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Abstract. A two species commensal symbiosis model with Holling type functional response and Allee effect on

the second species takes the form
dx
dt

= x
(

a1−b1x+
c1yp

1+ yp

)
,

dy
dt

= y(a2−b2y)
y

u+ y
is investigated, where ai,bi, i = 1,2 p, u and c1 are all positive constants, p≥ 1. Local and global stability property

of the equilibria is investigated. Our study indicates that the unique positive equilibrium is globally stable and the

system always permanent, consequently, Allee effect has no influence on the final density of the species. However,

numeric simulations show that the stronger the Allee effect, the longer the for the system to reach its stable steady-

state solution.
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1. Introduction

The aim of this paper is to investigate the dynamic behaviors of the following two species

commensal symbiosis model with Holling type functional response and Allee effect on the

second species:

dx
dt

= x
(

a1−b1x+
c1yp

1+ yp

)
,

dy
dt

= y(a2−b2y)
y

u+ y
,

(1.1)

where ai,bi, i = 1,2 p, u and c1 are all positive constants, p≥ 1.

During the lase decades, many scholars investigated the dynamic behaviors of the mutualism

model or commensalism model ([1]-[28]). Such topic as the stability of the positive equilibrium,

the persistent of the system, the existence of the positive periodic solution etc are extensively

investigated.

Sun and Wei[21] first time proposed a intraspecific commensal model:

dx
dt

= r1x
(k1− x+ay

k1

)
,

dy
dt

= r2y
(k2− y

k2

)
.

(1.2)

They investigated the local stability of all equilibrium points. Han and Chen[22] incorporat-

ing the feedback control variables to the above system, and they showed that system admits a

unique globally stable positive equilibrium, which means that feedback control variables has no

influence on the stability property of the system (1.2). Corresponding to system (1.2), Xie et al.

[24] proposed a discrete commensal symbiosis model, they investigated the positive ω-periodic

solution of the system. Xue et al[25] further proposed a discrete commensalism model with the

delay, they investigated the almost periodic solution of the system. Miao et al[26] studied the

persistent property of the periodic Lotka-Volterra commensal symbiosis model with impulsive,

their results indicates that impulsive is one of the important reasons that can change the long

time behaviors of species. Recently, we [16] argued that it may be more suitable to assume

the relationship between two species is nonlinear type instead of linear, and we established the
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following two species commensal symbiosis model

dx
dt

= x
(

a1−b1x+
c1yp

1+ yp

)
,

dy
dt

= y(a2−b2y),

(1.3)

where ai,bi, i = 1,2 p and c1 are all positive constants, p≥ 1.

Allee effect, which describe the fact that the reduce per-capita population growth rate at low

densities, such phenomenon can be caused by difficulties in finding a mate or predator avoid

danger or defense. During the last decades, many scholars studied the dynamic behaviors of

the the predator-prey system and competition system with Allee effect, see [28]-[34] and the

references cited therein. Hüseyin Merdan [34] investigated the influence of the Allee effect

on the Lotka-Volterra type predator-prey system. To do so, the author proposed the following

predator-prey system with Allee effect for prey species

dx
dt

= rx(1− x)
x

β + x
−axy,

dy
dt

= ay(x− y), (1.4)

where
x

β + x
represents the Allee effect, β is positive constant. He showed that: (1) The system

subject to an Allee effect takes a longer time to reach its steady-state solution; (2) The Allee

effect reduces the population densities of both predator and prey at the steady-state.

It bring to our attention that, to this day, still no scholars study the influence of Allee effect

to the commensalism model. Stimulated by the works of [16, 34], we propose the system (1.1).

The aim of this paper is to investigate the local and global stability property of the possi-

ble equilibria of system (1.1). We arrange the paper as follows: In the next section, we will

investigate the existence and local stability property of the equilibria of system (1.1), we also

discuss the persistent property of the system. In Section 3, by constructing some suitable Du-

lac function, we will investigate the global stability property of the positive equilibrium of the

system; In Section 4, an example together with its numeric simulations is presented to show the

feasibility of our main results. We end this paper by a briefly discussion.

2. The existence and local stability of the equilibria
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The equilibria of system (1.1) is determined by the system

x
(

a1−b1x+
c1yp

1+ yp

)
= 0,

y(a2−b2y)
y

u+ y
= 0.

(2.1)

Hence, system (1.1) admits four possible equilibria, A0(0,0), A1
(a1

b1
,0
)
, A2
(
0, a2

b2

)
and A3

(
x∗,y∗

)
,

where

x∗ =
a1(

a2
b2
)p + c1(

a2
b2
)p +a1

b1
(
1+(a2

b2
)p
) , y∗ =

a2

b2
. (2.2)

Concerned with the local stability property of the above four equilibria, we have

Theorem 2.1. A0(0,0) and A1(
a1
b1
,0) are non-hyperbolic, and A2

(
0, a2

b2

)
is unstable; A3

(
x∗,y∗

)
is locally stable.

Proof. The Jacobian matrix of the system (1.1) is calculated as

J(x,y) =

 a1−2b1x+
c1yp

1+ yp
c1 pxyp−1

(1+ yp)2

0 Γ

 . (2.3)

where

Γ =
y
(
−3b2uy−2b2y2 +2a2u+a2y

)
(u+ y)2 .

Then the Jacobian matrix of the system (1.1) about the equilibria A0(0,0), A1(
a1
b1
,0) and A2(0, a2

b2
)

are given by (
a1 0

0 0

)
. (2.4)

(
−a1 0

0 0

)
. (2.5)

and ( a1 +
c1(

a2
b2
)p

1+(a2
b2
)p 0

0 −
a2

2
b2(u+

a2
b2
)

)
(2.6)
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respectively. (2.4)-(2.6) shows that A0,A1 are non-hyperbolic, and A2(0, a2
b2
) is unstable.

The Jacobian matrix about the equilibrium A3 is given by

 −
a1(

a2
b2
)p + c1(

a2
b2
)p +a1

1+(a2
b2
)p F12

0 −
a2

2
b2u+a2

 , (2.7)

where

F12 =
c1 pb2

(
a1(

a2
b2
)2p + c1(

a2
b2
)2p +a1(

a2
b2
)p
)

b1a2

(
1+(a2

b2
)p
)3 . (2.8)

The eigenvalues of the above matrix are

λ1 =−
a1(

a2
b2
)p + c1(

a2
b2
)p +a1

1+(a2
b2
)p < 0,λ2 =−

a2
2

b2u+a2
< 0.

Hence, A3(x∗,y∗) is locally stable.

This ends the proof of Theorem 2.1.

Compared with the equilibria of system (1.1) and (1.3), we found the system admits the same

equilibria. However, for system (1.3), the three boundary equilibria are all unstable, while for

system (1.1), A0 and A1 are non-hyperbolic, and we could not obtain the stability information

above these two equilibrium by investigating the eigenvalues of the Jacobian matrix. Following

we will try to solve this problem by investing the persistent property of the system.

Lemma 2.1 Consider the following equation

dy
dt

= y(a2−b2y)
y

u+ y
, (2.9)

the unique positive equilibrium y∗ =
a2

b2
is global stability.

Proof. Set

F(y) = (a2−b2y)
y

u+ y
.

Then

(1)There is a y∗ =
a2

b2
, such that F(y∗) = 0;

(2)For all y∗ > y > 0,F(y)> 0;
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(3)For all y > y∗ > 0,F(y)< 0.

Now let’s consider the Lyapunov function

V = y− y∗− y∗ ln
y
y∗
.

Direct calculation shows that

dV
dt

= (y− y∗)(F(y)−F(y∗))< 0.

Thus, y∗ is global stability. This ends the proof of Lemma 2.1.

Theorem 2.2. System (1.1) is permanent.

Proof. It follows from the second equation of system (1.1) and Lemma 2.1 that

lim
t→+∞

y(t) =
a2

b2
. (2.10)

For ε > 0 enough small, there exists T > 0, when t > T, we have

a2

b2
− ε < y(t)<

a2

b2
+ ε. (2.11)

From the first equation of system (1.1) and the right part of the inequalities (2.11), when

t ≥ T, we obtain

dx
dt
≤ x

(
a1−b1x+ c1

(a2
b2
+ ε)p

1+(a2
b2
+ ε)p

)
. (2.12)

Therefore,

limsup
t→+∞

x(t)≤
a1 + c1

(a2
b2
+ ε)p

1+(a2
b2
+ ε)p

b1
.

Setting ε → 0 in above inequality leads to

limsup
t→+∞

x(t)≤
a1 + c1

(a2
b2
)p

1+(a2
b2
)p

b1
.

(2.13)

When t ≥ 0, from the first equation of system (1.1), we also have

dx
dt
≥ x(a1−b1x), (2.14)
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and so

liminf
t→+∞

x(t)≥ a1

b1
. (2.15)

(2.13) and (2.15) show that the first species of system (1.1) is permanent.

This ends the proof of Theorem 2.2.

Since the permanence of the system implies that all the solutions will be bounded above and

below by positive constants, thus, it’s impossible for the solutions to approach to A0(0,0) and A1(
a1
b1
,0),

which means that A0(0,0) and A1(
a1
b1
,0) are locally unstable.

Corollary 2.1. The equilibria A0 and A1 of system (1.1) are all unstable.

3. Global stability of the positive equilibrium

Theorem 2.1 shows that the system always admits a positive equilibrium, and this equilibrium

is locally stable. Theorem 2.2 shows that all other three boundary equilibria are unstable. One

interesting thing is whether the system (1.1) could have limit cycle or not, which means that

the two species could be coexistent in a periodic oscillation form. The aim of this section is to

show that such phenomenon could not be happened.

Theorem 3.1. A3
(
x∗,y∗

)
is globally stable.

Proof. Theorem 2.2 shows that every solution of system (1.1) starts in R2
+ is uniformly bounded

on

D =

{
(x,y)|x <

a1 + c1
(a2

b2
)p

1+(a2
b2
)p

b1
+ ε, y <

a2

b2
+ ε

}
.

Also, from Theorem 2.1 and 2.2 there is a unique local stable positive equilibrium A3(x∗,y∗).

To show that A3(x∗,y∗) is globally stable, it’s enough to show that the system admits no limit
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cycle in the area D, Let’s consider the Dulac function u(x,y) = x−1y−2, then

∂ (uP)
∂x

+
∂ (uQ)

∂y

=
1

xy2

(
a1−2b1 x+

c1 yp

1+ yp

)
− 1

x2y2

(
a1 x−b1 x2 +

c1 xyp

1+ yp

)
+
−2b2 y+a2

y(u+ y)x
− −b2 y2 +a2 y

y2 (u+ y)x
− −b2 y2 +a2 y

y(u+ y)2 x

= −b1u2x+2b1uxy+b1xy2 +b2uy2 +a2y2

x(u+ y)2y2 < 0,

where

P(x,y) = x
(

a1−b1x+
c1yp

1+ yp

)
,

Q(x,y) = y(a2−b2y)
y

u+ y
.

By Dulac Theorem[28], there is no closed orbit in area D. Consequently, A3(x∗,y∗) is globally

asymptotically stable. This completes the proof of Theorem 3.1.

4. Numeric simulations

Now let us consider the following example.

Example 4.1. Consider the following system

dx
dt

= x
(

1−2x+
y

1+ y

)
,

dy
dt

= y(1−2y)
y

u+ y
.

(4.1)

In this system, corresponding to system (1.1), we take a1 = a2 = c1 = 1,b1 = b2 = 2. From

Theorem 3.1, the unique positive equilibrium
(2

3 ,
1
2

)
is globally stable. Numeric simulation

(Fig.1) also support this assertion. Now let’s take u = 1,5 and 10, respectively, Fig. 2 and 3

show that with the increasing of the u (i. e., the increasing of the Allee effect), the solution takes

much time to reach its steady state.

5. Conclusion



COMMENSAL SYMBIOSIS MODEL INVOLVING ALLEE EFFECT 9

FIGURE 1. Numeric simulations of system (4.1)

with u = 1, the initial conditions (x(0),y(0)) =

(0.4,2),(1,0.3),(0.02,0.02),(1,2) and (0.1,2), respectively.

FIGURE 2. Numeric simulations of x(t), with u = 1,5,10 and

(x(0),y(0)) = (0.5,0.01), respectively, where black curve is the

solution of u = 10, green curve is the solution of u = 1, and red

curve is the solution of u = 5.
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FIGURE 3. Numeric simulations of y(t), with u = 1,5,10 and

(x(0),y(0)) = (0.5,0.01), respectively, where black curve is the

solution of u = 10, green curve is the solution of u = 1, and red

curve is the solution of u = 5.

We propose a two species commensal symbiosis model with Holling type functional response

and Allee effect to the second species, our study shows that the dynamic behaviors of the sys-

tem is similar to the system without Allee effect, i.e., the dynamic behaviors of the system

(1.1) is similar to that of the dynamic behaviors of the system (1.3). The system always admits

a unique globally stable positive equilibrium. However, by introducing the Allee effect, the

stability property of the boundary equilibria become complicated, since A0(0,0) and A1(
a1
b1
,0)

are non-hyperbolic type equilibria. We solve this problem by discuss the persistent property of

the system. We showed that the system is always permanent, and consequently, A0(0,0) and

A1(
a1
b1
,0) are unstable.

Already, Hüseyin Merdan [34] had showed that the Allee effect reduces the population den-

sities of both predator and prey at the steady-state, while in system (1.1), this property does not

hold. Allee effect has no influence on the final density of the both species. On the other hand,

Numeric simulations (Fig. 2, Fig. 3) also show that the stronger the Allee effect (u become

large), the system takes a longer time to reach its steady-state solution. Such a property is coin-

cidence with that of the findings of Hüseyin Merdan [34].
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At the end of the paper we would like to mention that whether the system has similar dynam-

ics for 0 < p < 1 is still unknown, we leave this for future discussion.
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