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Abstract. In this paper, based on characteristics of brucellosis infection in some regions in China, a multi-stage

dynamic model is proposed for sheep brucellosis transmission. The birth rate is related to the adult and vaccinated

sheep. More realistically, the immigration from other place is also considered. Firstly, the basic reproduction

number R0 is determined and the dynamical properties of the model is discussed. It is concluded that the unique

endemic equilibrium exists when R0 > 1. By constructing suitable Lyapunov function, the global stability of the

endemic equilibrium is verified. By carrying out sensitivity analysis of the basic reproduction number in term of

the parameters, it is concluded that increasing the sheep vaccination rate and elimination rate of infected sheep is

important for the control brucellosis.
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1. Introduction

Brucellosis, is an acute and chronic infectious disease caused by Brucella that is mainly

infected with livestock. The World Health Organization has classified it as a Category B animal
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disease, and China has classified it as a Category II animal disease [1]. Brucellosis can occur

throughout the year. It can live about 4 months in soil and water, survive in meat, dairy product

about 2 months and die out immediately when boiled. Generally, disinfectants are used to kill

the pathogen within a few hours. In natural conditions, animals susceptible to Brucella are

widely distributed. Wild animals are hosts of Brucella and mainly infect cattle, sheep, and pigs.

The disease also can be transmitted to human being from the infected animals or the infected

environment.

In China, brucellosis exists in most areas, especially in the north. In the 1990s, the epi-

demic of brucellosis was mainly concentrated in the five major pastoral areas, Inner Mongolia,

Xinjiang, Qinghai, Ningxia and Tibet. Using the mathematical models to the research on the

prevention and control of the epidemic spread has important significance [2]. The transmission

of many diseases is related to its different stage structure. For example, diseases such as measles

and chickenpox are more common in the early childhood stages, but for brucellosis and in terms

of typhoid fever, it appears more often in the adult stage[3]. Because the population shows dif-

ferent characteristics at different stages, it is a great theoretical and practical significance to

study the dynamics of infectious diseases with stage structure.

There are many studies about brucellosis transmission models. Recently, G.Q. Sun consid-

ered a type of disease model with birth items [4], X.J. Wang studied a type of brucellosis model

with nonlinear contact rate [5], B. Hao, Mi R.M. Zhang discussed an human and sheep co-

infection model and reached some conclusions[6], M.T. Li discussed a four-dimensional, staged

brucellosis model [7]. A class of brucellosis infection model with direct exposure to latencies

and immunization is discussed in[8]. Based on these works, we will consider a stage structured,

six-dimensional model with birth rate and with indirect environmental infection term.

Firstly, we will introduce the dynamical model, give out the basic reproduction number R0

and the disease free equilibrium in Section 2. We will analyze the stability of the disease free

equilibrium in Section 3. The existence and global stability of endemic equilibrium is discussed

in Section 4. Some numerical simulations will be used to verify our analytical results in Section

5. Finally, we will conclude the paper with some discussion in Section 6.

2. Dynamic Model
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Based on the obvious structural characteristics of Brucella, we divided sheep population into

susceptible young sheep, susceptible adult sheep, latent sheep, immunized sheep and infected

sheep, denoted separately by S1(t),S2(t),E(t), I(t),V (t). Taking into account the indirect envi-

ronmental transmission factors, we use B(t) to denote the Brucella bacteria in the environment

at time t, susceptible sheep can be affected by direct contact with the infected sheep or indirect

contact with contaminated environment. Notice that susceptible young sheep and susceptible

adult sheep has different infection rates(actually the infection rate for susceptible young sheep

is smaller than susceptible adult sheep). It is assumed that the birth rate of sheep is only related

with the adult and immunized individuals, and culling measures are taken for infected sheep.

Then we have the following brucellosis transmission model:

dS1

dt
= A+α(S2 +V )− (µ +m)S1− ε(βS1I +βS1E +β1S1B)

dS2

dt
= mS1−θS2−µS2 +δV − (βS2I +βS2E +β1S2B)

dE
dt

= ε(βS1I +βS1E +β1S1B)+(βS2I +βS2E +β1S2B)− (µ +σ)E

dI
dt

= σE− (µ + γ)I

dV
dt

= θS2− (µ +δ )V

dB
dt

= k(E + I)− (d +nτ)B

(2.1)

Consider that all parameters in system(2.1) are nonnegative, and satisfies µ > α . The parame-

ters are described in following table.

Assume that N(t) is the total number of the sheep population, that is N(t) = S1(t)+S2(t)+

E(t)+ I(t)+V (t), then

dN
dt

= A+α(S2 +V )−µN− γI ≤ A− (µ−α)N

it follows that

limsup
t→∞

N(t)≤ A
µ−α

(2.2)

From the last equation of system (2.1) we can obtain that:

dB
dt
≤ kN− (d +nτ)B≤ kA

µ−α
− (d +nτ)B
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parameters comments unit

A the input number of young sheep year−1

ε the ratio coefficient of infection of young sheep year−1

β the infection rate of latent and infected sheep to susceptible sheep year−1

µ the natural death rate of sheep year−1

β1 the infection rate from contaminated environment to susceptible sheep year−1

σ the transfer rate from exposed to infectious compartment year−1

γ the disease-related elimination rate year−1

k brucella shedding rate from exposed and infectious sheep into the environment year−1

d the natural decaying rate of brucella in environment year−1

n disinfection times time−1

τ the efficient disinfection rate year−1

m transfer rate from young sheep to adult sheep year−1

θ adult sheep vaccination rate year−1

δ vaccination loss rate year−1

α the birth rate of sheep year−1

that is

limsup
t→∞

B(t)≤ kA
(µ−α)(d +nτ)

(2.3)

By equations (2.2) and (2.3), we can conclude that

Γ = {(S1,S2,E, I,V,B) | S1,S2,E, I,V,B≥ 0,0≤ (S1 +S2 +E + I +V )≤ A
µ−α

,B≤ kA
(µ−α)(d +nτ)

}

is the positively invariant set respect to system (2.1).

It’s evident that the system (2.1) has a disease-free equilibrium E0 =(S0
1,S

0
2,0,0,V

0,0), which

satisfies : 
A+α(S2 +V )− (µ +m)S1 = 0

mS1−θS2−µS2 +δV = 0

θS2− (µ +δ )V = 0

(2.4)
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Where

S0
1 =

Aµ

µ2 +µm−αm
,

S0
2 =

Am(µ +δ )

(µ2 +µm−αm)(µ +δ +θ)
,

V 0 =
Amθ

(µ2 +µm−αm)(µ +δ +θ)

(2.5)

Following the method of Van den Driessche and Watmough [9], we have:

F =


εβS0

1 +βS0
2 εβS0

1 +βS0
2 εβ1S0

1 +β1S0
2

0 0 0

0 0 0

 V =


µ +σ 0 0

−σ µ + γ 0

−k −k d +nτ


the basic reproduction number of system (2.1) is:

R0 = ρ(FV−1) =
εβS0

1 +βS0
2

µ +σ
+

σ(εβS0
1 +βS0

2)

(µ +σ)(µ + γ)
+

k(µ +σ + γ)(εβ1S0
1 +β1S0

2)

(µ + γ)(µ +σ)(d +nτ)
(2.6)

Let M = F−V , we have:

M =


εβS0

1 +βS0
2− (µ +σ) εβS0

1 +βS0
2 εβ1S0

1 +β1S0
2

σ −(µ + γ) 0

k k −(d +nτ)


Define s(M) = max{Reλ : λ is an eigenvalue of M }, s(M) is a simple eigenvalue of M with a

positive eigenvector , by the Theorem 2 in [9], we have

R0 > 1⇔ s(M)> 0,R0 < 1⇔ s(M)< 0

3. The stability of disease-free equilibrium

Theorem 3.1.

The disease-free equilibrium E0 of system (2.1) is local stability when R0 < 1.

Proof.

It’s obvious that the hypothesis (A1-A4) of Theorem 2 in [9] is satisfied. Next, to verify (A5),

we only need prove that all the eigenvalues of :
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J |E0=

 M 0

J3 J4


have negative real parts, where J3 =−F .

J4 =


−(µ +m) α α

m −(µ +θ) δ

0 θ −(µ +δ )


Next we calculate the eigenvalues of J4, the characteristic equation is:

p(λ ) = λ
3 +b1λ

2 +b2λ +b3 = 0

in which

b1 = 3µ +θ +m+δ

b2 = µ(µ +θ +δ )+(µ +m)(2µ +θ +δ )−mα

b3 = µ(µ +m)(µ +θ +δ )−mα(µ +θ +δ )

It’s obvious that b1 > 0, b2 > 0, b3 > 0, and

b1b2−b3 = (3µ +θ +δ +m)[(µ +θ +δ )(2µ +m)+µ(µ +m)−mα]

− (µ +θ +δ )(µ2 +mµ−mα)

> (3µ +θ +δ +m)(µ +θ +δ )(2µ +m)− (µ +θ +δ )(µ2 +mµ)

+ (µ +θ +δ )mα

> 0

Using the Routh-Hurwitz criteria, we can conclude that all the eigenvalues of J4 have negative

real parts. Therefore, if R0 < 1, then s(M) < 0 and s(J |E0) < 0. This means the disease-free

equilibrium E0 of system (2.1) is locally stable. This completes the proof.

Theorem 3.2.

The disease-free equilibrium E0 of system (2.1) is globally asymptotically stable when R0 < 1.
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Proof.

Constructing a Lyapunov function as follows:

L1(t) = S1(t)−S0
1−S0

1 ln
S1(t)

S0
1

+S2(t)−S0
2−S0

2 ln
S2(t)

S0
2

+V (t)−V 0−V 0 ln
V (t)
V 0 +E

+
(d +nτ)[µ +σ − (εβS0

1 +βS0
2)]− k(εβ1S0

1 +β1S0
2)

σ(d +nτ)
I +

εβ1S0
1 +β1S0

2
d +nτ

B

From the definition of R0, it is easy to see that

(µ +σ)(d +nτ)− (d +nτ)(εβS0
1 +βS0

2)− k(εβ1S0
1 +β1S0

2)

σ(d +nτ)
> 0

holds when R0 < 1. Calculating the derivative of L1(t), we have

dL1(t)
dt

= (1−
S0

1
S1

)[A+α(S2 +V )− ε(βS1I +βS1E +β1S1B)−
A+α(S0

2 +V 0)

S0
1

S1]

+ (1−
S0

2
S2

)[mS1 +δV − (βS2I +βS2E +β1S2B)−
mS0

1 +δV 0

S0
2

S2]

+ (1− V 0

V
)[θS2−

θS0
2

V 0 V ]

+ ε(βS1I +βS1E +β1S1B)+(βS2I +βS2E +β1S2B)− (µ +σ)E

+
(µ +σ)(d +nτ)− (d +nτ)(εβS0

1 +βS0
2)− k(εβ1S0

1 +β1S0
2)

σ(d +nτ)
[σE− (µ + γ)I]

+
εβ1S0

1 +β1S0
2

d +nτ
[k(E + I)− (d +nτ)B]

Notice that

A = µS0
1 +µV 0 +µS0

2−α(S0
2 +V 0), mS0

1 = µV 0 +µS0
2, θS0

2 = (µ +δ )V 0,

then

dL1(t)
dt

= µS0
1(2−

S0
1

S1
− S1

S0
1
)+(µV 0−αV 0)(4−

S0
1

S1
−

S0
2S1

S0
1S2
− V

V 0 −
S2V 0

S0
2V

)

+ (µS0
2−αS0

2)(3−
S0

1
S1
− S2

S0
2
−

S0
2S1

S0
1S2

)+δV 0(2−
S0

2V
S2V 0 −

S2V 0

S0
2V

)

+ αS0
2(2−

S0
2S1

S0
1S2
−

S0
1S2

S0
2S1

)+αV 0(3− S2V 0

S0
2V
−

S0
1V

S1V 0 −
S0

2S1

S0
1S2

)

+
(µ +σ)(µ + γ)

σ
I(R0−1)
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Therefore, when R0 < 1, we have dL1
dt ≤ 0, and the equation dL1(t)

dt = 0 holds if and only if

S1 = S0
1,S2 = S0

2,E = 0, I = 0,V =V 0,B = 0. Thus the disease-free equilibrium E0 is globally

asymptotic stable in Γ by LaSalle’s Invariance Principle[10]. This completes the proof.

4. The existence and global stability of endemic equilibrium

The possible endemic equilibrium E∗(S∗1,S
∗
2,E
∗, I∗,V ∗,B∗) of system (2.1) derived by the

following equations:

A+α(S2 +V )− (µ +m)S1 + ε(βS1I +βS1E +β1S1B) = 0

mS1−θS2−µS2 +δV − (βS2I +βS2E +β1S2B) = 0

ε(βS1I +βS1E +β1S1B)+(βS2I +βS2E +β1S2B)− (µ +σ)E = 0

σE− (µ + γ)I = 0

θS2− (µ +δ )V = 0

k(E + I)− (d +nτ)B = 0

(4.1)

then we have

E =
(µ + γ)I

σ
,V =

θS2

(µ +δ )
,B =

kI(µ + γ +σ)

σ(d +nτ)
(4.2)

Let H = β +β
µ+γ

σ
+β1

k(µ+γ+σ)
σ(d+nτ) . From the first and second equations in (4.1), we get

S1 =
A[(µ +δ )(IH +θ +µ)−δθ ]

(IHε +µ +m)[(µ +δ )(IH +θ +µ)−δθ ]−αm(µ +δ +θ)
(4.3)

From the second and fifth equations in (4.1), we obtain

S2 =
mS1−µV

µ +β I +βE +β1B

By (4.2),(4.3) we can obtain

S2 =
Am(µ +δ )

(IHε +µ +m)[(µ +δ )(IH +θ +µ)−δθ ]−αm(µ +δ +θ)
, F1(I)

From the third equation in (4.1), we have

S2 =
E(µ +σ)

β I +βE +β1B
− εS1 (4.4)
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Substituting (4.2) and (4.3) into (4.4), we get

S2 =
(µ + γ)(µ +σ)

σH
− Aε[(µ +δ )(IH +θ +µ)−δθ ]

(IHε +µ +m)[(µ +δ )(IH +θ +µ)−δθ ]−αm(µ +δ +θ)
, F2(I)

Then limsupI→∞ F1(I) = 0 and

F
′
1(I) =

−mA(µ +δ )[H(µ +δ )(IHε +µ +m)+ IH2ε(µ +δ )+Hεµ(µ +δ +θ)]

[(IHε +µ +m)[(µ +δ )(IH +θ +µ)−δθ ]−αm(µ +δ +θ)]2

We can see that F
′
1(I)< 0, for all I ∈ Γ, so F1(I) is monotonically decreasing in Γ.

Using the same method, we can conclude that F2(I) is monotonically increasing in Γ. Notic-

ing that

F1(0) =
Am(µ +δ )

(µ +m)µ(µ +δ +θ)−αm(µ +δ +θ)
> 0

and

F2(0) =
(µ + γ)(µ +σ)

σH
− Aεµ

µ2 +mµ−αm

Then

F1(0)−F2(0)

=
Am(µ +δ )σH +AεσHµ(µ +δ +θ)− [µ(µ +m)−αm](µ +δ +θ)(µ + γ)(µ +σ)

σH(µ +δ +θ)[µ(µ +m)−αm]

=
1

σH
[

Am(µ +δ )σH
[µ(m+µ)−αm](µ +δ +θ)

+
AεσHµ(µ +δ +θ)

[µ(m+µ)−αm](µ +δ +θ)
− (µ + γ)(µ +σ)]

(4.5)

Substituting H = β +β
µ+γ

σ
+β1

k(µ+γ+σ)
σ(d+nτ) into (4.5), we have:

Am(µ +δ )σH
[µ(m+µ)−αm](µ +δ +θ)

+
AεσHµ(µ +δ +θ)

[µ(m+µ)−αm](µ +δ +θ)
− (µ + γ)(µ +σ)

=
Am(µ +δ )

[µ(m+µ)−αm](µ +δ +θ)
[βσ +β (µ + γ)+

β1k(µ + γ +σ)

d +nτ
]

+
Aεµ(µ +δ +θ)

[µ(m+µ)−αm](µ +δ +θ)
[βσ +β (µ + γ)+

β1k(µ + γ +σ)

d +nτ
]− (µ + γ)(µ +σ)

Noticing (2.5)(2.6), when R0 > 1, there is:

Am(µ +δ )

[µ(m+µ)−αm](µ +δ +θ)
[βσ +β (µ + γ)+

β1k(µ + γ +σ)

d +nτ
]

+
Aεµ(µ +δ +θ)

[µ(m+µ)−αm](µ +δ +θ)
[βσ +β (µ + γ)+

β1k(µ + γ +σ)

d +nτ
]

>(µ + γ)(µ +σ)
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So, while R0 > 1 we have F1(0)−F2(0) > 0. Let Im = A
µ−α

, by similar calculation, we also

have F2(Im)−F1(Im) > 0. Therefore, system (2.1) has a unique positive equilibrium E∗ when

R0 > 1.

Theorem 4.1.

If R0 > 1, then the endemic equilibrium E∗ = (S∗1,S
∗
2,E
∗, I∗,V ∗,B∗) of system (2.1) is globally

asymptotic stable.

Proof.

Define a Lyapunov function as follows:

L2 = S1(t)−S∗1−S∗1 ln
S1(t)

S∗1
+S2(t)−S∗2−S∗2 ln

S2(t)
S∗2

+V (t)−V ∗−V ∗ ln
V (t)
V ∗

+ E(t)−E∗−E∗ ln
E(t)
E∗

+
εβ1S∗1B∗+β1S∗2B∗

kE∗+ kI∗
[B(t)−B∗−B∗ ln

B(t)
B∗

]

+ (
εβS∗1I∗+βS∗2I∗

σE∗
+

kI∗(εβ1S∗1B∗+β1S∗2B∗)
σE∗(kE∗+ kI∗)

)[I(t)− I∗− I∗ ln
I(t)
I∗

]

Calculating the derivative of this function along with the solution of system (2.1), we have

dL2(t)
dt

= (1− S∗1
S1

)[A+α(S2 +V )− ε(βS1I +βS1E +β1S1B)

− (1− S∗1
S1

)
A+α(S∗2 +V ∗)− ε(βS∗1I∗+βS∗1E∗+β1S∗1B∗)

S∗1
S1]

+ (1− S∗2
S2

)[mS1 +δV − (βS2I +βS2E +β1S2B)]+(1− V ∗

V
)[θS2−

θS∗2
V ∗

V ]

− (1− S∗2
S2

)[
mS∗1 +δV ∗− (βS∗2I∗+βS∗2E∗+β1S∗2B∗)

S∗2
S2]

+ (1− E∗

E
)[ε(βS1I +βS1E +β1S1B)+βS2I +βS2E +β1S2B]

− (1− E∗

E
)[

ε(βS∗1I∗+βS∗1E∗+β1S∗1B∗)+βS∗2I∗+βS∗2E∗+β1S∗2B∗

E∗
E]

+ (εβS∗1I∗+βS∗2I∗)(1− I∗

I
)(

E
E∗
− I

I∗
)+

kI∗(εβ1S∗1B∗+β1S∗2B∗)
kE∗+ kI∗

(1− I∗

I
)(

E
E∗
− I

I∗
)

+
εβ1S∗1B∗+β1S∗2B∗

kE∗+ kI∗
kE∗(1− B∗

B
)(

E
E∗
− B

B∗
)+

εβ1S∗1B∗+β1S∗2B∗

kE∗+ kI∗
kI∗(1− B∗

B
)(

I
I∗
− B

B∗
)

Noticing that

θS∗2 = (µ +δ )V ∗,mS∗1 = µ(S∗2 +V ∗)+βS∗2I∗+βS∗2E∗+β1S∗2B∗

A =µ(S∗1 +S∗2 +V ∗)−α(S∗2 +V ∗)+ ε(βS∗1I∗+βS∗1E∗+β1S∗1B∗)+βS∗2I∗+βS∗2E∗+β1S∗2B∗
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Then

dL2(t)
dt

= µS∗1(2−
S∗1
S1
− S1

S∗1
)+µV ∗(4− S∗1

S1
− S∗2S1

S∗1S2
− V

V ∗
− S2V ∗

S∗2V
)

+ µS∗2(3−
S∗1
S1
− S2

S∗2
− S∗2S1

S∗1S2
)+δV ∗(2− S∗2V

S2V ∗
− S2V ∗

S∗2V
)

− αS∗2(1−
S∗1
S1
− S2

S∗2
+

S2S∗1
S1S∗2

)−αV ∗(1− S∗1
S1
− V

V ∗
+

V S∗1
S1V ∗

)

+ εβS∗1I∗(3− S∗1
S1
− I∗E

IE∗
− E∗S1I

ES∗1I∗
)+ εβS∗1E∗(2− S∗1

S1
− S1

S∗1
)

+ εβ1S∗1B∗(2− S∗1
S1
− E

E∗
+

B
B∗
− E∗S1B

ES∗1B∗
)+βS∗2I∗(4− S∗1

S1
− I∗E

IE∗
− S1S∗2

S2S∗1
− E∗S2I

ES∗2I∗
)

+ βS∗2E∗(3− S∗1
S1
− S1S∗2

S2S∗1
− S2

S∗2
)+β1S∗2B∗(3− S∗1

S1
− S1S∗2

S2S∗1
− E

E∗
+

B
B∗
− E∗S2B

ES∗2B∗
)

+
kI∗εβ1S∗1B∗

kE∗+ kI∗
(2+

E
E∗
− B

B∗
− I∗E

IE∗
− B∗I

BI∗
)+

kI∗β1S∗2B∗

kE∗+ kI∗
(2+

E
E∗
− B

B∗
− I∗E

IE∗
− B∗I

BI∗
)

+
kE∗εβ1S∗1B∗

kE∗+ kI∗
(

E
E∗
− B

B∗
− B∗E

BE∗
+1)+

kE∗β1S∗2B∗

kE∗+ kI∗
(

E
E∗
− B

B∗
− B∗E

BE∗
+1)

= µS∗1(2−
S∗1
S1
− S1

S∗1
)+(µV ∗−αV ∗)(4− S∗1

S1
− S∗2S1

S∗1S2
− V

V ∗
− S2V ∗

S∗2V
)

+ (µS∗2−αS∗2)(3−
S∗1
S1
− S2

S∗2
− S∗2S1

S∗1S2
)+δV ∗(2− S∗2V

S2V ∗
− S2V ∗

S∗2V
)

+ αS∗2(2−
S∗2S1

S∗1S2
− S∗1S2

S∗2S1
)+αV ∗(3− S∗2S1

S∗1S2
− S∗1V

V ∗S1
− S2V ∗

S∗2V
)

+ εβS∗1I∗(3− S∗1
S1
− I∗E

IE∗
− E∗S1I

ES∗1I∗
)+

kE∗β1S∗2B∗

kE∗+ kI∗
(4− S∗1

S1
− S1S∗2

S2S∗1
− B∗E

BE∗
− E∗S2B

ES∗2B∗
)

+ εβS∗1E∗(2− S∗1
S1
− S1

S∗1
)+βS∗2I∗(4− S∗1

S1
− I∗E

IE∗
− S1S∗2

S2S∗1
− E∗S2I

ES∗2I∗
)

+ βS∗2E∗(3− S∗1
S1
− S1S∗2

S2S∗1
− S2

S∗2
)+

kI∗εβ1S∗1B∗

kE∗+ kI∗
(4− S∗1

S1
− I∗E

IE∗
− B∗I

BI∗
− E∗S1B

ES∗1B∗
)

+
kI∗β1S∗2B∗

kE∗+ kI∗
(5− S∗1

S1
− S1S∗2

S2S∗1
− I∗E

IE∗
− B∗I

BI∗
− E∗S2B

ES∗2B∗
)

+
kE∗εβ1S∗1B∗

kE∗+ kI∗
(3− S∗1

S1
− B∗E

BE∗
E∗S1B
ES∗1B∗

)

≤ 0

The equation dL(t)
dt = 0 holds if and only if S1 = S∗1,S2 = S∗2,E = E∗, I = I∗,V = V ∗,B = B∗.

Thus the endemic equilibrium E∗ is globally asymptotic stable in Γ by LaSalle’s Invariance

Principle. This completes the proof.
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5. Numerical simulations

In this section we will give some numerical simulations to support our results. Some param-

eters came from the real data and others are fitted.

Firstly, using MATLAB, we will take some sensitivity analysis of the basic reproduction num-

ber, that is to see that how is the parameters will influence it. Taking µ = 0.25,α = 0.015,γ =

0.15,σ = 1,d = 3.6,τ = 0.6,ε = 0.4,β = 0.000038,k = 16,β1 = 0.0000135,m = 1.06,θ =

2.8,δ = 0.4, and the parameter n (disinfection times) is varied, we have Fig 1, seeing that the

basic reproduction number decreases with the increase of n. Let n = 3 and other parameters

remain the same, changing θ , we also can have the Fig 2, shows that increasing with θ , the

basic reproduction number is decreasing.
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Fig 3 and Fig 4 is to show the influence of changing values of γ and τ on the basic reproduc-

tion number. It is seen that increasing disinfection times and the adult sheep vaccination rates

are more efficient to reduce the basic reproduction number. That is to say, to reduce the bru-

cellosis we can increase the vaccination rates and disinfection times. It is also useful to choose

more efficient disinfection products and the increasing the elimination rate of infected sheep.

Taking A = 3000,µ = 0.25,α = 0.015,γ = 0.7,σ = 1,d = 3.6,n = 2,τ = 0.6,ε = 0.4,β =

0.000038,k = 16,β1 = 0.0000135,m = 1.06,θ = 2.8,δ = 0.4, then, R0 = 0.37 < 1. Taking

the initial values as S1(0) = 4000,S2(0) = 5000,E(0) = 7, I(0) = 14,V (0) = 3500,B(0) = 100,

we obtain Fig 5, it shows that the solutions tends to the disease-free equilibrium point, so the

disease will die out. Changing γ = 0.15,θ = 1,n = 2, and the other parameters remains the
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same, then the basic reproduction number R0 = 1.157325 > 1. Taking the same initial values

given above, we have Fig 6, which shows the global stability of the endemic equilibrium point.

2000 2005 2010 2015 2020 2025
0

1000

2000

3000

4000

5000

6000

7000

8000

Time

P
o
p
u
la

ti
o
n

Fig5

 

 
S1(t)
S2(t)
E(t)
I(t)
V(t)
B(t)

2000 2005 2010 2015 2020 2025
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Time

P
o
p
u
la

ti
o
n

Fig6

 

 
S1(t)
S2(t)
E(t)
I(t)
V(t)
B(t)

6. Conclusion and discussion

Brucellosis is one of the major public health problems in the world, which has caused a

lot of economic and health problems. Based on the characteristics of brucellosis infection in

some areas in China, this paper constructed a brucellosis model with multi-stage, the contami-

nated environment and immunized individuals. We obtained the basic reproduction number R0

, disease-free equilibrium and endemic equilibrium. By constructing suitable Lyapunov func-

tions, we proved the global asymptotic stability of the disease free equilibrium and endemic

equilibrium. Finally, we performed a sensitivity analysis of R0 and conducted numerical sim-

ulations to prove the corresponding conclusion. From the numerical analysis, we can get that
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increasing the times of disinfection, enhancing immunity or increasing the slaughter rate of

infected individuals, will have a great impact on the control of the disease.From Fig 6, the bru-

cellosis will sustain when R0 > 1.
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