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Abstract. The present paper describes a prey-predator type fishery model with two predators in competition.

The aim of the paper is to maximize the net economic revenue earn from the fishery through implementing the

sustainable properties of the fishery to keep the ecological balance. The existence of the steady states and the

stability of the interior equilibrium point is studied using Routh Hurwitz criterion. The problem of determining the

fishing effort that maximizes the net economic revenue of each fisherman results in a Generalized Nash Equilibrium

Problem. More precisely, we are interested in equilibrium of mathematical game given by the situation where all

fishermen try to optimize their strategies according to the strategies of all other fishermen. The importance of

marine reserve is analyzed through the obtained results of the numerical simulations of proposed model system.

The results depict that reserves will be most effective when the coefficient of catchability decreases.
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1. Introduction

In the present study, we analyse a prey predator model, with the existence of one prey- and

two predators populations. The differential system is based on the Lotka-Volterra schema, con-

sidering a logistic growth for each population. Biological and bioeconomic equilibria of the

system are obtained, and criteria for local stability and instability of the system are derived. This

work is an attempt to study the effect of intrinsic growth rates changes in the net economic rents

of several fishermen exploiting the three marine populations. To achieve this objective, we have

to solve the problem of maximization of fishermen’s net economic rents by using the general-

ized Nash equilibrium problem and linear complementarity problem. Finally, some numerical

examples are discussed. Our study indicates that balance between harvesting and biodiversity

should be maintained for better ecosystem management.

In the recent years, the technical and economic developments have led to commercial ex-

ploitation of more and more fish stocks, and stocks which sustained fisheries for a very long

time have been severely depleted. This is probably the main reason for the increased interest

biologists and others have taken in the use of multi-species bioeconomic models in applied re-

search. We can refer for example to [1–4]. Chaudhurie [1] proposed a problem of combined

harvesting of two competing fish species, each of which obeys the law of logistic growth; the

author gave the mathematical formulation of the optimal harvest policy and its solution is de-

rived in the equilibrium case by using Pontryagin’s maximal principle also he explained the

biological and economic interpretations of the results associated with the optimal equilibrium

solution. An other important examples are [5,6]; the article [5] discusses bioeconomic analysis

and different management strategies in fisheries, the paper [6] aims to study the problem of

combined harvesting of a system involving one predator and two prey species fishery in which

the predator feeds more intensively on the more abundant species.

In this context, we can also refer to [7–10]. In [7], authors defined a bioeconomic equilibrium

model for ’n’ fishermen who catch three species; these species compete with each other for

space or food, the natural growth of each species is modeled using a logistic law. In [8], authors

supposed the price of fish population depends on quantity harvested and they defined a bio-

economic model that merges a model of competition and a model of prey-predator of three fish
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populations. More specifically, they assumed that on the one hand, the evolution of the first

and second fish population is described by a density dependent model taking into account the

competition between fish populations which compete with each other for space or food; on the

other hand, the evolution of the second and third fish population is described by a Lotka-Volterra

model. Also, the paper [9] presented a bioeconomic model for several fish populations taking

into consideration the fact that the prices of fish populations vary according to the quantity

harvested; the fish populations compete with each other for space or food and the natural growth

of each one is modeled using a logistic law.

An other important examples in this context are [11–16]. The parer [11] introduces and

describes in detail the bioeconomic optimization model BEMCOM (BioEconomic Model to

evaluate the Consequences of Marine protected areas) that has been developed to assess the

economic effects of introducing Marine Protected Areas (MPA) for fisheries.

In this manuscript, we propose to study a bioeconomic model of three fish populations. This

model combines a model of competition and a model of prey-predator. As assumptions we

suppose that the three fish populations grows according to a logistic equation, the first fish

population is a prey of the second and the third one, also we suppose that the second and the

third fish populations are predators of the first one and competes with each other for space or

food.

The main difficulty in modeling the dynamics of fisheries is the estimation of the relationship

between fishing effort and fishing mortality. Theoretically, following [17], fishing mortality is

related to the effort and the catchability coefficient by the relation F = qE, with F represent

fishing mortality, E represent fishing effort and q represent catchability. Hence, the interest of

the catchability coefficient.

In the present manuscript, we have two objectives. Firstly, we search to determine the fishing

effort that maximizes the net economic revenues of fishermen exploiting the fish populations

constrained by conservation of the biodiversity. The second objective is to discuss the influence

of the catchability coefficient on the net economic revenue of each fisherman.

This paper is organized as follows. In Section 2, we propose the bioeconomic model of three

fish populations and we steady the positivity and boundedness of solutions. In Section 3, we
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study the existence of the steady states and the stability of the interior steady state is studied by

using Routh Hurwitz criterion. In Section 4, we determining the fishing effort that maximizes

the fishermen’s net economic revenues by computing a generalized Nash equilibrium problem

and solving a linear complementarity problem. In section 5, we discuss the influence of the

catchability coefficient on the net economic revenue. Finally, we give a conclusion in Section

6.

2. Mathematical model

In this section, we propose to define a bioeconomic model of three fish populations; i.e prey

(x), predator 1 (y1) and predator 2 (y2) with the competition between the first predator and the

second predator.

2.1. Basic model

The following system is considered to model the evolution of the biomasses of the three fish

populations



dx
dt

= x(r1− k1x)−αxy1−βxy2

dy1

dt
= y1 (r2− k2y1)+ ᾱxy1−δ1y1y2

dy2

dt
= y2 (r3− k3y2)+ β̄xy2−δ2y1y2

(1)

subject to initial condition

x(0)> 0, y1 (0)> 0, y2 (0)> 0. (2)

Here x(t) is the biomass of prey, y1(t) is the biomass of predator 1 and y2(t) is the biomass of

predator 2 at time t.
(
r j
)

j=1,2,3 are the net growth rates associated with x, y1 and y2, respectively.(
k j
)

j=1,2,3are implicitly related to the carrying capacities of prey, predator 1 and predator 2,

respectively. α and β are the rates of changes of the prey population in response to the presence

of predator 1 (y1) and predator 2 (y2) , respectively; i.e. they are the predation rate coefficients of

predator 1 (y1) and predator 2 (y2) , respectively. ᾱ and β̄ are the rates of changes in the predator
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1 (y1) and predator 2 (y2) , respectively; i.e. they are the conservation rates of prey into predator

1 (y1) and predator 2 (y2) , respectively. δ1 and δ2 are the coefficients of competition; precisely,

δ1 represent the influence of predator 2 on predator 1, and δ2 represent the influence of predator

1 on predator 2. All parameters are assumed to be positive and all variables nonnegative.

2.2. Proposed model

Now, we consider an extend version of the model (1) by assuming that the three populations

prey, predator 1 and predator 2 are being harvested with three different agencies and therefore

the total effort E1, E2 and E3 dedicated to prey, predator 1 and predator 2 populations are

different which results different catchability coefficients q1, q2 and q3, respectively.

The proposed model in the presence of harvesting of prey, predator 1 and predator 2 is given

by 

dx
dt

= x(r1− k1x)−αxy1−βxy2−q1E1x = x f1 (x,y1,y2)

dy1

dt
= y1 (r2− k2y1)+ ᾱxy1−δ1y1y2−q2E2y1 = y1 f2 (x,y1,y2)

dy2

dt
= y2 (r3− k3y2)+ β̄xy2−δ2y1y2−q3E3y2 = y2 f3 (x,y1,y2)

(3)

subject to initial condition

x(0)> 0, y1 (0)> 0, y2 (0)> 0. (4)

Here

f1 = r1− k1x−αy1−βy2−q1E1

f2 = r2− k2y1 + ᾱx−δ1y1−q2E2

f3 = r3− k3y2 + β̄x−δ2y1−q3E3

The system (4) is defined on the set Ω =
{
(x,y1,y2) ∈ R3/x≥ 0,y1 ≥ 0,y2 ≥ 0

}
.

2.3. Positivity and boundedness of solutions

Theorem All solutions (x(t) ,y1 (t) ,y2 (t)) of the system (3) with the initial condition (4) are

positive for all t ≥ 0, and are uniformly bounded.
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Proof. (i) By system of equations (3) with initial condition (4) we have
x(t) = x(0)exp

(∫ t
0 f1(x(τ),y1(τ),y2(τ)

)
dτ > 0

y1(t) = y1(0)exp
(∫ t

0 f2 (x(τ),y1(τ),y2(τ))
)

dτ > 0

y2(t) = y2(0)exp
(∫ t

0 f3 (x(τ),y1(τ),y2(τ))
)

dτ > 0.

Therefore, all solutions starting from an interior of the first octant remain in it for all future

time.

(ii) We consider

ϕ(t) = ᾱβ̄x(t)+αβ̄y1 (t)+ ᾱβy2 (t)

The time derivative along the solutions of the system (3) is

dϕ

dt
= ᾱβ̄x(r1− k1x)+αβ̄y1 (r2− k2y1)+ ᾱβy2 (r3− k3y2)

−αβ̄δ1y1y2− ᾱβδ2y1y2− ᾱβ̄q1E1x−αβ̄q2E2y1

−ᾱβq3E3y2

≤ ᾱβ̄x(r1− k1x)+αβ̄y1 (r2− k2y1)+ ᾱβy2 (r3− k3y2)

For each η > 0, we have

dϕ

dt
+ηϕ(t) ≤ ᾱβ̄x(r1− k1x)+αβ̄y1 (r2− k2y1)+ ᾱβy2 (r3− k3y2)

+ηᾱβ̄x+ηαβ̄y1 +ηᾱβy2

≤ ᾱβ̄

4k1
(r1 +η)2 +

αβ̄

4k2
(r2 +η)2 +

ᾱβ

4k3
(r3 +η)2

So, the right-hand side is positive, then it is bounded for all (x(t) ,y1 (t) ,y2 (t))∈R3
+. Therefore,

we find a ε > 0 with dϕ

dt +ηϕ(t) < ε . Applying the theory of differential inequality [18] we

obtain

0 < ϕ(t)≤ ε

η
+

[
ϕ(x(0);y1(0);y2(0))−

ε

η

]
e−ηt

Then

0 < lim
t→∞

ϕ(t)≤ ε

η
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Hence, all solutions of (3) initiating from R3
+ are confined in the region{

(x1;x2;y) ∈ R3
+/ ϕ <

ε

η
+ζ ; for any ζ > 0

}
this proves the result. �

3. Existence of steady states

In this section, we propose to study the existence of various steady states and the stability of

interior equilibrium point.

3.1. Existence of various steady states

The steady states of the system (3) are the solutions of the following system

r1−q1E1− k1x−αy1−βy2 = 0

r2−q2E2− k2y1 + ᾱx−δ1y2 = 0

r3−q3E3− k3y2 + β̄x−δ2y1 = 0

(5)

The system (3) has eight steady states.

(i) The trivial steady state S0 = (0,0,0) and the axial steady states

S1 = (
r1−q1E1

k1
,0,0), S2 = (0,

r2−q2E2

k2
,0) and S3 = (0,0,

r3−q3E3

k3
).

(ii) The boundary steady state in xy1-plane given by

Sxy1 = (x̄, ȳ1,0)

=

(
k2 (r1−q1E1)−α (r2−q2E2)

k1k2 +αᾱ
,
k1 (r2−q2E2)+ ᾱ (r1−q1E1)

k1k2 +αᾱ
,0
)
.

(iii) The boundary steady state in xy2-plane given by

Sxy2 = (x̂,0, ŷ2)

=

(
k3 (r1−q1E1)−β (r3−q3E3)

k1k3 +ββ̄
,0,

k1 (r3−q3E3)+ β̄ (r1−q1E1)

k1k3 +ββ̄

)
.
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(iv) The boundary steady state in y1y2-plane given by

Sy1y2 = (0, ỹ1, ỹ2)

=

(
0,

k3 (r2−q2E2)−δ1 (r3−q3E3)

k2k3−δ1δ2
,
k2 (r3−q3E3)−δ2 (r2−q2E2)

k2k3−δ1δ2

)
.

(v) The unique interior steady state S = (x,y1,y2) with
x = a11E1 +a12E2 +a13E3 + x∗

y1 = a21E1 +a22E2 +a23E3 + y∗1

y2 = a31E1 +a32E2 +a33E3 + y∗2

where

a11 = [q1 (δ1δ2− k2k3)]/∆

a12 = [q2 (αk3−δ2β )]/∆

a13 = [q3 (βk2−δ1α)]/∆

x∗ = [r1 (k2k3−δ1δ2)+ r2 (βδ2−αk3)+ r3 (αδ1−βk2)]/∆

a21 =
[
q1
(
δ1β̄ − ᾱk3

)]
/∆

a22 =
[
−q2

(
ββ̄ + k1k3

)]
/∆

a23 = [q3 (ᾱβ +δ1k1)]/∆

y∗1 =
[
r2
(
ββ̄ + k1k3

)
+ r1

(
ᾱk3− β̄ δ1

)
− r3 (ᾱβ +δ1k1)

]
/∆

a31 =
[
q1
(
ᾱδ2− β̄k2

)]
/∆

a32 =
[
q2
(
δ2k1 +αβ̄

)]
/∆

a33 = [q3 (αᾱ− k1k2)]/∆

y∗2 =
[
r3 (k1k2 +αᾱ)+ r1

(
β̄k2− ᾱδ2

)
+ r2

(
δ2k1 +αβ̄

)]
/∆

∆ = k1k2k3−δ1δ2k1 +ββ̄k2 +αᾱk3−αδ1β̄ −βᾱδ2

Therefore, one can remark that the interior steady state solution can be written in the matrix

form

S =−AE +S∗

where A = (−ai j)1≤i, j≤3, E = (E1,E2,E3)
T and S∗ = (x∗,y∗1,y

∗
2)

T .
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3.2. Local stability of the interior steady state

We remark that the system (3) have eight solutions, but only one of them can give the coexis-

tence of the three populations, in this case the biomasses of the three populations are strictly pos-

itive, this solution is the interior steady state S = (x,y1,y2) which is feasible if k1 > max{α,β},

k2 > max{δ1, ᾱ} and k3 > max{β̄ ,δ2}. In the following, we provide the local stability of the

interior steady state applying the Routh Hurwitz criterion.

The variational matrix of the system at the steady state S = (x,y1,y2) is

J (S) =


J11 −αx −βx

ᾱy1 J22 −δ1y1

β̄y2 −δ2y2 J33


where 

J11 = r1−q1E1−2k1x−αy1−βy2

J22 = r2−q2E2−2k2y1 + ᾱx−δ1y2

J33 = r3−q3E3−2k3y2 + β̄x−δ2y1

Using the fact that by (5) we have



r1−q1E1−2k1x−αy1−βy2 =−k1x

r2−q2E2−2k2y1 + ᾱx−δ1y2 =−k2y1

r3−q3E3−2k3y2 + β̄x−δ2y1 =−k3y2

The characteristic polynomial of the variational matrix is

P(λ ) = ρ0λ
3 +ρ1λ

2 +ρ1λ +ρ3
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where 

ρ0 = 1

ρ1 = k1x+ k2y1 + k3y2

ρ2 = xy1 (k1k2 +αᾱ)+ xy2
(
k1k2 +ββ̄

)
+ y1y2 (k2k3 +δ1δ2)

ρ3 = xy1y2
[
β
(
k2β̄ − ᾱδ2

)
+ k3 (k1k2 +αᾱ)−δ1 (k2δ2 +αᾱ)

]
Following the conditions of existence it is easy to show that ρ0, ρ1, ρ2, ρ3 and ρ1ρ2−ρ0ρ3 are

positive. Therefore, based upon the Routh-Hurwitz criterion it can be concluded that the steady

state point S = (x,y1,y2) is locally asymptotically stable.

4. Maximization of fishermen’s economic revenues

The main purpose of this section is to determine the effort that maximize the net economic

revenue of each fisherman.

4.1. Net Economic Revenue

According to Gordon’s economic theory [19]

Net Economic Revenue (NER) = Total Revenue (T R)−Total Cost (TC)

where the Total Revenue (T R)i and Total Cost (TC)i of fisherman i in the system (3) are given

by 
(T R)i = 〈E(i),qp(S∗−A

n
∑

i=1
E(i))〉

(TC)i = 〈c(i),E(i)〉

where E(i) = (Ei1,Ei2,Ei3)
T is the vector effort must provide by fisherman i to catch the three

populations; c(i) is the constant cost per unit of harvesting; and p is the price per unit harvested

biomass.
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While the economic profit of fisherman i is equal to the net economic revenue (NER), then

we obtain the following equation

(NER)i = (T R)i− (TC)i

= 〈E(i),−pqAE(i)+ pqS∗− c(i)−
n
∑

j=1, j 6=i
pqAE( j)〉

Let us add that the bioeconomic model is meaningful if and only if the biomasses of the three

populations are strictly positive S = S∗−AE ≥ S0 > 0. Hence, for fisherman i we must have

AE(i) ≤ S∗−
n
∑

j=1, j 6=i
AE( j).

4.2. Generalized Nash Equilibrium Problem

To determine the effort that maximizes the NER of each fisherman we must solve the fol-

lowing generalized Nash equilibrium problem. Note that this problem exists when there is no

unilateral profitable deviation from any of the fishermen involved.

(Pi)



max(NER)i = 〈E(i),−pqAE(i)+ pqS∗− c(i)−
n
∑

j=1, j 6=i
pqAE( j)〉

subject to

AE(i) ≤ S∗−
n
∑

j=1, j 6=i
AE( j)

E(i) ≥ 0

E( j) given for 1≤ j 6= i≤ n

By definition, the point (E(1), . . . ,E(n)) is called a generalized Nash equilibrium point if and

only if E(i) is a solution of problem (Pi) for E( j) (1≤ j 6= i≤ n) given.

According to the essential conditions of Karush-Kuhn-Tucker if E(i) is a solution of the prob-

lem (Pi) then, there exist constants u(i) ∈ R3
+, v(i) ∈ R3

+ and m(i) ∈ R3
+ such that


2pqAE(i)+ c(i)− pqS∗+

n
∑

j=1, j 6=i
pqAE( j)−u(i)+AT m(i) = 0

AE(i)+ v(i) = S∗
n
∑

j=1, j 6=i
AE( j)

〈u(i),E(i)〉= 〈m(i),v(i)〉= 0
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which leads to the following system

u(1) = 2pqAE(1)+ c(1)− pqS∗+
n
∑
j=2

pqAE( j)+AT m(1)

u(2) = 2pqAE(2)+ c(2)− pqS∗+
n
∑

j=1, j 6=2
pqAE( j)+AT m(2)

...

u(n) = 2pqAE(n)+ c(n)− pqS∗+
n−1
∑
j=1

pqAE( j)+AT m(n)

v(1) =−AE(1)−
n
∑
j=2

AE( j)+S∗

v(2) =−AE(2)−
n
∑

j=1, j 6=2
AE( j)+S∗

...

v(n) =−AE(n)−
n−1
∑
j=1

AE( j)+S∗

〈u(i),E(i)〉= 〈m(i),v(i)〉= 0 ∀i = 1, . . . ,n

E(i),u(i),m(i),v(i) ≥ 0 ∀i = 1, . . . ,n

As the scalar product of (m(i))i=1,...,n and (v(i))i=1,...,n is zero, and v := v(1) = . . . = v(n) > 0

(To maintain the biodiversity of fish populations, it is natural to assume that all biomasses

remain strictly positive, that is x > 0, y1 > 0 and y2 > 0) so m(i) = 0 for all i = 1, . . . ,n. Hence,

we have the following expressions

u(1) = 2pqAE(1)+ c(1)− pqS∗+
n
∑
j=2

pqAE( j)

u(2) = 2pqAE(2)+ c(2)− pqS∗+
n
∑

j=1, j 6=2
pqAE( j)

...

u(n) = 2pqAE(n)+ c(n)− pqS∗+
n−1
∑
j=1

pqAE( j)

v =−AE(i)−
n
∑

j=1, j 6=i
AE( j)+S∗

〈u(i),E(i)〉= 0 ∀i = 1, . . . ,n

E(i),u(i),v≥ 0 ∀i = 1, . . . ,n

Or in matrix form W = MZ +B, where
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W =



u(1)

u(2)

...

u(n)

v


, M =



2pqA pqA . . . pqA AT

pqA 2pqA . . . ... I
... . . . . . . pqA

...

pqA pqA 2pqA
...

−A . . . . . . −A I


, Z =



E(1)

E(2)

...

E(n)

0



and B =



c(1)− pqS∗

c(2)− pqS∗

...

c(n)− pqS∗

S∗


4.3. Linear Complementarity Problem

The previous generalized Nash equilibrium problem is equivalent to the following Linear

Complementarity Problem LCP(M,B) :

Find vectors Z,W ∈ R3(n+1) such that

W = MZ +B≥ 0

Z,W ≥ 0

ZTW = 0.

Lemma LCP(M,B) has a unique solution for every B if and only if M is a P-matrix.

Proof. See Cottle [20] and Murty [21]. �

Let us add that a matrix A is called P-matrix if the determinant of every principal subma-

trix of A is positive (see [20]). The class of P-matrices generalizes many important classes of

matrices, such as positive definite matrices, M-matrices, and inverse M-matrices, and arises in

applications. Note that each matrix symmetric positive definite is P-matrix, but the reverse is

not always true.
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Hence, the linear complementarity problem LCP(M,B) has one and only one solution since

the matrix M is P-matrix, which confirm the existence and uniqueness of the generalized Nash

equilibrium solution

E(i) =
1

(n+1)
(pqA)−1

(
pqki− c(i)

)

5. Discussion

What is the influence of the catchability coefficients on the net economic revenue?

We take as a case of study two fishermen who catch the three fish populations having the

following characteristics

k1 = 20, k2 = 10, k3 = 5, r1 = 5, r2 = 4, r3 = 3, α = 0.9, β = 0.7, ᾱ = 0.5,

β̄ = 0.4, δ1 = 0.2, δ2 = 0.3, p1 = 10, p2 = 12, p3 = 20, c1 = 0.01, c2 = 8.10−3,

q1 = 0.99, q2 = 0.5, q3 = 0.8

In the following, we will discover how changes in catchability coefficients can affect the net

economic revenue of each fisherman taking into account the conservation of the biodiversity.

According to [17] in theory, the catchability coefficient is related to fishing effort and fishing

mortality by relation q = F
E where q represent catchability coefficient, F represent fishing mor-

tality and E represent fishing effort. Based on this relation, one can notice that when q decreases

then E increases. The following numerical simulations will confirm this result.

q1 q2 q3 E1 E2 H1 H2 (NER)1 (NER)2

0.99 0.5 0.8 2.8 2.9 9.274 9.271 69.01 68.94

0.1 0.05 0.08 28.39 28.40 9.39 9.37 83.45 83.13

0.02 0.006 0.007 280.8 281.5 10.4 10.2 127.9 127

0.003 0.0006 0.0008 2490.6 2559.5 20.8 18.1 189.7 179.4

Table 1. Catchability influence on the fishing effort, catches and NER

According to the table 1, we note that a decrease in the level of catchability leads to an

increase in the fishing effort level and consequently an increase in catches level which leads to

an increase in net economic revenue as well.
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Therefore, in order to achieve maximum profit taking into account the conservation of the

resources, it is sufficient to have a small catchability coefficient.

6. Conclusion

In this paper, we have study a bioconomic model for several fishermen who catch fish pop-

ulations. The first fish population is a prey of the second and the third one; the second and the

third fish populations are predators of the first one and competes with each other for space or

food. Using the generalized Nash equilibrium problem we have maximize the net economic

revenue of each fisherman at biological equilibrium. To show the influence of catchability on

the net economic revenues of fishermen we have carried out some numerical simulations.
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les Peches, 310.2.

[18] N.G. Kuang, H.I. Freedman, Uniqueness of limit cycles in Gause-type models of predator-prey systems,

Math. Biosci. 88 (1988) 76-84.

[19] H.S. Gordon, Economic theory of a common property resource: the fishery, J. Polit. Econ. 62 (1954) 124-142.

[20] K. G. Murty, On the number of solutions to the complementarity problem and spanning properties of com-

plementary cones, Linear Algebra Appl. 5 (1972) 65-108.

[21] R. W. Cottle, J. S. Pang, R. E. Stone, The Linear Complementarity Problem, Academic Press, New York,

1992.


