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Abstract. The aim of this paper is to investigate the dynamic behaviors of a harvesting Lotka-Volterra commen-

salism model incorporating partial closure for the populations. By analyzing the characteristic equation of the

variational matrix, sufficient conditions which ensure the local stability of the equilibria are obtained; By applying

the differential inequality theory and the Dulac criterion, sufficient conditions which ensure the globally asymptot-

ical stability of the equilibria are obtained; Our study shows that depending on the fraction of the stock available

for harvesting, the system maybe extinction, partial survival or two species coexist in a stable state. The dynamic

behaviors of the system becomes complicated compared with the non-harvesting system. Numeric simulations are

carried out to show the feasibility of the main results.
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1. Introduction

Commensalism is a symbiotic interaction between two populations where one population

gets benefit from while the other is neither harmed nor benefited due to the interaction with
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the previous species[1]. There are many real-life examples of commensalism, for example, the

relationship between squirrel and the oak, the clownfish and the sea anemone, etc, see [1]-[12]

and the references cited therein.

During the last decade, many scholars ([13]-[25]) investigated the dynamic behaviors of the

mutualism model, where the interaction of two species is to the advantage of both side. Many

interesting results are obtained, for example, Chen et al [13] showed that stage structure of the

species could have great influence on the stability property of the mutualism model; Chen et

al([20]-[21]) showed that feedback control variables have no influence on the persistent property

of the system; Xie et al[25] proved that if the mutualism system admits an unique positive

equilibrium, it is globally asymptotically stable. However, there are still not so much works on

commensalism model (see[1]-[12]).

Recently, Sun et al.[8] proposed the following commensalism system

dx
dt

= r1x
(

1− x
K1

+α
y

K1

)
,

dy
dt

= r2y
(

1− y
K2

)
,

(1.1)

where r1, r2, K1, K2, α are all positive constants. The system admits four equilibria:

E1(0,0),E2(K1,0),E3(0,K2),E4(K1 +αK2,K2).

Concern with the stability property of above equilibria,by linearizing the system at equilibri-

um,the author obtained the following results.

Theorem A.

(1) E1(0,0) is unstable node;

(2) E2(K1,0) is a saddle point;

(3) E3(0,K2) is a saddle point;

(4) E4(K1 +αK2,K2) is a stable node;

It bring to our attention that the author gave no information about the global stability property

of the equilibrium.

On the other hand, to obtain the resource for the development of the human being, harvest of

the species is necessary, Chakraborty, Das and Kar[22] argued that it is necessary to harvest the
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population but harvesting should be regulated, such that both the ecological sustainability and

conservation of the species can be implemented in a long run.

Though there are many papers concerned with the harvesting of the predatorprey system

([26]-[30]), however, to this day, seldom did scholars consider the influence of harvesting to

the commensalism model. Stimulated by the works of Sun et al[8] and Chakraborty, Das and

Kar[27], in this paper, we propose the following non-selective harvesting Lotka-Volterra amen-

salism model incorporating partial closure for the populations:

dx
dt

= r1x
(

1− x
K1

+α
y

K1

)
−q1Emx,

dy
dt

= r2y
(

1− y
K2

)
−q2Emy,

(1.2)

where r1, r2, K1, K2, α are all positive constants, and have the same meaning as that of the

system (1.1). E is the combined fishing effort used to harvest and m(0 < m < 1) is the fraction

of the stock available for harvesting.

We will try to investigate the dynamic behaviors of the system (1.2), and to find out the

influence of the harvesting and the fraction of the stock.

The paper is arranged as follows. We will investigate the local and global stability property

of the equilibria of system (1.2) in section 2 and 3, respectively. Some examples together with

their numeric simulations are present in Section 5 to show the feasibility of the main results.

We end this paper by a briefly discussion.

2. Local stability of the equilibria

The system always admits the boundary equilibrium E1(0,0).

If r1 > Emq1 holds, the system admits the boundary equilibrium E2(x0,0), where x0 =
K1(r1−Emq1)

r1
.

If r2 > Emq2 holds, the system admits the boundary equilibrium E3(0,y0), where y0 =
K2(r2−Emq2)

r2
.

If r1r2K1+r1r2αK2 > r1q2mαK2E+r2mq1EK1 and r2 > Emq2 hold, then the system admits

a unique positive equilibrium
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(x∗,y∗) =
(r1r2K1 + r1r2αK2− r1q2mαK2E− r2mq1EK1

r1r2
,

K2(r2−Emq2)

r2

)
.

We shall now investigate the local stability property of the above equilibria.

Theorem 2.1

(1) Assume that

m > max
{ r1

Eq1
,

r2

Eq2

}
(2.1)

hold, then E1(0,0) is locally asymptotically stable, otherwise, it is unstable;

(2) Assume that
r2

Eq2
< m <

r1

Eq1
(2.2)

hold, then E2(x0,0) is locally asymptotically stable, otherwise, it is unstable;

(3) Assume that
r1r2(K1 +αK2)

r1αEK2q2 + r2q1EK1
< m <

r2

Eq2
(2.3)

holds, then E3(0,y0) is locally asymptotically stable, otherwise, it is unstable;

(4) Assume that

m < min
{ r2

Eq2
,

r1r2(K1 +αK2)

r1αEK2q2 + r2q1EK1

}
(2.4)

hold, then E4(x∗,y∗) is locally asymptotically stable.

Proof. The variational matrix of the system of Eq. (1.2) at (x,y) is

J(x,y) =

 r1(1− x
K1

+α
y

K1
)− r1x

K1
−q1Em

xr1α

K1

0 r2(1− y
K2
)− r2y

K2
−q2Em

 . (2.5)

The characteristic equation of the variational matrix is

λ
2− tr(J)λ +det(J) = 0. (2.6)

Obviously, if tr(J) < 0 and det(J) > 0, both eigenvalues of (2.1) have negative real parts, and

the corresponding equilibrium solution is asymptotically stable.

(1) For the steady-state solution E1(0,0), tr(J(0,0)) = r1 + r2−Emq1−Emq2, det(J(0,0)) =

(r1−Emq1)(r2−Emq2). Obviously, under the assumption (2.1), tr(J(0,0))< 0,det(J(0,0))>

0, and so, E1(0,0) is locally asymptotically stable, otherwise, it is unstable;

(2) For the steady-state solution E2(x0,0), tr(J(x0,0))=−r1+r2+Emq1−Emq2, det(J(x0,0))=



HARVESTING LOTKA-VOLTERRA COMMENSALISM MODEL 5

(Emq1−r1)(r2−Emq2). Obviously, under the assumption (2.2), tr(J(x0,0))< 0,det(J(x0,0))>

0, and so, E2(x0,0) is locally asymptotically stable, otherwise, it is unstable;

(3) The Jacobian of the system about the equilibrium point E3(0,y0) is given by
r1r2K1 + r1r2αK2− r1αmEK2q2− r2mq1EK1

r2K1
0

0 Emq2− r2

 . (2.7)

Under the assumption (2.4), the two eigenvalues of the matrix satisfies

λ1 =
r1r2K1 + r1r2αK2− r1αmEK2q2− r2mq1EK1

r2K1
< 0

and

λ2 = Emq2− r2 < 0.

Consequently, E3(0,y0) is locally stable, otherwise, it is unstable;

(4)Noting that the positive equilibrium E4(x∗,y∗) satisfies

r1

(
1− x∗

K1
+α

y∗

K1

)
−q1Em = 0,

r2

(
1− y∗

K2

)
−q2Em = 0.

(2.8)

By using (2.8), the Jacobian of the system about the equilibrium point E4(x∗,y∗) is given by

J(x∗,y∗) =

 −r1x∗

K1

r1x∗α
K1

0 −r2y∗

K2

 . (2.9)

Since tr(J(x∗,y∗))< 0,det(J(x∗,y∗))> 0, and so, E4(x∗,y∗) is locally asymptotically stable.

The proof of Theorem 2.1 is finished.

3. Global asymptotical stability

This section try to obtain some sufficient conditions which could ensure the global asymptot-

ical stability of the equilibria.

Lemma 3.1.[31] System
dy
dt

= y(a−by) (3.1)

has a unique globally attractive positive equilibrium y∗ = a
b .
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Theorem 3.1

(1) Assume that

m > max
{ r1

Eq1
,

r2

Eq2

}
(3.1)

hold, then E1(0,0) is globally asymptotically stable;

(2) Assume that

r2

Eq2
< m <

r1

Eq1
(3.2)

hold, then E2(x0,0) is globally asymptotically stable;

(3) Assume that

r1r2(K1 +αK2)

r1αEK2q2 + r2q1EK1
< m <

r2

Eq2
(3.3)

holds, then E3(0,y0) is globally asymptotically stable;

(4) Assume that

m < min
{ r2

Eq2
,

r1r2(K1 +αK2)

r1αEK2q2 + r2q1EK1

}
(3.4)

holds, then E4(x∗,y∗) is globally asymptotically stable.

Proof.

(1)From r1 < Eq1m there exists enough small ε > 0 such that

r1 +
r1αε

K1
−Eq1m <−ε.

From the second equation of (1.2) we have

dy
dt

= y
(

r2−Eq2m− r2y
K2

)
< (r2−Eq2m)y. (3.5)

Hence

y(t)< y(0)exp{(r2−Eq2m)t}→ 0 as t→+∞. (3.6)

For above ε > 0, there exists a T1 > 0, such that

y(t)< ε as t > T1. (3.7)
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For t > T1, from the first equation of system (1.2), we have

dx
dt

< r1x
(

1− x
K1

+α
ε

K1

)
−q1Emx

= x
(

r1 +
r1αε

K1
−q1Em− x

K1

)
< −εx,

Hence

x(t)< x(T1)exp{−ε(t−T1)}→ 0 as t→+∞. (3.8)

(2)Similarly to the analysis of (3.5)-(3.8), for arbitrary enough small ε > 0, there exists a T2 > 0,

such that

y(t)< ε as t > T2.

For t > T2, from the first equation of system (1.2), we have

dx
dt

< r1x
(

1− x
K1

+α
ε

K1

)
−q1Emx

= x
(

r1 +
r1αε

K1
−q1Em− r1x

K1

)
.

(3.9)

Consider the equation
du
dt

= u
(

r1 +
r1αε

K1
−q1Em− r1u

K1

)
.

It follows from Lemma 3.1 that

lim
t→+∞

u(t) =
(r1 +

r1αε

K1
−q1Em)K1

r1
.

By using the comparison theorem of differential equation, it follows from (3.6) that

limsup
t→+∞

x(t)≤
(r1 +

r1αε

K1
−q1Em)K1

r1
. (3.10)

On the other hand, from the first equation of system (1.2), we also have

dx
dt

> r1x
(

1− x
K1

)
−q1Emx

= x
(

r1−q1Em− r1x
K1

) (3.11)

Consider the equation
dv
dt

= v
(

r1−q1Em− r1v
K1

)
.
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It follows from Lemma 3.1 that

lim
t→+∞

v(t) =
(r1−q1Em)K1

r1
.

By using the comparison theorem of differential equation, it follows from (3.11) that

liminf
t→+∞

x(t)≥ (r1−q1Em)K1

r1
. (3.12)

It follows from (3.10) and (3.12) that

(r1−q1Em)K1

r1
≤ liminf

t→+∞
x(t)≤ limsup

t→+∞

x(t)≤
(r1 +

r1αε

K1
−q1Em)K1

r1
. (3.13)

Since ε is any arbitrary small positive constants, setting ε → 0 in (3.10) leads to

lim
t→+∞

x(t) =
(r1−q1Em)K1

r1
.

(3)The left hand side of (3.3) is equal to the inequality

r1r2K1 + r1r2αK2 < r1q2mαK2E + r2mq1EK1,

hence, for arbitrary enough small ε > 0, the following inequality holds

r1r2K1 + r1r2αK2− r1q2mαK2E− r2mq1EK1

K1r2
+

αr1

K1
ε <−ε. (3.14)

From the second equation of (1.2) we have

dy
dt

= y
(

r2−Eq2m− r2y
K2

)
. (3.15)

It follows from Lemma 3.1 that

lim
t→+∞

y(t) =
K2(r2−Eq2m)

r2
.

For above ε > 0, there exists an enough large T3 > 0 such that

y(t)<
K2(r2−Eq2m)

r2
+ ε for all t ≥ T3. (3.16)
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For t > T3, from the first equation of system (1.2), we have

dx
dt

< r1x
(

1− x
K1

+α

(K2(r2−Eq2m)

r2
+ ε

))
−q1Emx

= x
(

r1 +α

(K2(r2−Eq2m)

r2
+ ε

)
−q1Em− r1x

K1

)
= x

(r1r2K1 + r1r2αK2− r1q2mαK2E− r2mq1EK1

K1r2
+

αr1

K1
ε− r1x

K1

)
< −εx.

(3.17)

Hence

x(t)< x(T3)exp{−ε(t−T3)}→ 0 as t→+∞. (3.18)

(4)Firstly we proof that every solution of system (1.2)that starts in R2
+ is uniformly bounded.

Similarly to the analysis of (3.15), we have

lim
t→+∞

y(t) =
K2(r2−Eq2m)

r2
.

Hence, for arbitrary small positive constant ε > 0, there exists a T4 > 0 such that

y(t)<
K2(r2−Eq2m)

r2
+ ε for all t ≥ T4. (3.19)

Similarly to the analysis of (3.17), For t > T4, from the first equation of system (1.2), we have

dx
dt

< x
(r1r2K1 + r1r2αK2− r1q2mαK2E− r2mq1EK1

K1r2
+

αr1

K1
ε− r1x

K1

)
(3.20)

Now consider the equation

du
dt

= u
(r1r2K1 + r1r2αK2− r1q2mαK2E− r2mq1EK1

K1r2
+

αr1

K1
ε− r1u

K1

)
(3.21)

It follows from Lemma 3.1 that

lim
t→+∞

u(t) =
r1r2K1 + r1r2αK2− r1q2mαK2E− r2mq1EK1

r1r2
+αε. (3.22)

From (3.20) and (3.22), by applying the differential inequality theory, we have

limsup
t→+∞

x(t)≤ r1r2K1 + r1r2αK2− r1q2mαK2E− r2mq1EK1

r1r2
+αε. (3.23)

Hence, there exists a T5 > T4 such that

x(t)<
r1r2K1 + r1r2αK2− r1q2mαK2E− r2mq1EK1

r1r2
+(α +1)ε for all t ≥ T5. (3.24)
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Let

D =
{
(x,y) ∈ R2

+ : x < Γ1(ε), y <
K2(r2−Eq2m)

r2
+ ε

}
,

where

Γ1(ε) =
r1r2K1 + r1r2αK2− r1q2mαK2E− r2mq1EK1

r1r2
+(α +1)ε.

Then every solution of system (1.2) starts in R2
+ is uniformly bounded on D. Also, from The-

orem 2.1 there is a unique local stable positive equilibrium E4(x∗,y∗). To show that E4(x∗,y∗)

is globally stable, it’s enough to show that the system admits no limit cycle in the area D, Let’s

consider the Dulac function u(x,y) = x−1y−1, then

∂ (uF1)

∂x
+

∂ (uF2)

∂y
=−K1r2y+K2r1x

xyK1K2
< 0,

where

P(x,y) = r1x
(

1− x
K1

+α
y

K1

)
−q1Emx,

Q(x,y) = r2y
(

1− y
K2

)
−q2Emy.

By Dulac Theorem[32], there is no closed orbit in area D. Consequently, E4(x∗,y∗) is globally

asymptotically stable. This completes the proof of Theorem 3.1.

Remark 3.1. Theorem 2.1 and 3.1 show that if the system (1.2) admits the unique positive

equilibrium, then the positive equilibrium is globally asymptotically stable.

Remark 3.2. It follows from Theorem 2.1 and 3.1 that the local stability of the equilibrium also

implies the global one.

Remark 3.3. Since
dx∗

dm
=−E(K2q2r1α +K1q1r2)

r1r2
< 0,

dy∗

dm
=−EK2q2

r2
< 0,

thus both x∗ and y∗ are the strictly decreasing function of m. This means that with the increas-

ing of the fraction of the stock afford for harvesting, both species reduce their final density.

Therefore, to ensure the coexistence of the both species, the area for the harvesting should be

restricted to the limited case

m < min
{ r2

Eq2
,

r1r2(K1 +αK2)

r1αEK2q2 + r2q1EK1

}
.
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Otherwise, at least one of the species will be driven to extinction.

4. Numerical simulations

Example 4.1. Let’s take r1 = 1,E = 4,q1 = 1
2 ,q2 = 2,α = 1

3 ,r2 = 2,K1 = 1,K2 = 1. In this

case, by simple computation, one could easily see that

r1

Eq1
=

1
2
,

r2

Eq2
=

1
4
,

r1r2(K1 +αK2)

r1αEK2q2 + r2q1EK1
=

2
5
.

Corresponding to Theorem 3.1, we have

(1) For m > 1
2 , E1(0,0) is the globally asymptotically stable equilibrium, Fig.1, Fig. 2 is the

case of m = 0.75;

(2) For 1
4 < m < 1

2 , the boundary equilibrium E2(x0m,0) is globally asymptotically stable, Fig.

3, Fig.4 is the case of m = 0.3;

(3) For m < 1
4 , the positive equilibrium E4(x∗(m),y∗(m)) is globally asymptotically stable, Fig.

5, Fig.6 is the case of m = 0.1.

Above numeric simulations show that if the fraction of stock is too large, the system will be

collapse, while if the fraction of stock is limited, the two species could be coexist in a stable

state.

5. Discussion

With the aim of the ecological sustainability and conservation of the species can be imple-

mented in a long run, in this paper, we propose a non-selective harvesting Lotka-Volterra com-

mensalism model incorporating partial closure for the populations, i. e., system (1.2), which

can be seen as the generalization of the system (1.1).

For the system without harvesting, it follows from Theorem A that the positive equilibrium

is locally asymptotically stable, while the other three equilibrium are all unstable. However, by

introducing the harvesting, the dynamic behaviors of the system changes greatly. Depending
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FIGURE 1. Numeric simulations of system (4.1)

with m = 0.75, the initial conditions (x(0),y(0)) =

(0.5,0.1),(0.8,1),(0.3,3), and (0.7,2), respectively.

FIGURE 2. Numeric simulations of system (4.1)

with m = 0.75, the initial conditions (x(0),y(0)) =

(0.5,0.1),(0.8,1),(0.3,3), and (0.7,2), respectively.
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FIGURE 3. Numeric simulations of system (4.1)

with m = 0.3, the initial conditions (x(0),y(0)) =

(0.5,0.1),(0.8,1),(0.3,3), and (0.7,2), respectively.

FIGURE 4. Numeric simulations of system (4.1)

with m = 0.3, the initial conditions (x(0),y(0)) =

(0.5,0.1),(0.8,1),(0.3,3), and (0.7,2), respectively.
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FIGURE 5. Numeric simulations of system (4.1)

with m = 0.1, the initial conditions (x(0),y(0)) =

(0.5,0.1),(0.8,1),(0.3,3), and (0.7,2), respectively.

FIGURE 6. Numeric simulations of system (4.1)

with m = 0.1, the initial conditions (x(0),y(0)) =

(0.5,0.1),(0.8,1),(0.3,3), and (0.7,2), respectively.
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on the fraction of the stock and the harvesting effort, the system may be collapse in the sense

that both species will be driven to extinction, or partial survival, in the sense that one of the

species will be driven to extinction, while the other one is permanent, or both species could be

coexisted in a stable state, despite the initial state of the both species.
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