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Abstract. The dynamics of the spatial competition mathematical model for the invasion, removal of Kappaphycus

Algae (KA) in Gulf of Mannar (GoM) with propagation delays is investigated by applying the normal form theory

and the center manifold theorem.
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In recent years we have witnessed an increasing interest in dynamical systems with time

delays, especially in applied mathematics. Stability and direction of the Hopf bifurcation for

the predator-prey system have been discussed by using normal form theory and center manifold

theory [5,6,10,13,15,16,17]. Direction and stability of the equilibrium for a neural network

model with two delays have been investigated [7,12]. Bifurcation analysis of the predtor-prey

model has been detailed [8]. Direction and stability of the equilibrium involving various fields

have been discussed [4,9,11,14]. We reported the shifting of algal dominated reef ecosystem due

to the invasion of KA in Gulf of Mannar [1]. Subsequently, the dominance of KA over NA and

corals in competing for space has also been reported. KA sexual reproduction by spores in the

Gulf of Mannar Marine Biosphere Reserve (GoM) in future, when environmental conditions

unanimously favor this alga has been deliberated [2]. To simulate the three way competition

among corals, KA and NA, we proposed the following system of non-linear ODE’s [3].

dx
dt

= rx− rx2− rxy− rxz−a1xy−a2xz+dy

dy
dt

= a1yx+a3yz+νy(t− τ1)−νyx−νy2−νyz−dy

dz
dt

= a2zx+hz(t− τ2)−hxz−hzy−hz2−a3zy

(1.1)

2. Direction and Stability of Hopf bifurcation

We assume that the system undergoes a Hobf bifurcation at the positive equilibrium E(0,y∗,0)

for τ1 = τ∗1 and then±iω denotes the corresponding purely imaginary roots of the characteristic

equation at the positive equilibrium E(0,y∗,0).

Without loss of generality, we assume that τ∗2 < τ∗1 where τ∗2 ∈ (0,τ2
∗
0) and τ1 = τ∗1 +µ . Let

x11 = x− x∗, x21 = y1− y∗1, x31 = y2− y∗2 , x̄i1 = µi(τt), i=1,2,3... Here µ = 0 is the bifurcation

parameter and dropping the bars, the system becomes a functional differential equation in

C =C([−1,0],R3) as

dX
dt

= Lµ(Xt)+ f (µ,Xt) (2.1)
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where x(t) = (x11,x21,x31) ∈ R3 and Lµ : C→ R3, f : R×C→ R3 are respectively given by

Lµ(φ) = (τ∗1 +µ)B


φ1(0)

φ2(0)

φ3(0)

+(τ∗1 +µ)C


φ1(
−τ∗2
τ1

)

φ2(
−τ∗2
τ1

)

φ3(
−τ∗2
τ1

)

+(τ∗1 +µ)D


φ1(−1)

φ2(−1)

φ3(−1)

 (2.2)

and

f (µ,φ) = (τ∗1 +µ)Q (2.3)

where Q=


(r− rφ2(0)−a1φ2(0))φ1(0)+dφ2(0)

(a1φ2(0)−νφ2(0))φ1(0)−2νφ 2
2 (0)−dφ2(0)+(a3φ2(0)−νφ2(0))φ3(0)+νe−λτ1 φ2(−1)

(−hφ2(0)−a3φ2(0))φ3(0)+he−λτ2 φ3(−1)


respectively where φ(θ) = (φ1(θ),φ2(θ),φ3(θ))

T ∈C,

B =


r− ry∗−a1y∗ d 0

a1y∗−νy∗ −2νy∗−d a3y∗−νy∗

0 0 −hy∗−a3y∗

,

C =


0 0 0

0 0 0

0 0 he−λτ2

, D =


0 0 0

0 νe−λτ1 0

0 0 0

.

By the Riesz representation theorem, we claim about the existence of a function η(θ ,µ) of

bounded variation for θ ∈ [−1,0) such that

Lµ(φ) =
∫ 0

−1
dη(θ ,µ)φ(θ) f or φ ∈C (2.4)

Now let us choose ,

η(θ ,µ) =



(τ∗1 +µ)(B+C+D), θ = 0

(τ∗1 +µ)(C+D), θ ∈ [
−τ∗2
τ1

,0)

(τ∗1 +µ)(D), θ ∈ (−1, −τ∗2
τ1

)

0, θ =−1.



4 D. PANDIARAJA, N. ARUN NAGENDRAN, D. MURUGESWARI, VISHNU NARAYAN MISHRA

Forφ ∈C([−1,0],R3), we define

A(µ)φ =



dφ(θ)
dθ

, θ ∈ [−1,0)

∫ 0
−1 dη(s,µ)φ(s), θ = 0

and

R(µ)φ =


0, θ ∈ [−1,0)

f (µ,φ), θ = 0

Then the system is equivalent to

dX
dt

= A(µ)Xt +R(µ)Xt , (2.5)

where Xt(θ) = X(t +θ) for θ ∈ [−1,0].

Now for ψ ∈C([−1,0],(R3)∗), we define

A∗ψ(s) =



−dψ(s)
ds , s ∈ (0,1]

∫ 0
−1 dηT (t,0)ψ(−t), s = 0

Further we define a bilinear inner product

< ψ(s),φ(0)>= ψ̄(0)φ(0)−
∫ 0

−1

∫
θ

ζ=0
ψ̄(ζ −θ)dη(θ)φ(ζ )dζ . (2.6)

where η(θ) = η(θ ,0). Clearly here A and A∗ are adjoint operators and ±iω∗τ∗0 are eigen

values of A(0) and so they are also eigen values A∗. Let q(θ) = (1 α β )T eiω∗τ∗0 θ be the eigen

vector of A(0) corresponding to iω∗τ∗0 where

α = −[r−ry∗−a1y∗−iw]
d , β = (r−ry∗−a1y∗−iw)(νe−iw0−2νy∗−d−iw)−d(a1y∗−νy∗)

d(a3y∗−νy∗)

Similarly if q∗(s) = M(1 α∗ β ∗)eiω∗τ∗0 s be the eigen vector of A∗ where

α∗ = −(r−ry∗−a1y∗−iw)
a1y∗−νy∗ ,

β ∗ = (a3y∗−νy∗)(r−ry∗−a1y∗−iw)
(a1y∗−νy∗)(he−iwτ0−hy∗−a3y∗−iw)
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Then we have to determine M from < q∗(s),q(θ)>= 1.

Thus we can take

M̄ =
1

1+αᾱ∗+ββ̄ ∗+ τ∗1 eiω∗0 τ∗0 (αα∗ν +ββ ∗h)
(2.7)

We first compute the coordinate to describe the center manifold C0 at µ = 0. Let Xt be the

solution of the system (2.5)when µ = 0. Define z(t) =< q∗,Xt >

W (t,θ) = Xt(θ)−2Rez(t)q(θ) (2.8)

On the center manifold C0, we have

W (t,θ) =W (z(t), z̄(t),θ) where

W (z, z̄,θ) =W20(θ)
z2

2
+W11(θ)zz̄+W02(θ)

z̄2

2
+ .... (2.9)

and z and z̄ are local coordinates for center manifold C0 in the direction of q∗ and q̄∗.

Note that W is real if Xt is real. We consider only real solutions. For solution Xt ∈ C0 of Eq.

(2.1), since µ = 0 we have

ż(t) = iω∗τ∗0 z+< q̄∗(0) f (0,W (z, z̄,0)+2Rezq(θ))>

∼= iω∗τ∗0 z+ q̄∗(0) f0(z, z̄)

= iω∗τ∗0 z+g(z, z̄)

(2.10)

where

g(z, z̄) = q̄∗(0) f0(z, z̄)

= g20
z2

2
+g11zz̄+g02

z2

2
+g21

z2z̄
2

+ ....

(2.11)

From (2.8) and (2.9), we get

Xt(θ) =W (t,θ)+2Rez(t)q(θ)

=W20(θ)
z2

2
+W11(θ)zz̄+W02(θ)

z̄2

2
+ zq+ z̄q̄+ ....

=W20(θ)
z2

2
+W11(θ)zz̄+W02(θ)

z̄2

2
+(1 α β )T eiω∗τ∗0 +(1 ᾱ β̄ )T eiω∗τ∗0 z̄+ ....

(2.12)
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Hence we have

g(z, z̄) = q̄∗(0) f0(z, z̄)

= q̄∗(0) f (0,Xt)

= τ
∗
0 M̄(1 ᾱ∗ β̄ ∗)T

= τ
∗
0 M̄(p1z2 +2p2zz̄+ p3z̄2 + p4z2z̄)+H.O.T

(2.13)

where T =


(r− rx2t(0)−a1x2t(0))x1t(0)+dx2t(0)

(a1x2t(0)−νx2t(0))x1t(0)−2νx2
2t(0)−dx2t +(a3x2t −νx2t)x3t(0)+νe−λτ1 x2t(−1)

(−hx2t(0)−a3x2t(0))x3t(0)+he−λτ2 x3t(−1)


p1, p2, p3 and p4 values can be calculaed by using the formula.

Comparing (2.11) and (2.13)

g20 = 2τ∗0 M̄p1

g11 = 2τ∗0 M̄p2

g02 = 2τ∗0 M̄p3

g21 = 2τ∗0 M̄p4

For unknown W (i)
20 (θ), W (i)

11 (θ), i=1,2 in g21, we still have to compute them. From (2.5) and

(2.8)

Ẇ = Ẋt− żq− ˙̄zq̄

=


AW −2Re{q̄∗(0) f0q(θ)} , −1≤ θ ≤ 0,

AW −2Re{q̄∗(0) f0q(θ)}+ f0, θ = 0,

Ẇ = AW +H(z, z̄,θ)

(2.14)

where

H(z, z̄,θ) = H20(θ)
z2

2
+H11(θ)zz̄+H02(θ)

z̄2

2
+ ..... (2.15)

From (2.14) and (2.15)

[A(0)−2iω∗τ∗0 I]W20(θ) =−H20(θ)

A(0)W11(θ) =−H11(θ)
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From (2.14) we have for θ ∈ [−1,0)

H(z, z̄,θ) =−g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ) (2.18)

Comparing (2.15) and (2.18)

H20(θ) =−g20q(θ)− ḡ02q̄(θ) (2.19)

H11(θ) =−g11q(θ)− ḡ11q̄(θ) (2.20)

By the definition of A(θ) and from the above equations

W20(θ) =
ig20

ω∗τ∗0
q(0)eiω∗τ∗0 θ +

iḡ02

3ω∗τ∗0
q̄(0)e−iω∗τ∗0 θ +E1e2iω∗τ∗0 θ . (2.21)

and

W11(θ) =
−ig11

ω∗τ∗0
q(0)eiω∗τ∗0 θ +

iḡ11

ω∗τ∗0
q̄(0)e−iω∗τ∗0 θ +E2. (2.22)

where q(θ) = (1 α β )T eiω∗τ∗0 θ , E1 = (E(1)
1 ,E(2)

1 ,E(3)
1 ) ∈ R3 and E2 = (E(1)

2 ,E(2)
2 ,E(3)

2 ) ∈ R3 are

constant vectors. From (2.14) and (2.15)

H20(0) =−g20q(0)− ḡ02q̄(0)+2τ
∗
0 (c1 c2 c3)

T

H11(0) =−g11q(0)− ḡ11q̄(0)+2τ
∗
0 (d1 d2 d3)

T (2.23)

where (c1 c2 c3)
T =C1, (d1 d2 d3)

T = D1 are respective coefficients of z2 and zz̄ of f0(z z̄) and

they are

C1 =


c1

c2

c3

=


−(a1 + r)α

(a1−ν)α−2να2− dW (2)
20 (0)
2 +(a3−ν)αβ + νe−λτ1

2 W (2)
20 (−1)

(−h−a3)αβ + he−λτ2
2 W (3)

20 (−1)

 and

D1 =


d1

d2

d3

= 2


rW (1)

11 (0)
2 − rRe(α)−a1Re(α)+

dW (2)
11 (0)
2

(a1−ν)Re(α)−4να− dW (2)
11 (0)
2 +(a3−ν)Re(ᾱβ )+ νe−λτ1W (2)

11 (−1)

2

(−h−a3)Re(ᾱβ )+he−λτ2 W (3)
11 (−1)

2
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Finally we have (2iω∗τ∗0 I−
∫ 0
−1 e2iω∗τ∗0 θ dη(θ))E1 = 2τ∗0C1 or C∗E1 = 2C1 where

C∗ =

∣∣∣∣∣∣∣∣∣∣
2rx+ ry+ rz+a1y+a2z− r+2iω rx+a1x−d rx+a2x

νy−a1y νx+2νy+νz+d−a1x−a3z−νe−2iω∗τ1 +2iω νy−a3y

hz−a2z hz+a3z −a2x−he−2iωτ2+hx+hy+2hz+a3y+2iω

∣∣∣∣∣∣∣∣∣∣
, (2.24)

Thus E i
1 = 2∆i

∆
where ∆ = Det(C∗) and ∆i be the value of the determinant Ui, where Ui

formed by replacing ith column vector of C∗ by another column vector (c1 c2 c3)
T , i =1, 2, 3.

Similarly D∗E2 = 2D1, where

D∗ = ∣∣∣∣∣∣∣∣∣∣
2rx+ ry+ rz+a1y+a2z− r rx+a1x−d rx+a2x

νy−a1y νx+2νy+νz+d−a1x−a3z−ν νy−a3y

hz−a2z hz+a3z −a2x−h+hx+hy+2hz+a3y

∣∣∣∣∣∣∣∣∣∣
, (2.25)

Thus E i
2 =

2∆̄i
∆̄

where ∆̄=Det(D∗) and ∆̄i be the value of the determinant Vi, where Vi formed

by replacing ith column vector of D∗ by another column vector (d1 d2 d3)
T , i =1,2, 3. Thus we

can determine W20(θ) and W11(θ) from (2.12) and (2.13). Furthermore using them we can

compute g21 and derive the following values.

C1(0) = i
2ω∗τ∗0

(g20g11−2 |g11|2− |g02|2
3 )+ g21

2

µ2 =
−Re{C1(0)}

Re
{

dλ (τ∗0 )
dτ

}

β2 = 2Re{C1(0)}

T2 =
−Im

{
C1(0)+µ2Im

{
dλ (τ∗0 )

dτ

}}
ω∗τ∗0

These formulae give a description of the Hopf bifurcation periodic solutions of system (1.1)

at τ = τ∗0 on the center manifold. Hence we have the following result.

Theorem 2.1. The periodic solutions is supercritical (resp.subcritical) if µ2 > 0 (resp. µ2 <

0). The bifurcating periodic solutions are orbitally asymptotically stable with an asymptotical
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phase (resp.unstable) if β2 < 0 (resp. β2 > 0). The period of bifurcating periodic solutions

increases(resp.decreases) if T2 > 0 (resp.T2 < 0).

4. Conclusion

We have derived the bifurcating periodic solutions are orbitally asymptotically stable with

an asymptotical phase if β2 < 0 and unstable if β2 > 0 and the period of bifurcating periodic

solutions increases if T2 > 0 and decreases if T2 < 0.
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