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Abstract. This paper deals with a reaction-diffusion-advection problem, which describes phytoplankton model

with pulse and virus infection. Firstly, the corresponding periodic problem is considered, and the principal eigen-

values of periodic eigenvalue problems are calculated, and the conditions related to the eigenvalues for the exis-

tence of disease-free periodic solution are given. Finally, the asymptotic behavior of disease-free periodic solution

is studied, and the sufficient conditions for extinction of virus and persistence of phytoplankton are obtained.
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1. INTRODUCTION

As we know, phytoplankton is a general term for tiny algal organisms floating in lakes, oceans

and other waters, which rely on light energy and carbon dioxide for photosynthesis [1, 2]. Nu-

trients and lights are necessity for their survival. Many studies about states of phytoplankton

multi-population communities have been set up [3, 4, 5, 6, 7], including dynamic models with

time-delay and diffusive models. In addition, the habitat of plankton is mostly changing contin-

uously, so the model in an evolving area [8, 9] has also attracted a lot of attention.

On the other hand, the influence of viruses on the aquatic system cannot be ignored, which

can directly affect the population density of the host and may lead to its perish. A phytoplankton
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SIS (susceptible-infected-susceptible) model was established in [10], the local stability of

equilibrium point was analyzed and the condition that the periodic solution does not exist

was obtained. Recently, the virus-infected phytoplankton-zooplankton system was studied in

[11], where planktonic bloom oscillations were observed for increasing viral infection in both

species, and in [12], convergence analysis was set up in a fractional model with phytoplankton-

toxic.

It is well-known that the flooding of phytoplankton can cause great impacts on the ecosys-

tem, so we should take strategies to control the density of phytoplankton in a short period of

time by regular harvesting and killing. Mathematically, pulse differential equations can be used

to describe this discrete-continuous process. In 2012, Lewis and Li [13] proposed an impul-

sive reaction-diffusion problem that describes population dynamics with seasonal pulses, and

their results showed how pulses affect the extinction and persistence of species. Recently, [14]

studied a pulsed logistic problem in an evolving domain and explored the role of pulsed harvest-

ing in the dynamics of invasive species. In [15], a reaction-diffusion problem with population

growth and multi-pulse disturbance was studied.

In this paper, we consider a phytoplankton model with virus and periodic harvesting, where

the number of phytoplankton species changes rapidly when harvesting occurs, otherwise,

species spread freely and grow under the influence of light. Inspired by [10] and [15], a phyto-

plankton population model with harvest pulse and virus infection is considered as follows

St = DSxx−αSx +[g(w(S, I,x, t))−d(x)−mS]S

−β (x) SI
S+I + γ(x)I, x ∈ (0,L0), t ∈ ((nT )+,(n+1)T ],

It = DIxx−αIx +[g(w(S, I,x, t))−d(x)

−mI−δ (x)]I +β (x) SI
S+I − γ(x)I, x ∈ (0,L0), t ∈ ((nT )+,(n+1)T ],

DSx−αS = DIx−αI = 0, x = 0,L0, t ∈ ((nT )+,(n+1)T ],

S(x,0) = S0(x)≥ 0, 6 ≡0, x ∈ [0,L0],

I(x,0) = I0(x)≥ 0, 6 ≡0, x ∈ [0,L0],

S(x,(nT )+) = P(S(x,nT )), x ∈ (0,L0),

I(x,(nT )+) = P(I(x,nT )), n = 0,1,2, · · · , x ∈ (0,L0),

(1)
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where S(x, t) and I(x, t) represent the densities of susceptible and infected phytoplankton at

space x and time t, respectively. The positive constant D represents the diffusive coefficient of

phytoplankton, and α ∈ R is the sinking (α < 0) or rising (α > 0) speed of phytoplankton. x

represents the depth of the water body from 0 (top) to L0 (bottom). The phytoplankton mortality

related to space is denoted by d(x)> 0, which is a smooth and monotonically increasing func-

tion with respect to x and δ (x) means the additional mortality of infected phytoplankton. β (x)

is a positive bounded continuous function describing the infection rate and γ(x) is the recovery

rate. The positive constant m is the competitive coefficient, and g represents the specific growth

rate of phytoplankton, which is a function of light intensity w(S, I,x, t) with

w(S, I,x, t) = w0 exp(−k0x−
∫ x

0
k[S(y, t)+ I(y, t)]dy),

where w0,k0 and k are positive constants. The initial values S0(x), I0(x) are nonnegative smooth

functions for x ∈ [0,L0]. As in [4], we assume that g is a smooth function that satisfies g(0) = 0

and g′(w)> 0 for all positive w. Impulse function P is a smooth positive function and satisfies

P(0) = 0 and P(v)≤ P′(0)v for v > 0.

2. THE PRINCIPAL EIGENVALUE PROBLEM

We first claim here that problem (1) admits a global classical solution (S(x, t), I(x, t)), where

S, I ∈ C2,1((0,L0)× (nT,(n+ 1)T ])∩C([0,L0]× (nT,(n+ 1)T ]) for n = 0,1, · · · . In fact, if

the initial value S0(x), I0(x) ∈ C2([0,L0]) and P ∈ C2[0,∞), we have that S(x,0+), I(x,0+) ∈

C2([0,L0]). By virtue of standard theory for parabolic equations, we can deduce that

S(x, t), I(x, t) ∈ C2,1([0,L0]× (0,T ]). Then, S(x,T+) = P(S(x,T )), I(x,T+) = P(I(x,T )) are

also twice continuously differentiable in x. Hence, let S(x,T+), I(x,T+) be new initial val-

ues for t ∈ (T+,2T ], then S, I ∈C2,1([0,L0]× (T,2T ]). Eventually, we can obtain the solution

(S(x, t), I(x, t)) of problem (1) for t ≥ 0 and x ∈ [0, l0] by the same procedures.

We now consider the disease-free periodic solution (S∗(x, t),0) to problem (1), where S∗(x, t)

satisfies the following problem
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St = DSxx−αSx +[G(S,x, t)−d(x)−mS]S, x ∈ (0,L0), t ∈ (0+,T ],

DSx−αS = 0, x = 0,L0, t ∈ (0+,T ],

S(x,0) = S(x,T ), x ∈ (0,L0),

S(x,0+) = P(S(x,0)), x ∈ (0,L0)

(2)

with G(S,x, t) = g(w(S,0,x, t)).

After linearization at S = 0, the corresponding periodic eigenvalue problem to (2) becomes

φt = Dφxx−αφx +[G(x)−d(x)]φ +λ1φ , x ∈ (0,L0), t ∈ (0+,T ],

Dφx−αφ = 0, x = 0,L0, t ∈ (0+,T ],

φ(x,0) = φ(x,T ), x ∈ (0,L0),

φ(x,0+) = P′(0)φ(x,0), x ∈ (0,L0),

(3)

where G(x) = g(w0e−k0x). In the following, we first present the expression of λ1.

Theorem 2.1. The principal eigenvalue of problem (3) is

λ1 = λ
∗
1 −

lnP′(0)
T

,

where λ ∗1 is principal eigenvalue of problem
−Dψxx =−αψx +[G(x)−d(x)]ψ +λ ∗1 ψ, x ∈ (0,L0),

Dψx−αψ = 0, x = 0,L0.

Proof: Let φ(x, t) = f (t)ψ(x), problem (3) can be transformed into

f ′(t)ψ(x) = D f (t)ψ ′′(x)−α f (t)ψ ′(x)

+[G(x)−d(x)] f (t)ψ(x)+λ1 f (t)ψ(x), x ∈ (0,L0), t ∈ (0+,T ],

Dψ ′(x)−αψ(x) = 0, x = 0,L0,

f (0) = f (T ),

f (0+) = P′(0) f (0)
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by separation of variable, we then have

f ′(t)
f (t)
−λ1 =

Dψ ′′(x)−αψ ′(x)+ [G(x)−d(x)]ψ(x)
ψ(x)

=−λ
∗
1 .

It is easy to see that

f ′(t)+(λ ∗1 −λ1) f (t) = 0,

integrating both side of equation over 0+ to t, we have

f (t) =Ce(−λ ∗1 +λ1)t , t ∈ (0+,T ],

where C = f (0+) = P′(0) f (0).

Let t = T , we obtain

f (T ) = P′(0) f (0)e(−λ ∗1 +λ1)T ,

which, combines with f (0) = f (T ), yields

P′(0)e(−λ ∗1 +λ1)T = 1.

Therefore

λ1 = λ
∗
1 −

lnP′(0)
T

.

To give the expression of λ ∗1 , we convert the Robin boundary condition into null Neumann

boundary condition, and define

ψ
∗(x) = e−

α

D x
ψ(x),

we get 
Dψ∗xx +αψ∗x +[G(x)−d(x)+λ ∗1 ]ψ

∗ = 0, x ∈ (0,L0),

ψ∗x (x) = 0, x = 0,L0.
(4)

Furthermore, in order to use the variational formula, we rewrite problem (4) as
[De

α

D xψ∗x ]x +[G(x)−d(x)+λ ∗1 ]e
α

D xψ∗ = 0, x ∈ (0,L0),

De
α

D xψ∗x (x) = 0, x = 0,L0,

which yield

λ
∗
1 = min

ψ∈W 1,2(0,L),ψ 6=0

∫ L
0 De

α

D xψ2
x dx−

∫ L
0 [G(x)−d(x)]e

α

D xψ2dx∫ L
0 e

α

D xψ2dx
.



6 YU ZANG, HAIYAN XU, ZHIGUI LIN

�

In order to facilitate the construction of upper and lower solutions, we rewrite the periodic

eigenvalue problem (3) as following.

φt = Dφxx−αφx +[G(x)−d(x)]φ +µ1φ , x ∈ (0,L0), t ∈ (0+,T ],

Dφx−αφ = 0, x = 0,L0, t ∈ (0+,T ],

φ(x,0) = φ(x,T ), x ∈ (0,L0),

φ(x,0+) = P′(0)φ(x,0)+µ1φ(x,0). x ∈ (0,L0).

(5)

It is easy to draw the relationship between λ1 and µ1.

Lemma 2.2. The following statements hold:

(1) µ1 = 0⇔ λ1 = 0;

(2) µ1 > 0⇔ λ1 > 0.

Proof: Direct calculations show that

(6) eT λ1 =
P′(0)+µ1

P′(0)
eT µ1.

If µ1 = 0, we see λ1 = 0 directly by (6). On the other hand, if λ1 = 0, we have µ1 =

P′(0)(e−T µ1−1), and µ1 = 0 is the only root since that F(x) :=P′(0)(e−T x−1)−x is decreasing

in x, F(−∞)> 0 and F(+∞)< 0.

If µ1 > 0, the right side of (6) is positive, and then λ1 > 0. On the other hand, if λ1 > 0.

Assume µ1 < 0 by contradiction, it is easy to see that the right side of (6) is less that 1, so

λ1 > 0, which is in contradiction with our assumption. Therefore, µ1 > 0. �

3. THE POSITIVE PERIODIC SOLUTION

Using the principal eigenvalue of problem (3), we first give the existence and uniqueness of

positive solution of periodic problem (2).

Theorem 3.1. The following asserts hold:

(i) If λ1 < 0, problem (2) admits a unique positive T− periodic solution;

(ii) If λ1 ≥ 0, problem (2) has no positive solution.



PHYTOPLANKTON DIFFUSIVE MODEL WITH PULSE AND VIRAL INFECTION 7

Proof: To prove (i), we first consider the existence of positive solutions to problem (2) by

constructing upper and lower solutions. When λ1 < 0, it follows from Lemma 2.2 that µ1 < 0,

where (µ1,φ
∗) satisfies the eigenvalue problem

φt = Dφxx−αφx +[G(x)−d(x)]φ +µ1φ , x ∈ (0,L0), t ∈ (0+,T ],

Dφx−αφ = 0, x = 0,L0, t ∈ (0+,T ],

φ(x,0) = φ(x,T ), x ∈ (0,L0),

φ(x,0+) = P′(0)φ(x,0)+µ1φ(x,0), x ∈ (0,L0).

Let S = εφ∗, we claim that, for ε sufficiently small, S is a lower solution to problem (2), that

is, S satisfies

St ≤ DSxx−αSx +[g(W (S,0,x, t))−d(x)−mS]S x ∈ (0,L0), t ∈ (0+,T ],

DSx−αS≤ 0, x = 0,L0, t ∈ (0+,T ],

S(x,0)≤ S(x,T ), x ∈ (0,L0),

S(x,0+)≤ P(S(x,0)), x ∈ (0,L0).

(7)

In fact,

St− [DSxx−αSx +[g(w(S,0,x, t))S−d(x)S−mS2]

= ε(Dφ∗xx−αφ∗x +[g(w(0,0,x, t))−d(x)]φ∗+µ1φ∗)

−ε[Dφ∗xx−αφ∗x +[g(w(εφ∗,0,x, t))φ∗−d(x)φ∗−mεφ∗]

= εφ [µ1 +g(w(0,0,x, t))−g(w(εφ∗,0,x, t))+ εm].

Noticing that ε→ 0, g(w(0,0,x, t))−g(w(εφ∗,0,x, t))+εm→ 0, and recalling that µ1 < 0, we

can choose ε small enough so that the first inequality in (7) holds.

Considering the impulse condition, and direct calculation yields

S(x,0+)−P(S(x,0))

= εφ(x,0+)−P(εφ(x,0))

= ε[P′(0)φ(x,0)+µ1φ(x,0)]−P(εφ(x,0))

= P′(0)εφ(x,0)−P(εφ(x,0))+ εµ1φ(x,0).
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Note that P(0) = 0 and P(y) is second order continuously differentiable in y∈ [0,+∞), so using

Taylor expansion, we have

P(εφ(x,0)) = P′(0)εφ(x,0)+1/2P′′(ξ )ε2
φ

2(x,0),ξ ∈ [0,ε],

therefore,

S(x,0+)−P(S(x,0)) = εµ1φ(x,0)−1/2P′′(ψ)ε2
φ

2(x,0)< 0

as long as ε is small enough. So S = εφ∗ is the lower solution to problem (2).

Next, we look for an upper solution to problem (2), which satisfies

St ≥ DSxx−αSx +[g(W (S,0,x, t))−d(x)−mS]S x ∈ (0,L0), t ∈ (0+,T ],

DSx−αS≥ 0, x = 0,L0, t ∈ (0+,T ],

S(x,0)≥ S(x,T ), x ∈ (0,L0),

S(x,0+)≥ P(S(x,0)), x ∈ (0,L0).

Choose S̄ = Mφ , with (λ1,φ) meets (3), and then

S̄t− [DS̄xx−α S̄x +g(w(S̄,0,x, t))S̄−d(x)S̄−mS̄2]

= M(Dφxx−αφx +[g(w(0,0,x, t))−d(x)−mφ ]φ +λ1φ)

−M[Dφxx−αφx +g(w(Mφ ,0,x, t))φ −d(x)φ −mMφ 2]

= Mφ [λ1 +mMφ +g(w(0,0,x, t))−g(w(Mφ ,0,x, t))]

≥Mφ [λ1 +mMφ ]≥ 0

as long as M is big enough.

On the other hand, P(v)≤ P′(0)v can be used to derive that

S(0+,x)−P(S(0,x))

= Mφ(0+,x)−P(Mφ(0,x))

= MP′(0)φ(x,0)−P(Mφ(0,x))

≥ 0.

Therefore, S̄ =Mφ is the upper solution. According to the method of upper and lower solutions,

Problem (2) has at least one positive solution satisfying S≤ S∗ ≤ S̄.
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Now we prove the uniqueness of the solution to problem (2). If not, we assume that problem

(2) has two positive solutions S1 and S2. Let

A = {a ∈ [0,1],S2 ≥ aS1, t ∈ [0,T ],x ∈ [0,L0]},

we declare that 1 ∈ A. Assume on the contrary a0 = supA < 1, denote u = S2−a0S1, then we

obtain u ≥ 0, Dux−αu = 0 for any x = 0,L0, 0 ≤ t ≤ T and u(x,0) = u(x,T ) for 0 < x < L0.

By direct calculation, we also get

ut−Duxx +αux +d(x)u+u

= g(w(S2,0,x, t))S2−a0g(w(S1,0,x, t))S1−mS2
2 +a0mS1

2

≥ g(w(S2,0,x, t))S2−a0g(w(S1,0,x, t))S1−mS2
2 +a0mS1

2

≥ g(w(S2,0,x, t))−g(w(S1,0,x, t))]a0S1−m(S2 +a0S1)u

≥ g(w(S2,0,x, t))−g(w(S1,0,x, t))]a0S1−m(S2 +a0S1)u

= g(w(S2,0,x,t))−g(w(a0S1,0,x,t))
u a0S1u−m(S2 +a0S1)u

= F(S1,S2,x, t)u.

Since g is a smooth function, g(w(S2,0,x,t))−g(w(a0S1,0,x,t))
u is bounded, so F(S1,S2,x, t) is also

bounded, denoted by M1. Due to the strong maximum principle, S2−a0S1 > 0 or S2−a0S1 ≡ 0

is obtained for 0 < x < L0, 0 ≤ t ≤ T . Now we derive contradictions in the following two

situations:

(1) If S2−a0S1 > 0 for 0 < x < L0, 0 ≤ t ≤ T . A positive constant ε can be given such that

S2−a0S1 > εS1, so a0 + ε ∈ S, which is in contradiction with the definition of a0.

(2) If S2−a0S1 ≡ 0. Since

(S1)t = D(S1)xx−α(S1)x +g(w(S1,0,x, t))S1−d(x)S1−mS2
1

and

(S2)t = D(S2)xx−α(S2)x +g(w(S2,0,x, t))S2−d(x)S2−mS2
2,
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substituting S2 ≡ a0S1 into the equation of S2 and multiplying both sides of equation S1 by a0,

we obtain

(8) g(w(a0S1,0,x, t))a0S1−g(w(S1,0,x, t))a0S1−ma0(a0−1)S2
1 = 0

by subtracting these two equations. However, g(w(S,0,x, t)) is decreasing with respect to S and

equation (8) cannot hold.

As a conclusion, 1∈A and S1 = S2, the proof of existence and uniqueness of periodic solution

to problem (2) is now complete.

(ii) For simplicity of calculation, we only prove the case of α = 0. In contrast, assume that

there is a positive solution v(x, t) to problem (2), and satisfies

vt−Dvxx = [g(w(v,0,x, t))−d(x)−mv]v, x ∈ (0,L0), t ∈ (0+,T ],

vx(x, t) = 0, x = 0,L0, t ∈ (0+,T ],

v(x,0) = v(x,T ), x ∈ (0,L0),

v(x,0+) = P(v(x,0)), x ∈ (0,L0).

(9)

Firstly, let ψ(x, t) = φ(x,T − t) in problem (5), and then ψ(x, t) satisfies

−ψt−Dψxx = [g(w(0,0,x,T − t))−d(x)]ψ +µ1ψ, x ∈ (0,L0), t ∈ [0,T−),

ψx(x, t) = 0, x = 0,L0, t ∈ (0,T−),

ψ(x,0) = ψ(x,T ), x ∈ (0,L0),

ψ(x,T−) = P′(0)ψ(x,T ), x ∈ (0,L0).

(10)

Multiplying the first equation in (9) by ψ to get

vtψ−Dvxxψ = [g(w(v,0,x, t))−d(x)−mv]vψ

and multiplying the equation in (10) by v to get

−vψt−Dvψxx = [g(w(0,0,x,T − t))−d(x)]vψ +µ1vψ(x, t).

Subtracting the above two equations, yields

(vψ)t =−Dvxxψ +Dvψxx +[g(w(v,0,x, t))−g(w(0,0,x,T − t))−mv]ψv−µ1ψv.
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Next, we integrate with respect to t and x over [0+,T−]× [0, l] to obtain

∫ l

0
(vψ)t |

T−
0+ dx =

∫ T−

0+

∫ l

0
[g(w(v,0,x, t))−g(w(0,0,x,T − t))−mv−µ1]ψvdxdt.

Owning to

ψ(x,T−) = P′(0)ψ(x,T ), v(x,0+) = P(v(x,0)),

we derive that

(vψ)t |
T−
0+ = (vψ)(x,T−)− (vψ)(x,0+) = v(x,T )P′(0)ψ(x,T )−ψ(x,0)P(v(x,0)),

which means ∫ T−
0+

∫ l
0 µ1ψνdxdt

=−
∫ l

0 [v(x,T )P
′(0)ψ(T,x)−ψ(0,x)P(v(0,x))]dx

+
∫ T−

0+
∫ l

0 [g(w(v,0,x, t))−g(w(0,0,x,T − t))−mv]ψvdxdt.

Recalling that

w(v,0,x, t) = w0 exp(−k0x−
∫ x

0
kv(y, t)dy)

and

w(0,0,x, t) = w0 exp(−k0x),

we have ∫ T−

0+

∫ l

0
[g(w(v,0,x, t))−g(w(0,0,x, t−T ))]dxdt < 0.

Recalling to the fact p(v(0,x))≤ p′(0)v(x,T ) yields

−
∫ l

0
[v(x,T )P′(0)ψ(T,x)−ψ(0,x)P(v(0,x)]dx=−

∫ l

0
ψ(0,x)[v(x,T )P′(0)−P(v(0,x)]dx≤ 0.

Moreover, noticing that
∫∫
−mψv2 < 0, we then have

∫ T−
0+

∫ l
0 µ1ψνdxdt < 0, which is in con-

tradiction with the condition µ1 ≥ 0. �
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4. THE DISEASE-FREE POSITIVE PERIODIC SOLUTION

Returning to problem (1), its periodic solution satisfies

S∆
t = DS∆

xx−αS∆
x +[g(w(S∆, I∆,x, t))−d(x)−mS∆]S∆

−β
S∆I∆

S∆+I∆ + γI∆, x ∈ (0,L0), t ∈ (0+,T ],

I∆
t = DI∆

xx−αI∆
x +[g(w(S∆, I∆,x, t))−d(x)−mI∆]I∆

−[γ(x)+δ (x)]I∆ +β (x) S∆I∆

S∆+I∆ , x ∈ (0,L0), t ∈ (0+,T ],

DS∆
x −αS∆ = 0,DI∆

x −αI∆ = 0, x = 0,L0, t > 0,

S∆(x,0) = S∆(x,T ), I∆(x,0) = I∆(x,T ), x ∈ (0,L0),

S∆(x,0+) = P(S∆(x,0)), x ∈ (0,L0),

I∆(x,0+) = P(I∆(x,0)), x ∈ (0,L0).

(11)

In order to determine its disease-free positive and periodical solution, we first consider the

equation of I. Notice that I ≤ I, where I satisfies

It = DIxx−αIx +[g(w(0, I,x, t))−d(x)−mI−δ (x)]I

+[β (x)− γ(x)]I, x ∈ (0,L0), t ∈ (0+,T ],

DIx−αI = 0, x = 0,L0, t > 0,

I(x,0) = I0(x), x ∈ (0,L0),

I(x,0+) = P(I(x,0)), x ∈ (0,L0).

(12)

Similarly, we get its corresponding periodic problem

I∗t = DI∗xx−αI∗x +[g(w(0, I∗,x, t))−d(x)−mI∗−δ (x)]I∗

+[β (x)− γ(x)]I∗, x ∈ (0,L0), t ∈ (0+,T ],

DI∗x −αI∗ = 0, x = 0,L0, t > 0,

I∗(x,0) = I∗(x,T ), x ∈ (0,L0),

I∗(x,0+) = P(I∗(x,0)), x ∈ (0,L0).

(13)
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After linearization at I∗ = 0, the corresponding periodic eigenvalue problem is

φt = Dφxx−αφx +[G(x)−d(x)−δ (x)]φ

+[β (x)− γ(x)]φ +κ1φ , x ∈ (0,L0), t ∈ (0+,T ],

Dφx−αφ = 0, x = 0,L0, t > 0,

φ(x,0) = φ(x,T ), x ∈ (0,L0),

φ(x,0+) = P′(0)φ(x,0), x ∈ (0,L0),

(14)

where G(x) = g(w0e−k0x).

The same as Theorems 2.1 and 3.1, we can prove the following two theorems and we omit

the details here.

Theorem 4.1. The principal eigenvalue of periodic eigenvalue problem (14) is

κ1 = κ
∗
1 −

lnP′(0)
T

,

where

κ
∗
1 = min

ψ∈W 1,2(0,L),ψ 6=0

∫ L
0 De

α

D xψ2
x dx−

∫ L
0 [G(x)−d(x)−δ (x)+β (x)− γ(x)]e

α

D xψ2dx∫ L
0 e

α

D xψ2dx

satisfies
−Dψxx =−αψx +[G(x)−d(x)−δ (x)+β (x)− γ(x)]ψ +κ∗1 ψ, x ∈ (0,L0),

Dψx−αψ = 0, x = 0,L0.

Theorem 4.2. The following statements hold:

(i) Assume that κ1 < 0, problem (12) has a unique positive and periodical solution.

(ii) Assume that κ1 ≥ 0, problem (12) admits no positive solution.

Combining Theorem 3.1 with Theorem 4.2, we get the condition for the existence of disease-

free equilibrium periodically solution (S∗(x, t),0) of problem (1).

Theorem 4.3. If λ1 < 0,κ1 ≥ 0, problem (1) has a unique disease-free periodic solution

(S∗(x, t),0).
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Proof: When κ1 ≥ 0, we know from Theorem 4.2 that problem (12) has no positive solution,

So problem (11) becomes (2). Further, we know from λ1 < 0 and Theorem 3.1(i) that problem

(2) has a unique positive periodic solution S∗(x, t), thus problem (11) has a unique disease-free

periodic solution (S∗(x, t),0) and the endemic periodical solution does not exist. �

5. THE STABILITY OF DISEASE-FREE PERIODIC SOLUTION

In this section, we will discuss the asymptotic behaviors of solution to problem (1). Firstly, it

is known that I has an upper solution I, which satisfies (12), so we draw a conclusion as follows.

Theorem 5.1. Suppose that κ1 > 0. For any solution I(x, t) to problem (12), we have

lim
t→∞

I(x, t) = 0

for x ∈ [0,L0].

Proof: Let Ĩ(x, t) = Me−λ tφ(x, t), where ψ(y, t) is the eigenfunction of periodic eigenvalue

problem (14) corresponding to the principal eigenvalue κ1, and λ is chosen to satisfy

0 < λ < κ1.

A direct calculation yields

Ĩt−DĨxx +α Ĩx− [g(w(0, Ĩ,x, t))−d(x)−mĨ−δ (x)+β (x)]Ĩ

≥ Ĩt−DĨxx +α Ĩx− [g(w(0,0,x, t))−d(x)−mĨ−δ (x)+β (x)]Ĩ

= Me−λ tφt−λMe−λ tφ −DMe−λ tφxx +αMe−λ tφx

−[g(w(0,0,x, t))−d(x)−mMe−λ tφ(x, t)−δ (x)+β (x)]Me−λ tφ(x, t)

= Me−λ tφ [−λ +mMe−λ tφ(x, t)+κ1]

= Ĩ[−λ +mĨ +κ1]

≥ 0

for (x, t) ∈ [0,L0]× [0,T ], and

DĨx−α Ĩ = 0, x = 0,L0, t > 0,

Ĩ(x,0) = Ĩ0(x)≥ 0, 0 < x < L0,
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Ĩ(x,(nT )+) = P(Ĩ(x,nT ), 0 < x < L0.

Therefore, when M is sufficiently big, Ĩ(x, t) is an upper solution to problem (12). Since

lim
t→∞

Ĩ(x, t) = 0, we have lim
t→∞

Ī(x, t) = 0 holds uniformly for x ∈ [0,L0]. �

In the following, we exhibit the long-time behaviors of solution to problem (1).

Theorem 5.2. When λ1 < 0 and κ1 > 0, the disease-free equilibrium periodically solution

(S∗(x, t),0) is globally asymptotically stable, that is, any non-negative and non-trivial solution

to problem (1) satisfies

lim
t→∞

I(x, t) = 0

uniformly for x ∈ [0,L0], and

lim
m→∞

S(x, t +mT ) =S∗(x, t)

uniformly for (x, t) ∈ [0,L0]× [0,+∞).

Proof: Obviously I has an upper solution I, which satisfies (12). When κ1 > 0, the solution

of (12) converges to 0 uniformly according to Theorem 5.1, so I converges to 0 when t → 0

uniformly for x ∈ [0,L0]. Therefore, for any ε > 0, there exists Tε > 0 such that 0≤ I ≤ ε for all

(x, t) ∈ [0,L0]× [Tε ,+∞). We now take an integer Mε such that MεT > Tε > 0. Now we regard

the pulse point MεT as a new starting point.

Next we will consider the asymptotic behavior of S, for which we construct the upper and

lower solutions. It is easy to see

St = DSxx−αSx +[g(w(S, I,x, t))−d(x)−mS]S−β (x) SI
S+I + γ(x)I

≤ DSxx−αSx +[g(w(S,0,x, t))−d(x)−mS]S+ γ∗ε

and

St−DSxx +αSx = [g(w(S, I,x, t))−d(x)−mS]S−β (x) SI
S+I

≥ [g(w(S,0,x, t))+ g(w(S,ε,x,t))−g(w(S,0,x,t))
ε

ε−d(x)]S−M2εS

≥ [g(w(S,0,x, t))−M2ε−d(x)]S−M3ε

= [g(w(S,0,x, t))−d(x)]S−MεS,
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where γ(x), β (x) and g(w(S,ε,x,t))−g(w(S,0,x,t))
ε

are both bounded functions, so there exist γ∗,M2,

M3 and M = M2 +M3 to satisfy the above formula, and then

St ≥ DSxx−αSx +[g(w(S,0,x, t))−d(x)]S−MεS.

We now assume that S̄ε and Sε are solutions to

(S̄ε)t = D(S̄ε)xx−α(S̄ε)x +[g(w(S̄ε ,0,x, t))

−d(x)−mS̄ε ]S̄ε + γ∗ε, x ∈ (0,L0), t ∈ ((nT )+,(n+1)T ],

D(S̄ε)x−α S̄ε = 0, x = 0,L0, t ∈ ((nT )+,(n+1)T ],

S̄ε(x,MεT ) = S(x,MεT ), x ∈ (0,L0),

S̄ε(x,(nT )+) = P(S̄ε(x,nT )), n≥Mε , x ∈ (0,L0)

and

(Sε)t = D(Sε)xx−α(Sε)x−MεSε

+[g(w(Sε ,0,x, t))−d(x)]Sε −MεSε , x ∈ (0,L0), t ∈ ((nT )+,(n+1)T ],

D(Sε)x−αSε = 0, x = 0,L0, t ∈ ((nT )+,(n+1)T ],

Sε(x,MεT ) = S(x,MεT ), x ∈ (0,L0),

Sε(x,(nT )+) = P(Sε(x,nT )), n≥Mε , x ∈ (0,L0),

respectively.

It is easy to know Sε ≤ S(x, t)) ≤ S̄ε . Taking the sequences S̄(m)
ε and Sε

(m) to be the largest

and smallest sequences that satisfy the following problem

(S̄(m)
ε )t −D(S̄(m)

ε )xx +α(S̄(m)
ε )x +K1S̄(m)

ε = g1(S̄
(m−1)
ε ), x ∈ (0,L0), t ∈ ((nT )+,(n+1)T ],

(S(m)
ε )t −D(S(m)

ε )xx +α(S(m)
ε )x +K2S(m)

ε = g2(S
(m−1)
ε ), x ∈ (0,L0), t ∈ ((nT )+,(n+1)T ],

D(S̄(m)
ε (x, t))y−α S̄(m)

ε (x, t) = 0, x = 0,L0, t ∈ ((nT )+,(n+1)T ],

D(S(m)
ε (x, t))y−αS(m)

ε (x, t) = 0, x = 0,L0, t ∈ ((nT )+,(n+1)T ],

S̄(m)
ε (x,Mε T ) = S̄(m−1)

ε (x,(Mε +1)T ), x ∈ (0,L0),

S(m)
ε (x,Mε T ) = S(m−1)

ε (x,(Mε +1)T ), x ∈ (0,L0),

S̄(m)
ε (x,(nT )+) = P(S̄(m)

ε (x,nT )), n≥Mε , x ∈ (0,L0),

Sε
(m)(x,(nT )+) = P(Sε

(m)(x,nT )), n≥Mε , x ∈ (0,L0),

(15)
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where m = 1,2, · · · . Initial iterations S̄(0)ε = S̄ε and S(0)ε = Sε will be chosen and

g1(S) = [g(w(S,0,x, t))−d(x)−mS]S+ γ
∗
ε +K1S,

g2(S) = [g(w(S,0,x, t))−d(x)]S−MεS+K2S,

K1 = sup
x∈[0,L0]

{d(x)+β (x)}+m sup
x∈[0,L0]

||S0 + I0||, K2 = K1 +M.

According to [16] (Lemma 3.1), sequences S̄(m) and S(m)
ε have monotonicity, that is Sε ≤

Sm−1
ε ≤ Sm

ε ≤ S̄(m) ≤ S̄(m−1) ≤ S̄. Furthermore, let

lim
t→∞

Sm
ε = S∗ε , lim

t→∞
S̄(m) = S̄∗,

we obtain

Sε ≤ Sm−1
ε ≤ Sm

ε ≤ S∗ε ≤ S̄∗ε ≤ S̄(m)
ε ≤ S̄(m−1)

ε ≤ S̄ε .

Denote Sm(x, t) = S(x, t +mT ), we have Sε(x, t + T ) < S1(x, t) < S̄ε(x, t + T ) for 0 < x <

L0, t > MεT .

According to initial condition in problem (15) with m = 1, we have

S̄(1)(x,MεT ) = S̄(0)(x,(Mε +1)T ) = S̄(x,(Mε +1)T )

and

S(1)ε (x,MεT ) = S(0)ε (x,(Mε +1)T ) = Sε(x,(Mε +1)T ).

Moreover,

S(1)ε (x,MεT )≤ S1(x,MεT )≤ S̄(1)(x,MεT ).

holds for any 0 < x < L0.

Therefore, by the comparison principal, we obtain

S(1)ε (x, t)≤ S1(x, t)≤ S̄(1)(x, t), 0 < x < L0, t > MεT

and induction shows

S(m)
ε (x, t)≤ Sm(x, t)≤ S̄(m)(x, t), 0 < x < L0, t > MεT.

Finally, we have

liminf
m→∞

S(m)
ε (x, t)≤ liminf

m→∞
Sm(x, t)≤ limsup

m→∞

Sm(x, t)≤ limsup
m→∞

S̄(m)(x, t)(16)
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for (x, t) ∈ [0,L0]× [MεT,+∞).

On the other hand, for any (x, t) ∈ [0,L0]× [MεT,+∞), there holds

lim
m→∞

S(m)
ε (x, t) = S∗ε(x, t), lim

m→∞
S̄(m)(x, t) = S̄∗(x, t),

where S∗ε(x, t) meets

St = DSxx−αSx +[g(w(S,0,x, t))−d(x)−mS]S+ γ∗ε, x ∈ (0,L0), t > MεT,

DSx−αS = 0, x = 0,L0, t > MεT,

S(x,MεT ) = S(x,(Mε +1)T ), x ∈ (0,L0),

S(x,(MεT )+) = P(S(x,MεT )), x ∈ (0,L0)

and S̄∗(x, t) satisfies

St = DSxx−αSx +[g(w(S,0,x, t))−d(x)]S−MεS, x ∈ (0,L0), t > MεT,

DSx−αS = 0, x = 0,L0, t > MεT,

S(x,MεT ) = S(x,(Mε +1)T ), x ∈ (0,L0),

S(x,(MεT )+) = P(S(x,MεT )), x ∈ (0,L0).

According to continuous dependence of the solution to coefficients, we obtain lim
ε→0+

S∗ε(x, t) =

lim
ε→0+

S̄∗ε(x, t) = S∗(x, t), which combines with (16) yields

lim
m→∞

S(x, t +mT ) = S∗(x, t)

for (x, t) ∈ [0,L0]× [0,+∞). �

It is easy to check that the conditions of Theorem 5.2 are satisfied when the natural mortality

rate d of phytoplankton populations is small enough, or the additional mortality rate δ of the

infected part is large enough, or the recovery rate γ is large enough. The above result tells

us that under these conditions, the infected phytoplankton will gradually disappear, while the

uninfected phytoplankton will persist and exhibit periodic oscillations.
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