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Abstract. African trypanosomiasis is a vector-borne disease transmitted to humans by tsetse flies. Assuming

that the tsetse fly population’s growth rate is a periodic function, an African trypanosomiasis epidemic model

with seasonality, vertical transmission and latent period is proposed. It is common knowledge that the basic

reproduction number plays a vital role in a epidemic model which determines whether the disease is eradicated

or not. We derive a basic reproduction number R0 which is adapted to periodic environments. Parameters are

estimated from the province of Kinshasa, Democratic Republic of Congo. This model suggests that the epidemic

could be stopped if the vector population were reduced by a factor R2
0 = 2.80.
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1. INTRODUCTION

Vector-borne diseases are infectious diseases caused by viruses, bacteria, protozoa or rick-

ettsia which are primarily transmitted by disease transmitting biological agents (anthropoids),

called vectors, who carry the disease without getting it themselves. The oldest mathematical
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model of vector-borne disease goes back to the malaria model, which is presented by Ross. He

proved the transmission of malaria by biting mosquitoes and demonstrated that the prevalence

of malaria tends to a fixed limit depending on the rates of transmission, recovery, and mortality

within the host and vector populations [1]. Macdonald [2] placed these rates into an index that

we called the basic reproduction number, which was used to develop and evaluate control strate-

gies meant to reduce malaria prevalence. The malaria model has influenced the mathematical

analysis of many other vector-borne diseases, including dengue fever [3], rickettsia in cattle [4],

Human African trypanosomiasis [5], and West Nile Virus [6].

Human African trypanosomiasis (HAT)–also known as sleeping sickness–is caused by infec-

tion with one of two parasites: Trypanosoma brucei rhodesiense or T. b. gambiense[7]. These

organisms are extra–cellular protozoan parasites that are transmitted by insect vectors in the

genus Glossina (tsetse flies). The life cycle of Trypanosoma brucei has been reviewede (see

Fig.1). Infection in the human host begins when the infective metacyclic stage is injected by

the tsetse fly intradermally. The organisms is immediately transformed into bloodstream from

trypomastigotes and are divided by binary fission in the interstitial spaces at the site of the bite.

This flagellated stage enters the bloodstream through the lymphatics and repeats further, pro-

ducing a patent parasitemia. The parasites tend to cause a chronic infection, and a person can

be infected for months or years without seeing symptom expression. However, once the disease

is expressed, the disease is far advanced, and the nervous system is adversely affected. Later,

the tsetse fly becomes infected by ingesting a blood meal from an infected host.

At the end of the 1990s, World Health Organization (WHO) estimated between 300 000 and

500 000 to be the number of sleeping sickness cases per year. Sixty million people are estimated

to be at risk, with 4 million people under surveillance. The greatest burden of reported cases

is due to T. b. gambiense, with 23,832 in 2002, 19,901 in 2003, 17,036 in 2004, 15,651 in

2005 and 11,382 in 2006, respectively [8]. Obviously, there is a decline in the number of

newly reported cases. However, the situation remains worrying in countries such as Angola,

Democratic Republic of Congo, Uganda and Sudan [9]. Approximately two-thirds of reported

T. b. gambiense cases occur in the Democratic Republic of Congo (DRC) [10]. Kinshasa, the

capital of DRC, has been well known as HAT focus since the beginning of the 20th century. The
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FIGURE 1. Life cycle of Trypanosoma brucei

FIGURE 2. News cases of HAT in the city of Kinshasa/DRC between 1964 and

2007 .

number of new cases is not as well documented between 1960 and 1968. From 1969 to 1995,

cases were declared thanks to passive detection, representing an annual mean of less than 50

new cases. The situation suddenly worsened in 1996, as 254 new cases were declared, and 226

in 1997. Two special mobile units were implemented in 1998 and in 2000 respectively; 443 new

cases were detected out of 6,205 examined inhabitants and 912 new cases out of 42,746 persons
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in 1999. Since 2003, the number of new cases detected in Kinshasa has sensibly decreased, but

still remains between 200 and 250 patients a year (see Fig. 2) [11].

To understand the epidemiology of HAT, several investigations have been undertaken [12, 13,

14, 15]. In particular, two entomologic surveys were conducted in 2005 (during the rainy season

in February and March and the dry season in June and July) at eight sites in Kinshasa [16].

During the two entomologic surveys, the 610 traps captured 897 Glossina fuscipes quanzensis

(624 and 273 in the rainy and dry seasons, respectively) [17]. Although tsetse flies habitat may

vary considerably, climate and altitude–through their direct effects on vegetation, rainfall, and

temperature–are still the primary determinants for proliferation. Adult longevity and puparial

duration are related to temperature, and a significant seasonal decline in tsetse populations is

normal, particularly in savannah habitats during the dry season [12].

Recently the epidemics of African trypanosomiasis have received much attention of researchers.

Vincent and Harry [13] studied the drugs and drug resistance in African trypanosomiasis; Brad-

ford et.al [14] discovered a new Sadenosylmethionine decarboxylase inhibitors for the treat-

ment of Human African Trypanosomiasis (HAT); Courtin et al. [15] derived the association be-

tween human African trypanosomiasis and the IL6 gene in a Congolese population; Hwang et

al.[18] discovered the halo-nitrobenzamides with potential application against Human African

Trypanosomiasis. But to our knowledge there have been no mathematical models on African

trypanosomiasis taking distributed delay, seasonality and vertical transmission into account.

The section division of the article is as follows. Section 2 presents the system of differential

equations used to model the epidemic. Section 3 analyzes the model, in particular the stability

of the infection-free state. Furthermore, we presents a simulation with parameters chosen so

as to fit the epidemic data from the province of Kinshasa. The epidemic threshold R0 is then

estimated for this particular epidemic. In Section 4, the basic reproduction number (BRN) is

discussed for a special cases. Finally, we give a brief conclusion.

2. MODEL DERIVATION

In this section, we present a mathematical model for the transmission and evolution of African

trypanosomiasis in human and tsetse fly population. Following the basic ideas and structure of
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mathematical models in epidemiology, the African trypanosomiasis model will be developed

under the next basic hypotheses:

(A.1) The total population of human Λ is divided in three subpopulations:

• Susceptible Sh(t) : members of human population who may become infected.

• Infected Ih(t) : members of human population infected by T. b. gambiense.

• Infected Ih(t,τ): members of human population at time t structured by the time τ since

infection. Hence the total number of infectious humans Ih(t) =
∫

∞

0 Ih(t,τ)dτ .

• Recovered Rh(t): members of human population with immunity.

(A.2) The total population of tsetse flies p(t) is divided in two subpopulations:

• Susceptible Sc(t): members of tsetse flies population who may become infected.

• Infected Ic(t) : members of tsetse flies population infected by T. b. gambiense.

(A.3) The disease is not vertically transmitted from infective tsetse flies to their offspring.

(A.4) Because both adult longevity and puparial duration are related to temperature, and a

significant seasonal decline in tsetse fly population is normal during the dry season, we assumed

that the growth rate r(t) is a periodic function of period T .

(A.5) The infective tsetse flies neither recover nor reproduce. However, the infective popula-

tion Ic still contributes with Sc to population growth toward the carrying capacity.

(A.6) The group of ”immune” humans contains both people who have acquired some immu-

nity and individuals whose symptoms have recently appeared and have been covered by cloth

so that they can not transmit the disease further.

(A.7) The functions βπShIc/(ϑ +Sh) and βπ̂ScIh/(ϑ +Sh) are saturated contact rate of the

disease. Here β is the biting rate of tsetse fly, π and π̂ are transmission probability of tsetse fly

per bite from tsetse fly to human and from human to tsetse fly, respectively.

(A.8) The parameter µ is mortality of tsetse fly and γ is the rate that recovered individuals

lose immunity and return to the susceptible class.

(A.9) The parameter a is the natural mortality rate of human population which is equal to the

birth rate. The parameter δ is the proportion of the offspring of infectious mothers uninfected.

(A.10) If f (τ) is the probability distribution of the time elapsed from infection to symptoms

in humans and g(τ) the probability of not having developed symptoms τ units of time after
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infection, then

g(τ) = 1−
∫

τ

0
f (σ)dσ = e−

∫
τ

0 (α(σ)+δa)dσ . (2.1)

Therefore, α(τ)+δa = f (τ)/[1−
∫

τ

0 f (σ)dσ ].

The total population of humans is denoted by

Λ = Sh(t)+ Ih(t)+Rh(t)

and the total population of tsetse flies is denoted by

p(t) = Sc(t)+ Ic(t).

On the basis of the above assumptions, we formulate the following plausible epidemic model

with seasonality and vertical transmission

S′c(t) = r(t)−µSc(t)− βπ̂Sc(t)Ih(t)
ϑ+Sh(t)

,

Ic(t,0) =
βπ̂Sc(t)Ih(t)

ϑ+Sh(t)
, ∂ Ic

∂ t +
∂ Ic
∂ω

=−µIc(t),

S′h(t) = a(Λ−Sh(t))− βπSh(t)Ic(t)
ϑ+Sh(t)

−a(1−δ )Ih(t)+ γRh(t),

Ih(t,0) =
βπSh(t)Ic(t)

ϑ+Sh(t)
, ∂ Ih

∂ t +
∂ Ih
∂τ

=−(α(τ)+δa)Ih(t,τ),

R′h(t) =
∫

∞

0 α(τ)Ih(t,τ)dτ− γRh(t)−aRh(t)

(2.2)

with some initial conditions Sc(0), Ic(0), Ih(0,τ) and Rh(0). Furthermore, p′(t) = S′c(t)+I′c(t) =

r(t)−µ p(t).

(A.11) The parameter ω is the time since infection in tsetse fly which matches the time τ .

3. MODEL ANALYSIS AND THE ESTIMATION OF R0

In this section, we introduce a generalization of the definition of the BRN R0 which is adapted

to periodic environments followed by the estimation of the parameters of the model. To prove

our main results we first give the following preliminary considerations.

From hypothesis (A.4) it follows that system (2.2) has an infection-free periodic solution

given by Sc = p(t), Ic = 0,Sh = Λ, Ih = Rh = 0, where p(t) is the periodic solution of p′(t) =
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r(t)−µ p(t). The corresponding linear system of (2.2) at (p(t),0,Λ,0,0) is

i′c(t) =
βπ̂ p(t)
ϑ+Λ

ih(t)−µic(t),

ih(t,0) =
βπΛic(t)

ϑ+Λ
, ∂ ih

∂ t +
∂ ih
∂τ

=−(α(τ)+δa)ih(t,τ)

(3.1)

with initial conditions ic(0,τ) = ic0(τ) and ih(0,τ) = ih0(τ). This system involves both linear

ordinary differential equations and a linear partial differential equation. Denoted the column

vector J(t,τ) = (ic(t,τ), ih(t,τ)). Then we have

∂J(t,τ)
∂ t + ∂J(t,τ)

∂τ
= −B(τ)J(t,τ), (3.2)

where

B(τ) =

 µ 0

0 α(τ)+δa

 .

If this equation is supplemented with

J(t,0) = N(t), J(0,τ) = J0(τ) = (ic0(τ), ih0(τ)).

An immediate consequence of the explicit solution of (3.2) given by

J(t,τ) =


J0(τ− t)exp

(
−
∫

τ

τ−t B(σ)dσ
)
, τ > t,

N(t− τ)exp
(
−
∫

τ

0 B(σ)dσ
)
, τ < t.

(3.3)

For N(t) or J(t,0), we can easily concluded from (3.1) that

N(t) = J(t,0) =

 0 βπ̂ p(t)
ϑ+Λ

βπΛ

ϑ+Λ
0

∫ ∞

0 J(t,τ)dτ. (3.4)

Substituting (3.3) in (3.4) and yielding

N(t) =
∫ t

0

 0 βπ̂ p(t)
ϑ+Λ

e−
∫

τ

0 (α(s)+δa)ds

βπΛ

ϑ+Λ
e−µτ 0

N(t− τ)dτ

+
∫

∞

t

 0 βπ̂ p(t)
ϑ+Λ

e−
∫

τ

τ−t(α(s)+δa)ds

βπΛ

ϑ+Λ
e−µt 0

J0(τ− t)dτ.

Then the previous equation is of the form

N(t) =
∫ t

0
A(t,τ)N(t− τ)dτ + N̄(t), (3.5)
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where A(t,τ) is T -periodic in t and N̄(t) is a given function. Notice that the coefficient Ai j(t,τ)

in row i and column j of the matrix A(t,τ) is the expected number of individuals of type i (type

1 stands for vectors, type 2 for humans) that one infected inidividual of type j will infect per

unit of time at time t if it was infected at the time t− τ .

Let ξ be the set of T -periodic continuous functions with values in R2, with the supremum

norm, this is a Banach space. The asymptotic behavior of the equation (3.5) has been inves-

tigated in some works [19, 20]: N(t) ∼ eλ ∗tv(t), where λ ∗ is a real number and v ∈ ξ is a

nonnegative, nonzero, and such that

v(t) =
∫

∞

0
e−λ ∗τA(t,τ)v(t− τ)dτ. (3.6)

Now let R0 be the spectral radius of the linear operator which maps w ∈ ξ to the function

t 7→
∫

∞

0 A(t,τ)w(t−τ)dτ , also in ξ . Recall that since this linear operator is nonnegative, R0 can

also be characterized by the existence of a nonnegative and nonzero w ∈ ξ such that

∫
∞

0
A(t,τ)w(t− τ)dτ = R0w(t). (3.7)

Then we have the following theorems.

Theorem 3.1. The R0 has the properties of an epidemic threshold: λ ∗ > 0 if R0 > 1 and λ ∗ < 0

if R0 < 1.

Proof. In fact, for all real number λ , let Aλ be the linear operator which maps w ∈ ξ to the

function t 7→
∫

∞

0 e−λτA(t,τ)v(t− τ)dτ also in ξ . Let Rλ be the spectral radius of Aλ . Notice

that this definition is consistent with the definition of R0. Notice also that for all λ , the linear

operator Aλ is nonnegative. Moreover, λ1≤ λ2 implies Aλ1 ≥Aλ2 . The properties of the spectral

radius imply that the function λ 7→ Rλ from R to R is decreasing. But according to equation

(3.6), Rλ ∗ = 1. So if R0 > 1, then λ ∗ > 0. And if R0 < 1, then λ ∗ < 0. The proof is completed.

From now on, we will explicitly use the equations of motion from epidemic system (3.1), to

calculate the BRN.
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Theorem 3.2. (i) If p(t) is a constant p, then

R0 =

√
β 2ππ̂Λp
(ϑ +Λ)2µ

∫
∞

0
g(τ)dτ ;

(ii) If p(t) is T -periodic function, then

R0 =

√
β 2ππ̂Λr0

(ϑ +Λ)2 ,

where r0 is a complex of function p(t),g(τ) and µ .

Proof. (i) Note that if p(t) is a constant p, then A(t,τ) is of independent t. In the case, consider

a constant function w(t) is equivalent to a nonnegative eigenvector of the nonnegative matrix∫
∞

0 A(τ)dτ , we conclude that R0 is the spectral radius of this matrix, which is generally called

the next-generation matrix [21]. More precisely, we get

R0 =

√
β 2ππ̂Λp
(ϑ +Λ)2µ

∫
∞

0
g(τ)dτ,

where we see that the product of the mean number of humans infected by one infectious tsetse

fly βπ p/µ(ϑ + Λ) with the mean number of tsetse flies infected by one infectious human

βπ̂Λ/(ϑ +Λ)
∫

∞

0 g(τ)dτ .

(ii) If p(t) is not constant but T -periodic. Then creating w=(w1,w2), (3.7) can be represented

in the form
βπ̂ p(t)
ϑ+Λ

∫
∞

0 g(τ)w2(t− τ)dτ = R0w1(t),

βπΛ

ϑ+Λ

∫
∞

0 e−µτw1(t− τ)dτ = R0w2(t).

(3.8)

Inserting the second equation into the first one, we see that if r0 is such that there exists a

nonnegative and nonzero T -periodic function w1(t) satisfying

p(t)
∫

∞

0
g(τ)

∫
∞

0
e−µτw1(t− τ−σ)dσdτ = r0w1(t), (3.9)

then

R0 =

√
β 2ππ̂Λr0

(ϑ +Λ)2 . (3.10)

Formula (3.10) generalizes the classical formula of case 1 for the vector-borne disease with a

season (periodic) population of vectors. Note that r0 is a complex function of p(t),g(x) and

µ . Obviously, r0 is a decreasing function of µ . Besides, if p(t) is replaced by ε p(t), then
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r0 becomes εr0. So, thanks to the definition of R0 presented above, for a periodic population

of vectors, it is still true that a vector disease can be eradicated if the population of vectors is

divided by R2
0. The proof is completed.

Having established the general framework we now focus on the estimation of the BRN and

starting with the estimation of parameters of models.

In Kinshasa, population estimates vary between 5.273 million and 7 million [22]. However,

rural populations usually depend on agriculture, fishing, animal husbandry or hunting, and in

these pursuits they are often exposed to the bite of the tsetse fly and therefore to the disease.

Thus we assume that the population Λ who often exposed to the bite of tsetse fly is 500 per

month.

According to current knowledge about tsetse fly, the mean life span 1/µ is from one to

three months [23]. So we take µ = 0.5 per month. Denoted by pmax the maximum number

of tsetse flies during the year satisfies the relation p̄(t) = p(t)/pmax, r̄(t) = r(t)/pmax, S̄c(t) =

Sc(t)/pmax and Īc(t)= Ic(t)/pmax. We assume that at t = 0, say at the beginning of the year 2005,

one human imports the infection into the susceptible population. At that time, the population

of vectors is zero. The initial conditions will be Sc(0) = 0, Ic(0) = 0,Sh(0) = Λ− 1, Ih(t,0) =

δτ=0(Dirac’s mass at τ = 0) and Rh(0) = 0.

Dividing the first two equation of (2.2) by pmax, results in the following epidemic model:

S̄′c(t) = r̄(t)−µ S̄c(t)− βπ̂ S̄c(t)Ih(t)
ϑ+Sh(t)

,

Īc(t,0) =
βπ̂ S̄c(t)Ih(t)

ϑ+Sh(t)
, ∂ Ic

∂ t +
∂ Ic
∂ω

=−µIc(t),

S′h(t) = a(Λ−Sh(t))− βπSh(t)pmax Īc(t)
ϑ+Sh(t)

−a(1−δ )Ih(t)+ γRh(t),

Ih(t,0) =
βπSh(t)Īc(t)pmax

ϑ+Sh(t)
, ∂ Ih

∂ t +
∂ Ih
∂τ

=−(α(τ)+δa)Ih(t,τ),

R′h(t) =
∫

∞

0 α(τ)Ih(t,τ)dτ− γRh(t)−aRh(t).

(3.11)

As for parameters of system (3.11), we use the following values based on some literature

data: βπ̂ = 0.58 per month, βπ pmax = 14352 per month [20], ϑ = 1.

The remainder of this section is devoted to compute numerically R0 as defined in the previous

section by these parameter values. First, we transform (3.9) by transformation θ = τ +σ . Then
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we have

p(t)
∫

∞

0
g(τ)eµτ

∫
∞

τ

e−µθ w1(t−θ)dθdτ = r0w1(t). (3.12)

Integrating by parts and finding

p(t)
∫

∞

0
h(τ)w1(t− τ)dτ = r0w1(t), (3.13)

where

h(τ) = e−µτ

∫
τ

0
eµσ g(σ)dσ . (3.14)

In view of w1(t) is T -periodic, we conclude that∫
∞

0 h(τ)w1(t− τ)dτ =
∫ t
−∞

h(t−θ)w1(θ)dθ

=
∫ t

0 h(t−θ)w1(θ)dθ

+∑
∞
n=0

∫ T
0 h(t +(n+1)T −θ)w1(θ)dθ

=
∫ t

0 H(t−θ)w1(θ)dθ +
∫ T

t H(t−θ +T )w1(θ)dθ ,

where we set

H(τ) =
∞

∑
n=0

h(τ +nT ). (3.15)

It is noted that H(τ) can be replaced by the sum of the first two terms, that is H(τ) = h(τ)+

h(τ +T ) which does not affect the estimation of R0.

We combine (3.13) with (3.15), the eigenvalues problem (3.13) is equivalent to

p(t)
{∫ t

0
H(t−θ)w1(θ)dθ +

∫ T

t
H(t−θ +T )w1(θ)dθ

}
= r0w1(t), (3.16)

which can be easily estimated since it involves only the values of w1(t) in the interval (0,T ). In

fact, let N be a large integer, set ti = (i−1)T/N for i = 1 . . .N, and let ρ̄0 be the spectral radius

of the following matrix eigenvalue problem

p̄(ti)
T
N

{
i−1

∑
j=1

H(ti− t j)Wj +
N

∑
j=i

H(ti− t j +T )Wj

}
= ρ̄0Wi, (3.17)

which is of form AW = ρ̄0W , where A is a N×N nonnegative matrix and W = (W1, . . .WN).

Considering the relation (3.10) between R0 and r0, one can conclude that√
(βπ̂)× (βπ pmax)× ρ̄0Λ/(ϑ +Λ)2 −→N→+∞ R0. (3.18)
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The results are presented in Table 1. In fact, the terms in (3.17) were computed in the follow-

ing way:

• In order to compute H(τ), we integrate (3.14) and yield h(τ) = [e−µτ
∫

τ

0 eµσ f (σ)dσ +1−

e−µτ −
∫

τ

0 f (σ)dσ ]/µ .

• The sampling in Fig. 3 shows the seasonal fluctuations of the vector population up to a

constant multiplicative factor from [24]. We will take as the basis for the periodic population

of the model because the number of tsetse flies is not as well documented in Kinshasa in 2005.

Of course, the vector population from beginning to end in 2005 was not absolutely the same as

from Fig.3 because the mean monthly temperature for example can be slightly different from

year to year. Assuming that the tsetse fly emergence rate per month r(t) is a step function, the

width of the steps being equal to the time between two observations of tsetse fly population, it

is easy to fit the heights of the steps so that p(t) given by p̄′(t) = r̄(t)− µ p̄(t) coincides with

the data (see Fig. 3). For rk, if θk < θk+1 are two successive observation times, then

r̄(t) = r̄k = µ
exp(µθk+1)p̄(θk+1)− exp(µθk)p̄(θk)

exp(µθk+1)− exp(µθk)
. (3.19)

For the normalized vector population p̄(ti), the equation p̄′(t)= r̄(t)−µ p̄(t) and the assumption

saying that r̄(t) is a step function given by formal (3.19) imply that p̄(ti) = e−µ(ti−θk)[p̄(θk)−
r̄k
µ
]+ r̄k

µ
if θk ≤ ti < θk+1.

FIGURE 3. Percentage of annual total of tsetse flies.

• The spectral radius ρ̄0 can be computed using numerical mathematics software such as

Matlable.
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Table 1 Estimation of R0

N 50 100 200 400

R0 1.660 1.674 1.675 1.675

Here N is the number of points discretizing the interval (0,T), which represents 1 year.

4. SPECIFIC RESULTS

In this section, as an application, we shall present BRN R0 for a special case. This case arises

for example [25] when considering a single population of infected individuals with a recovery

rate and an ”effective” contact rate φ(a), β (t,a) (i.e., the product of the contact rate and of the

transmission probability per contact) depending on time t and on the time a since infection and

subject to a constant immigration inflow p(t). Both φ(t,a), β (t,a) and p(t) are assumed to

be T -periodic functions with respect to t. Let i(t,a) be the density of population with age of

infection a at time t. In the linear approximation near the disease-free steady state, i(t,a) is the

solution of the system

( ∂

∂ t +
∂

∂a)i(t,a) =−φ(a)i(a, t)+ p(t),

i(t,0) =
∫

∞

0 β (t,a)i(t,a)da.
(4.1)

Based on the present definition of the basic reproduction number R0 presented in section 3, it

is quite easy to obtain that the matrix A(t,τ) is of one dimension:

A(t,τ) = p(t)e−
∫ t

t−τ
φ(σ)dσ . (4.2)

Consequently, the eigenvalue problem can be rewritten as

p(t)
∫

∞

0
e−

∫ t
t−τ

φ(σ)dσ w(t− τ)dτ = R0w(t). (4.3)
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Deriving this equation and integrating by parts, we obtain

R0w′(t) = p′(t)
∫

∞

0 e−
∫ t

t−τ
φ(σ)dσ w(t− τ)dτ + p(t)

∫
∞

0 e−
∫ t

t−τ
φ(σ)dσ w′(t− τ)dτ

+p(t)
∫

∞

0 e−
∫ t

t−τ
φ(σ)dσ [φ(t− τ)−φ(t)]w(t− τ)dτ

= p′(t)R0w(t)
p(t) − p(t)

∫
∞

0 φ(t− τ)e−
∫ t

t−τ
φ(σ)dσ w(t− τ)dτ

−p(t)
[
e−

∫ t
t−τ

φ(σ)dσ w(t− τ)
]∞

0

+p(t)
∫

∞

0 e−
∫ t

t−τ
φ(σ)dσ [φ(t− τ)−φ(t)]w(t− τ)dτ

= p′(t)
p(t) R0w(t)−φ(t)R0w(t)+ p(t)w(t).

The previous equation can be represented as

w′(t)
w(t)

=
p′(t)
p(t)
−φ(t)+

p(t)
R0

,

which can be integrated to get

w(t) = H p(t)e−
∫ t

0 φ(τ)dτ +
1

R0

∫ t

0
p(τ)dτ,

where H is a positive constant. The function w(t) thus obtained is T -periodic if w(t+T ) = w(t)

for all t. Using the periodicity of p(t) and φ(t), we see that this condition holds if and only if

R0 =

∫ T
0 p(τ)dτ∫ T
0 φ(τ)dτ

.

5. CONCLUSIONS

It is well-known that periodic fluctuations are common in the evolution of disease transmis-

sions. Periodic changes in birth rates of populations are evidenced in many biological works. A

natural and important problem associated with periodic epidemic models is to define and com-

pute their BRN. The BRN for Vector-Borne diseases are interpreted as the number of secondary

infections produced by infected vectors and hosts during the course of their infection. Note

that infected hosts produce infected vectors and vise versa. Although BRN for Vector-Borne

diseases is independent of the recruit rate, seasonality-through its direct effect on the size of

vector population-are still the primary determinants for disease transmissions. We also recall

two fundamental properties of BRN in the context of vector-borne diseases: an epidemic can
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develop if and only if BRN larger than the unit; an epidemic can be prevented if the vector

population is uniformly divided by R′0 all through the year [26].

In this paper we analyze the impact of seasonal variations on the dynamics of African try-

panosomiasis. Following the hypothesis (A.4), the corresponding linear system of original

model is obtained. It is common knowledge that the basic reproduction number plays a vi-

tal role in a epidemic model which determines whether the disease is eradicated or not. We

derive the basic reproduction number R0 which is adapted to periodic environments. Parame-

ters are estimated from the province of Kinshasa, Democratic Republic of Congo. Finally, this

R0 is estimated numerically for the epidemic in Kinshasa: R0 = 1.675. This model suggests

that the epidemic could be stopped if the vector population were reduced by a factor R2
0 = 2.80.
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