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Abstract. The aim of this paper is to study the impact of manual removal of Kappaphycus Alvarezii (KA) from the

corals in the region of Gulf of Mannar (GoM) and the spatial competition between KA and Native Algae (NA) on

coral with propagation delays of KA and NA. A non-linear system of ordinary differential equation (ODE) model

has been developed to study the linear stability and the impact of delay terms in the stability at an equilibrium

point.
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1. Introduction

The community structure of sedentary organisms is largely controlled by the outcome of di-

rect competition for space. Reefs are one such areas of intense competition between sessile

benthic organisms [25]. Sufficient access to space and light is crucial for survival on the reef.

The ability to establish, maintain and extend territory (i.e., to outcompete fellow benthic organ-

isms) can affect the composition, size, and distribution of organisms on the benthos [11]. In

reefs, competition between corals and benthic algae is important in determining the fundamen-

tal structure and during coral-algae phase shifts [13]. The appearance of corals on substrate

previously occupied by corals is often interpreted as evidence that algae actively compete with

corals for space. Along with native algae, the exotic algae such as KA also compete for space.

The faster growth rate makes it able to easily overgrow and outcompete NA and coral species.

Understanding the factors defining competitive outcomes among neighbors is thus critical for

predicting large-scale changes, such as transitions to alternate states within coral reefs.

Lotka-Volterra systems of differential equations have played a significant role in the develop-

ment of mathematical ecology. Lotka-Volterra models lack the complexity and realism of more

recently developed population models, but their generality makes them a convenient starting

point for analyzing ecological systems. Lotka-Volterra systems have assisted as a basis for the

development of more realistic models that entangle ratio-dependent functional responses.

Mathematical models have been developed to analyze the three way compettition between

sponges, macroalgae and coral to determine the reproduction of benthic competitors [23], par-

rotfish exploitation [3], sufficiently small levels of fishing mortality [4], grazing intensity [2]

and the role of sponge competition on coral reef alternative steady states [24].

We reported the shifting of algal dominated reef ecosystem due to the invasion of KA in Gulf

of Mannar [5]. Subsequently, the dominance of KA over NA and corals in competing for space

has also been reported. To simulate the three way competition among corals, KA and NA, we

propose a model as a system of non-linear ODE’s. Let x, y and z represent the percent cover of

coral, KA and NA respectively and it is assumed that x+y+z = 1,
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dx
dt

= rx(1− (x+ y+ z))−a1xy−a2xz(1)

dy
dt

= a1yx+a3yz+νy(1− (x+ y+ z))(2)

dz
dt

= a2zx+hz(1− (x+ y+ z))−a3zy(3)

where x - Coral growth with respect to time (t),

y - KA growth with respect to time (t),

z - NA growth with respect to time (t),

1-(x+y+z) - Turf growth with respect to time (t),

r - coral growth on turf (cm2/cm2/15d),

a1 - KA growth on coral (cm2/cm2/15d),

a2 - NA growth on coral (cm2/cm2/15d),

a3 - KA growth on NA (cm2/cm2/15d),

ν - KA growth on turf (cm2/cm2/15d),

h - NA growth on turf (cm2/cm2/15d).

The manual removal of KA from the coral reefs has been reported [5], we have incorporated

the manual removal rate term d of KA into the above model.

dx
dt

= rx− rx2− rxy− rxz−a1xy−a2xz+dy(4)

dy
dt

= a1yx+a3yz+νy−νyx−νy2−νyz−dy(5)

dz
dt

= a2zx+hz−hxz−hzy−hz2−a3zy(6)

where d is the manual removal rate of KA.

KA sexual reproduction by spores in the Gulf of Mannar Marine Biosphere Reserve (GoM)

in future, when environmental conditions unanimously favor this alga has been deliberated [6].

NA can produce sexually and asexually by forming flagellate and sometimes non-flagellate

spores. The vegetative propagation is achieved through fragmentation has been reported [12].

To analyze the impact of delays in propagation of KA and NA through vegetation/spores on
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coral-algae interactions, we propose the following delay model:

dx
dt

= rx− rx2− rxy− rxz−a1xy−a2xz+dy(7)

dy
dt

= a1yx+a3yz+νy(t− τ1)−νyx−νy2−νyz−dy(8)

dz
dt

= a2zx+hz(t− τ2)−hxz−hzy−hz2−a3zy(9)

where τ1 - time delay of propagation of KA through vegetation/spores,

τ2 - time delay of propagation of NA through vegetation/spores.

Stability analysis of the model for both non-delay and delay systems is investigated by Sandip

Banarjee et.al., [9]. Some explicit formulae for determining the stability and direction of Hopf

bifurcation periodic solution bifurcating from Hopf bifurcation are obtained [10]. The local

stability of models involving delay dependent parameters has been detailed [15]. Periodic os-

cillations in leukopoiesis models with two delays has been reported [17]. Stability analysis of

delay differential equation (DDE) model with two discrete delays has been investigated [19,

20]. Analysis of the bifurcation due to the introduction of the delay term can be reduced to

finding whether a related polynomial equation has positive real roots has been discussed [21].

A decomposition technique to investigate the stability of some exponential polynomials, that

is, to find conditions under which all zeros of the exponential polynomials have negative real

parts has been reported [22]. Stability analysis of a multiteam prey-predator model and two-

prey one-predator model has been discussed [1,16]. A delay system is absolutely stable if it

is asymptotically stable for all values of the delays has been reported [27]. Several studies

on stability analysis of HIV model with delay terms have been documented by many authors

[7,8,14,18,26].

In section 2, we examined about equilibria of the system and the existence of the equilib-

ria. Section 3 shows that the existence of stability analysis at different equilibria and also we

have proved the existence and uniqueness theorem for the equilibria which capture stability. In

section 4, stability analysis of the system of Eqs.(7)-(9) have been discussed at E3(0,y∗,0). In

section 5, numerical simulations have been executed. The paper ends with a conclusion.
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2. Equilibria of the system

In this section we discussed about the existence of equilibria of the system of Eqs.(4)-(6).

The system has the following equilibria:

(i) the trivial equilibrium E0(0,0,0)

(ii) the coral and KA free equilibrium E1(0,0,1)

(iii) the KA and NA free equilibrium E2(1,0,0)

(iv) the coral and NA free equilibrium E3(0,y∗,0)

(v) the coral free equilibrium E4(0,y1,z1)

(vi) the NA free equilibrium E5(x2,y2,0)

Existence of equilibria:

1. For the equilibrium E3(0,y∗,0), y∗ is given by y∗ = υ−d
υ

. If d < υ , then E3(0,y∗,0) exists.

2. For E4(0,y1,z1), y1 and z1 are given by y1 =
h(a3−d)

υh+(h+a3)(a3−υ) ,

z1 = 1− (h+a3)(a3−d)
υh+(h+a3)(a3−υ) . If d < a3 and (h+a3)(a3−d)

υh+(h+a3)(a3−υ) < 1, then E4(0,y1,z1) exists.

3. For E5(x2,y2,0), x2 and y2 is given by

x2 =
[−d(a1−υ)+υa1−dr−da1]±

√
[d(a1−υ)−υa1+dr+da1]2+4[rυ+r(a1−υ)+a1(a1−υ)](υd−d2)

2[−rυ−r(a1−υ)−a1(a1−υ)] ,

y2 =
1
υ
[(a1−υ){−d(a1−υ)+υa1−dr−da1±

√
[d(a1−υ)−υa1+dr+da1]2+4[rυ+r(a1−υ)+a1(a1−υ)](υd−d2)

2[−rυ−r(a1−υ)−a1(a1−υ)] }+

υ−d]. E5 exists if x2 and y2 values are positive.

3. Existence of stability analysis at different equilibrium points

Theorem 3.1. The system of Eqs. (4)-(6) is always unstable around the trivial equilibrium

E0(0,0,0).

Proof. The Jacobian matrix of the system of Eqs. (4)-(6) is given by,∣∣∣∣∣∣∣∣∣∣
r−2rx− ry− rz−a1y−a2z −rx−a1x+d −rx−a2x

a1y−νy a1x+a3z+νe−λτ1 −νx−2νy−νz−d a3y−νy

a2z−hz −hz−a3z a2x+he−λτ2 −hx−hy−2hz−a3y

∣∣∣∣∣∣∣∣∣∣
The required characteristic equation at E0(0,0,0) is given by (r−λ )(ν − d−λ )(h−λ )=0.

The roots of the characteristic equation is r, υ − d and h which has two positive eigen values.

So, the system is unstable around the trivial equilibrium E0(0,0,0).

Theorem 3.2. The system of Eqs. (4)-(6) is unstable around the equilibrium E2(1,0,0).
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Proof. The roots of the characteristic equation of the system of Eqs. (4)-(6) at E2(1,0,0) are

-r, a1− d and a2 which has one positive eigen value. So, the system is unstable around the

equilibrium E2(1,0,0).

Theorem 3.3. (Existence and Uniqueness) The system of Eqs.(4)-(6) is stable around the

equilibria E1,E4 and E5 and it has a unique solution under the conditions given in the proof.

Proof. The proof of the theorem is from the following lemma.

Lemma 3.3.1. The system of Eqs. (4)-(6) is locally asymptotically stable around the equilib-

rium E1(0,0,1) if d > a3.

Proof. The roots of the characteristic equation of the system of Eqs. (4)-(6) at E1(0,0,1) are

−a2, a3−d and -h. All the eigen values are negative if d > a3. So, the system is stable around

the equilibrium E1(0,0,1).

Lemma 3.3.2. The system of Eqs. (4)-(6) is locally asymptotically stable around the equilibrium

E4(0,y1,z1) if A1 > 0, C1 > 0 and A1B1−C1 > 0.

Proof. The roots of the characteristic equation of the system of Eqs. (4)-(6) at E4(0,y1,z1) are

given by, λ 3 +A1λ 2 +B1λ +C1 = 0 where

A1 =−[(h−hy1−2hz1−a3y1)+(a3z1 +υ−2υy1−υz1−d)+(r− ry1− rz1−a1y1−a2z1)],

B1 = (h−hy1−2hz1−a3y1)(r−ry1−rz1−a1y1−a2z1)+(a3z1+υ−2υy1−υz1−d)[(h−

hy1−2hz1−a3y1)+(r−ry1−rz1−a1y1−a2z1)]−(a3y1−υy1)(−hz1−a3z1)−d(a1y1−υy1)

C1 = (r− ry1 − rz1 − a1y1 − a2z1)(a3z1 + υ − 2υy1 − υz1 − d)(h− hy1 − 2hz1 − a3y1)−

(a3y1−υy1)(−hz1−a3z1)(r−ry1−rz1−a1y1−a2z1)−d[(a1y1−υy1)(h−hy1−2hz1−a3y1)−

(a3y1−υy1)(a2z1−hz1)]

So, the system of Eqs.(4)-(6) will be asymptotically stable in the neighbourhood of E4(0,y1,z1)

if A1 > 0, C1 > 0 and A1B1−C1 > 0.

Lemma 3.3.3 The system of Eqs. (4)-(6) is locally asymptotically stable around the equilibrium

E5(x2,y2,0) if A2 > 0, C2 > 0 and A2B2−C2 > 0.

Proof. The roots of the characteristic equation of the system of Eqs. (4)-(6) at E5(x2,y2,0) are

given by, λ 3 +A2λ 2 +B2λ +C2 = 0 where

A2 =−[a2x2 +h−hx2−hy2−a3y2 +a1x2 +υ−υx2−2υy2−d + r−2rx2− ry2−a1y2],
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B2 = (a2x2+h−hx2−hy2−a3y2)[(a1x2+υ−υx2−2υy2−d)+(r−2rx2− ry2−a1y2)]+

(r−2rx2− ry2−a1y2)(a1x2 +υ−υx2−2υy2−d)+(−rx2−a1x2 +d)(a1y2−υy2),

C2 = (a2x2 + h− hx2− hy2− a3y2)[(r− 2rx2− ry2− a1y2)(a1x2 + υ − υx2− 2υy2− d)−

(−rx2−a1x2 +d)(a1y2−υy2)]

So, the system of Eqs.(4)-(6) will be asymptotically stable in the neighbourhood of E5(x2,y2,0)

if A2 > 0, C2 > 0 and A2B2−C2 > 0.

Hence the required result is proved from the above Lemma 3.3.1, 3.3.2 and 3.3.3.

4. Stability analysis at E3(0,y∗,0)

Lemma 4.1. Solutions of system of Eqs.(7)-(9) with initial conditions x(t), y(t) and z(t) > 0 for

t ≥ 0 are positive.

We now focus on the stability of the system of Eqs.(7)-(9).

The Jacobian matrix is given by,∣∣∣∣∣∣∣∣∣∣
r−2rx− ry− rz−a1y−a2z −rx−a1x+d −rx−a2x

a1y−νy a1x+a3z+νe−λτ1 −νx−2νy−νz−d a3y−νy

a2z−hz −hz−a3z a2x+he−λτ2 −hx−hy−2hz−a3y

∣∣∣∣∣∣∣∣∣∣
The required characteristic equation at the equilibrium E3(0,y∗,0)is,∣∣∣∣∣∣∣∣∣

r− ry∗−a1y∗−λ d 0

a1y∗−νy∗ νe−λτ1−2νy∗−d−λ a3y∗−νy∗

0 0 he−λτ2−hy∗−a3y∗−λ

∣∣∣∣∣∣∣∣∣=0

which gives,

λ
3 +Aλ

2 +Bλ +C+ e−λτ1[D1λ
2 +E1λ +F1]+ e−λτ2[D2λ

2 +E2λ +F2]

+e−λ (τ1+τ2)[Gλ +H] = 0(10)

where A = 2νy∗+d +hy∗+a3y∗− r+ ry∗+a1y∗,

B = 2νhy∗2 + 2νa3y∗2 + dhy∗+ da3y∗− da1y∗+ dνy∗− [(r− ry∗− a1y∗)(2νy∗+ d + hy∗+

a3y∗)],

C = (ry∗+a1y∗−r)(2νhy∗2+2νa3y∗2+dhy∗+da3y∗)−da1hy∗2−da1a3y∗2+dνhy∗2+dνa3y∗2,

D1 =−ν ,

E1 = ν(r− ry∗−a1y∗)−νhy∗−a3νy∗,
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F1 = (r− ry∗−a1y∗)(νhy∗+a3y∗ν),

D2 =−h, E2 = hr−hry∗−ha1y∗−2νhy∗−dh,

F2 = (r− ry∗−a1y∗)(2νhy∗+dh)+dνhy∗−da1hy∗,

G = νh, H = (ry∗+a1y∗− r)νh.

Case(i): τ1 = 0, τ2 = 0

In this case the characteristic equation (10) reduces to,

λ
3 +λ

2(A+D1 +D2)+λ (B+E1 +E2 +G)+(C+F1 +F2 +H) = 0(11)

Theorem 4.1. Assume that (as1) (B+E1 +E2 +G)> 0,(C+F1 +F2 +H)> 0 and (A+D1 +

D2)(B+E1 +E2 +G)− (C +F1 +F2 +H) > 0, then the system (7-9) without delay will be

locally asymptotically stable around E3(0,y∗,0).

Case(ii): τ1 = 0, τ2 > 0

In this case the characteristic equation (10) reduces to,

λ
3 +λ

2(A+D1)+λ (B+E1)+(C+F1)+ e−λτ2(D2λ
2 +(E2 +G)λ

+(F2 +H)) = 0(12)

Let iω(ω > 0) be a root of Eq.(12).

−iω3−ω
2(A+D1)+ iω(B+E1)+(C+F1)+(−D2ω

2 +(E2 +G)iω

+(F2 +H))(cos ωτ2− isin ωτ2) = 0(13)

Separating the real and imaginary parts we get,

(E2 +G)ω sin ωτ2 +(F2 +H−D2ω
2)cos ωτ2 = ω

2(A+D1)− (C+F1)(14)

(E2 +G)ω cos ωτ2− (F2 +H−D2ω
2)sin ωτ2 = ω

3−ω(B+E1)(15)

Squaring and adding (14) and (15),

ω
6 +ω

4[(A+D1)
2−2(B+E1)−D2

2]+ω
2[(B+E1)

2−2(A+D1)(C+F1)

+2(F2 +H)D2− (E2 +G)2]+ (C+F1)
2− (F2 +H)2 = 0(16)
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It follows that if, (A+D1)
2− 2(B+E1)−D2

2 > 0, (B+E1)
2− 2(A+D1)(C +F1)+ 2(F2 +

H)D2− (E2 +G)2 > 0 and (as2) (C+F1)
2− (F2 +H)2 > 0 hold then Eq.(16) has no positive

roots.

Hence all roots of Eq.(12) have negative real parts when τ2 ∈ [0,∞) under (as1) and (as2).

If (as1) and (as3) (C+F1)
2− (F2+H)2 < 0 hold, then Eq.(16) has a unique positive root ω2

0 .

Substitute ω2
0 in Eq.(14) and Eq.(15) we have,

τ2n =
1

ω0
cos−1 {ω4(E2 +G)−ω2(B+E1)(E2 +G)

ω2(E2 +G)2 +(F2 +H−D2ω2)2

+
(F2 +H−D2ω2)[ω2(A+D1)− (C+F1)]

ω2(E2 +G)2 +(F2 +H−D2ω2)2 }+ 2nπ

ω0
, n = 0,1,2...

If (as1) and (as4) (A+D1)
2−2(B+E1)−D2

2 > 0, (B+E1)
2−2(A+D1)(C+F1)+2(F2 +

H)D2−(E2+G)2 > 0, (C+F1)
2−(F2+H)2 > 0 and [(B+E1)

2−2(A+D1)(C+F1)+2(F2+

H)D2−(E2+G)2]2 > 4[(C+F1)
2−(F2+H)2] hold then Eq.(16) has two positive roots ω2

+,ω
2
−.

Substitute ω2
± into Eq.(12) gives,

τ
±
2k =

1
ω±

cos−1 {
ω4
±(E2 +G)−ω2

±(B+E1)(E2 +G)

ω2
±(E2 +G)2 +(F2 +H−D2ω2

±)
2

+
(F2 +H−D2ω2

±)[ω
2
±(A+D1)− (C+F1)]

ω2
±(E2 +G)2 +(F2 +H−D2ω2

±)
2 }+ 2kπ

ω±
, k = 0,1,2...

Let λ (τ2) be the root of Eq.(12) satisfying Reλ (τ2n) = 0 (rep.Reλ (τ±2k) = 0) and Imλ (τ2n) =

ω0 (rep.Imλ (τ±2k) = ω±) .

We can obtain that,[
d

dτ2
Re(λ )

]
τ2=τ20 ,ω=ω0

> 0,
[

d
dτ2

Re(λ )
]

τ2=τ
+
2k,ω=ω+

> 0,
[

d
dτ2

Re(λ )
]

τ2=τ
−
2k,ω=ω−

< 0

Lemma 4.2. For τ1 = 0, assume that (as1) is satisfied. Then, the following holds.

(i) If (as2) holds, then the equilibrium E(0, y∗,0) is asymptotically stable for all τ2 ≥ 0.

(ii) If (as3) holds, then the equilibrium E(0, y∗,0) is asymptotically stable for τ2 < τ20 and

unstable for τ2 > τ20 . Furthermore system undergoes a Hopf bifurcation at E3(0,y∗,0) when

τ2 = τ20 .

Case(iii): τ1 > 0, τ2 = 0
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In this case the characteristic equation will be,

λ
3 +λ

2(A+D2)+λ (B+E2)+(C+F2)+ e−λτ1[D1λ
2 +λ (E1 +G)

+(F1 +H)] = 0(17)

Let iω(ω > 0) be a root of Eq.(17). Then, separating the real and imaginary parts,

(E1 +G)ω sin ωτ1 +(F1 +H−D1ω
2)ω cos ωτ1 = ω

2(A+D2)− (C+F2)(18)

(E1 +G)ω cos ωτ1− (F1 +H−D1ω
2)sin ωτ1 = ω

3−ω(B+E2)(19)

which implies,

cos ωτ1 =
ω4[E1 +G−D1(A+D2)]+ω2[CD1 +F2D1 +AF1 +AH +D2F1]

ω4D2
1 +ω2[(E1 +G)2−2D1(F1 +H)]+(F1 +H)2

+
ω2[D2H− (B+E2)(E1 +G)]− (C+F2)(F1 +H)

ω4D2
1 +ω2[(E1 +G)2−2D1(F1 +H)]+(F1 +H)2(20)

sin ωτ1 =
ω7D2

1 +ω5[D1(A+D2)(E1 +G)−2D1(F1 +H)−D2
1(B+E2)]+ω3[(F1 +H)2− (B+E2)(E1 +G)2]

ω6D3
1 +ω4[D1(E1 +G)2−3D1(F1 +H)]+ω2[3D1(F1 +H)2− (E1 +G)2(F1 +H)]− (F1 +H)3

+
ω3[(B+E2)2D1(F1 +H)− (E1 +G)[CD1 +F2D1 +AF1 +AH +D2F1 +D2H− (B+E2)(E1 +G)]]

ω6D3
1 +ω4[D1(E1 +G)2−3D1(F1 +H)]+ω2[3D1(F1 +H)2− (E1 +G)2(F1 +H)]− (F1 +H)3

+
ω[(E1 +G)(C+F2)(F1 +H)− (B+E2)(F1 +H)2]

ω6D3
1 +ω4[D1(E1 +G)2−3D1(F1 +H)]+ω2[3D1(F1 +H)2− (E1 +G)2(F1 +H)]− (F1 +H)3

(21)

Squaring and adding (20) and (21),

ω
6 +ω

4[(A+D2)
2−2(B+E2)−D2

1]+ω
2[(B+E2)

2−2(A+D2)(C+F2)

+2(F1 +H)D1− (E1 +G)2]+ (C+F2)
2− (F1 +H)2 = 0(22)

Let ψ(W )=W 3+W 2[(A+D2)
2−2(B+E2)−D2

1]+W [(B+E2)
2−2(A+D2)(C+F2)+2(F1+

H)D1− (E1 +G)2]+ (C+F2)
2− (F1 +H)2 = 0 where W = ω2.

The function ψ has positive roots iff (C+F2)
2− (F1 +H)2 < 0.

Without loss of generality, let Wp be the positive roots of ψ = 0 and let ωp =
√

Wp. We note

that unique solution of θ ∈ [0,2π] of Eq.(20) and Eq.(21) is,

θ = cos−1 {ω4[E1 +G−D1(A+D2)]+ω2[CD1 +F2D1 +AF1 +AH +D2F1]

ω4D2
1 +ω2[(E1 +G)2−2D1(F1 +H)]+(F1 +H)2

+
ω2[D2H− (B+E2)(E1 +G)]− (C+F2)(F1 +H)

ω4D2
1 +ω2[(E1 +G)2−2D1(F1 +H)]+(F1 +H)2}(23)
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if sin(θ) > 0, i.e., ω6D2
1 +ω4[D1(A+D2)(E1 +G)− 2D1(F1 +H)−D2

1(B+E2)]+ω2[(F1 +

H)2−(B+E2)[(E1+G)2−2D1(F1+H)]−(E1+G)[CD1+F2D1+AF1+AH+D2F1+D2H−

(B+E2)(E1 +G)]]+(E1 +G)(C+F2)(F1 +H)− (B+E2)(F1 +H)2 > 0 and

θ = 2π− cos−1 {ω4[E1 +G−D1(A+D2)]+ω2[CD1 +F2D1 +AF1 +AH]

ω4D2
1 +ω2[(E1 +G)2−2D1(F1 +H)]+(F1 +H)2

+
ω2[D2F1 +D2H− (B+E2)(E1 +G)]− (C+F2)(F1 +H)

ω4D2
1 +ω2[(E1 +G)2−2D1(F1 +H)]+(F1 +H)2 }(24)

if ω6D2
1+ω4[D1(A+D2)(E1+G)−2D1(F1+H)−D2

1(B+E2)]+ω2[(F1+H)2−(B+E2)[(E1+

G)2−2D1(F1+H)]−(E1+G)[CD1+F2D1+AF1+AH+D2F1+D2H−(B+E2)(E1+G)]]+

(E1 +G)(C+F2)(F1 +H)− (B+E2)(F1 +H)2 ≤ 0.

We now define two sequences,

τ
1,i
1,p =

1
ωp
{cos−1{ω4[E1 +G−D1(A+D2)]+ω2[CD1 +F2D1 +AF1 +AH]

ω4D2
1 +ω2[(E1 +G)2−2D1(F1 +H)]+(F1 +H)2

+
ω2[D2F1 +D2H− (B+E2)(E1 +G)]− (C+F2)(F1 +H)

ω4D2
1 +ω2[(E1 +G)2−2D1(F1 +H)]+(F1 +H)2 }+2iπ}(25)

τ
2,i
1,p =

1
ωp
{2π− cos−1{ω4[E1 +G−D1(A+D2)]+ω2[CD1 +F2D1 +AF1]

ω4D2
1 +ω2[(E1 +G)2−2D1(F1 +H)]+(F1 +H)2

+
ω2[AH +D2F1 +D2H− (B+E2)(E1 +G)]− (C+F2)(F1 +H)

ω4D2
1 +ω2[(E1 +G)2−2D1(F1 +H)]+(F1 +H)2 }+2iπ}(26)

Theorem 4.2. Let τ∗1,p = τ
1,i
1,p or τ∗1,p = τ

2,i
1,p that is τ∗1,p represents an element either of the se-

quence τ
1,i
1,p or τ

2,i
1,p associated with ωp. Then the equation, λ 3+λ 2(A+D2)+λ (B+E2)+(C+

F2)+ e−λτ1 [D1λ 2 +λ (E1 +G)+ (F1 +H)] = 0 has a pair of simple conjugate roots ±iωp for

τ2 = τ∗1,p which satisfies, sign{dReλ

dτ1
|τ=τ∗1,p

}= sign ψ
′
(ω2

p). Denoting τ∗1 = mini∈N{τ1,i
1,p,τ

2,i
1,p}, it

is concluded that the steady state (0,y∗,0) is locally asymptotically stable if τ1 < τ∗1 and a Hopf

bifurcation occurs at (0,y∗,0) when τ1 = τ∗1 iff ψ
′
(ω2

p)> 0.

Proof. We prove the theorem by contradiction. Let ±iωp be a pair of purely imaginary roots of

Eq.(17) and let λ (τ1) = ψ(τ1)+ iω(τ1) be the branch of roots of Eq.(17) with ψ(τ∗1,p) = 0 and

ω(τ∗1,p) = ωp.

We assume that λ (τ∗1,p) is not a simple root of Eq.(17), then both Eq.(17) and derivative of

Eq.(17) share the same root, which implies,
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λ
3 +λ

2(A+D2)+λ (B+E2)+(C+F2)+ e−λτ1 [D1λ
2 +λ (E1 +G)

+(F1 +H)] = 0(27)

dλ

dτ1
{3λ

2 +2λ (A+D2)+(B+E2)+ e−λτ1(−D1τ1λ
2 +2D1λ −λτ1(E1 +G)

+(E1 +G)− τ1(F1 +H))}−λ (D1λ
2 +λ (E1 +G)+(F1 +H))e−λτ1 = 0(28)

at λ = λ (τ∗1,p). Substitute λ = λ (τ∗1,p) = ω(τ∗1,p) = ωp in Eq.(27) and Eq.(28). Separating the

real and imaginary parts,

(E1 +G)ωp sin ωpτ
∗
1,p− (D1ω

2
p− (F1 +H))cos ωpτ

∗
1,p = 0(29)

(E1 +G)ωp cos ωpτ
∗
1,p +(D1ω

2
p− (F1 +H))sin ωpτ

∗
1,p = 0(30)

and

(E1 +G)ωp cos ωpτ
∗
1,p +(D1ω

2
p− (F1 +H))sin ωpτ

∗
1,p = ω

3
p−ωp(B+E2)(31)

(E1 +G)ωp sin ωpτ
∗
1,p− (D1ω

2
p− (F1 +H))cos ωpτ

∗
1,p = ω

2
p(A+D2)− (C+F2)(32)

Considering the fact that ωp > 0 and using Eqs.(29),(30),(31) and (32), we obtain ω2
p =

C+F2
A+D2

and ω2
p = B+E2. Since C+F2

A+D2
6= B+E2, we arrive at a contracdiction.

Hence we conclude that ±iωp are simple roots of Eq.(17). From Eqs.(27) and (28), we get

eλτ1 = − [λ 2D1 +λ (E1 +G)+(F1 +H)]

λ 3 +λ 2(A+D2)+λ (B+E2)+C+F2
(33) (

dλ

dτ1

)−1

= − [3λ 2 +2λ (A+D2)+(B+E2)]

λ (λ 3 +λ 2(A+D2)+λ (B+E2)+C+F2)

+
2D1λ +E1 +G

λ (λ 2D1 +λ (E1 +G)+(F1 +H))
− τ1

λ
(34)

Eliminating eλτ1 we get,(
dλ

dτ1

)−1

τ1=τ∗1,p

=
−[3(−ω2

p)+2iωp(A+D2)+B+E2]

iωp[−iω3
p−ω2

p(A+D2)+ iωp(B+E2)+C+F2]

+
2D1iωp +E1 +G

iωp[−D1ω2
p + iωp(E1 +G)+F1 +H]

−
τ∗1,p
iωp

(35)
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Consequently,

Re
(

dλ

dτ1

)−1

τ1=τ∗1,p

=
3ω4

p +ω2
p[2(A+D2)

2−4(B+E2)]+(B+E2)
2

ω2
p(ω

2
p− (B+E2))2 +[C+F2−ω2

p(A+D2)]2

− 2(A+D2)(C+F2)

ω2
p(ω

2
p− (B+E2))2 +[C+F2−ω2

p(A+D2)]2

+
2D1[F1 +H−D1ω2

p]− (E1 +G)2

ω2
p(E1 +G)2 +[F1 +H−D1ω2

p]
2(36)

Now, ω2
p(E1 +G)2 + [F1 +H −D1ω2

p]
2 = ω6

p +ω4
p[(A+D2)

2− 2(B+E2)]+ω2
p[(B+E2)

2−

2(A+D2)(C+F2)]+(C+F2)
2 = ω2

p(ω
2
p− (B+E2))

2−ω2
p(A+D2)+(C+F2)

which gives,

Re
(

dλ

dτ1

)−1

τ1=τ∗1,p

=
3ω4

p +ω2
p[2(A+D2)

2−4(B+E2)]+(B+E2)
2

ω2
p(ω

2
p− (B+E2))2 +[C+F2−ω2

p(A+D2)]2

− 2(A+D2)(C+F2)

ω2
p(ω

2
p− (B+E2))2 +[C+F2−ω2

p(A+D2)]2

+
2D1[F1 +H−D1ω2

p]− (E1 +G)2

ω2
p(ω

2
p− (B+E2))2 +[C+F2−ω2

p(A+D2)]2

Re
(

dλ

dτ1

)−1

τ1=τ∗1,p

=
ψ ′(ω2

p)

ω2
p(ω

2
p− (B+E2))2 +[C+F2−ω2

p(A+D2)]2

Since

sign{Re
(

dλ

dτ1

)−1

τ1=τ∗1,p

}= sign{dRe(λ )
dτ1

|τ1=τ∗1,p
}

we get,

sign{dRe(λ )
dτ1

|τ1=τ∗1,p
}= sign{ψ ′(ω2

p)}

If ψ ′(ω2
p) > 0, then sign{dRe(λ )

dτ1
|τ1=τ∗1,p

} > 0. So the system will be locally asymptotically

stable when τ1 < τ∗1,p and a Hopf bifurcation occurs at (0,y∗,0) at τ1 = τ∗2,p iff ψ ′(ω2
p)> 0.

Case(iv): τ1 > 0, τ2 > 0

Let us now state a result according to the sign of the real parts of the roots of Eq.(10) in

order to study the local stability of the positive steady state (0,y∗,0) of the system (7)-(9).

Proposition 4.1. If all the roots of the Eq.(10) have negative real parts for some τ1 > 0, then
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there exists a τ∗2 (τ1)> 0 such that all the roots of Eq.(10) (i.e., with τ2 > 0) have negative real

parts when τ2 < τ∗2 (τ1).

Considering the above proposition we can now state the following theorem.

Theorem 4.3. If we assume that the hypothesis (Proposition 2.5) hold, then for any τ1 ∈ [0,τ∗1 )

there exists a τ∗2 (τ1) > 0 such that the positive equilibrium (0,y∗,0) of the system is locally

asymptotically stable when τ1 ∈ [0,τ∗1 ).

Proof. Using the above theorem, we can say that all the roots of Eq.(10) have negative real parts

when τ1 ∈ [0,τ∗1 ) and by proposition we can conclude that there exists a τ∗2 (τ1) > 0 such that

all roots of Eq.(10) have negative real parts when τ2 < τ∗2 (τ1). Hence the equilibrium (0,y∗,0)

of system (7)-(9) is locally asymptotically stable when τ1 ∈ [0,τ∗2 (τ1)).

5. Numerical Simulation

In this section we present numerical results of the system (7)-(9) to verify the analytical pre-

dictions obtained in previous section. Let us consider the system with the parameter values

r=0.47, a1=0.45, a2=0.01, a3=0.39, ν=0.76, h=0.07. So the system (7)-(9) has a positive equi-

librium E(0, 0.8684, 0). When τ1 = 0 and τ2 = 0 the equilibrium E is asymptotically stable. Fig

1 shows that the impact of the coral, KA and NA without delays after the manual removal rate of

KA. Fig 2 shows that growth rate of KA when τ1 = 4 and there is no time delay of propagation

of NA through vegetation/spores.

Figure 1: τ1 = 0 ,τ2 = 0 and d = 0.
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Figure 2: τ1 = 4, τ2 = 0 and d = 0

Figure 3: τ1 = 0, τ2 = 3 and d = 0

Figure 4: τ1 = 4, τ2 = 3 and d = 0
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Figure 5: τ1 = 0 ,τ2 = 0 and d = 0.2

Figure 6: τ1 = 4 ,τ2 = 0 and d = 0.2

Figure 7: τ1 = 0 ,τ2 = 3 and d = 0.2
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Figure 8: τ1 = 4 ,τ2 = 3 and d = 0.2

Fig 3 gives the time evolution of three populations when time delay of propagation of NA

through vegetation/spores is taken into account, where time delay of propagation of KA through

vegetation/spores is zero. The positive equilibrium E is asymptotically stable for τ1=0 and τ2=3.

Fig 4 shows that the growth rate of KA and NA. The steady state is asymptotically stable when

τ1 = 4 and τ2 = 3.

6. Conclusion

We have analyzed the effect of two time delays on the coral reef system with the manual

removal rate of KA. The actual manual removal rate of KA is very much lesser than our vision

in the field. For non-delay case the growth rate of coral increases after the manual removal

rate of KA. Then, we have considered the delay case. In the presence of the time delay of

propagation of KA through vegetation/spores, the growth rate of KA increases. In the absence

of the time delay of propagation of KA through vegetation/spores, the time evolution of three

populations are asymptotiocally stable. In the presence of both the time delays (τ1, τ2), the

system is asymptotically stable. Finally, the impact of manual removal rate of KA triggers its

growth.
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