategy x∗ is negative and concave, thus the strategy

can not experience evolutionary branching.

4. Discussion

This paper considers a stochastic predator-prey model with disease in the prey under white

noise disturbances and this paper shows that the stochastic model has a unique stationary distri-

bution with ergodic property. Furthermore, we investigate asymptotic behavior of the stochastic

system around the endemic equilibrium of the deterministic model and we explored the evo-

lution of pathogen virulence of diseased prey with phenotype trait x. By modeling population

dynamics under these conditions, we gain the fitness function, then we give the conditions

under which the resident diseased prey population experienced evolutionary branching. The

biological significance of the results shows that an increase in the intensity of noise will cause

the decrease in the singular strategy x. In addition, noise with small intensity can lead to the

evolutionary branching, in contrast, noise with large intensity may cause a continuous stability

strategy (CSS), which implies that the white noise stochastic disturbance is advantage for the

control of the epidemic disease.

This paper intends to develop a theoretical framework for investigating the evolutionary adap-

tive dynamics of a stochastic differential system. We apply our theoretical method to understand

the evolutionary dynamics under stochastic differential equations. As a consequence, this pa-

per proposes a new theoretical method for evolutionary adaptive dynamics based on stochastic

differential equations. A promising extension of this work is to consider the environment with

disturbance of Lévy jumps or Markov process.
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