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Abstract. In this paper, we propose and analyse a mathematical model that describes the dynamics of Cholera.

The main aim of this model is to investigate the role of houseflies in the transmission of Cholera. Our analysis

showed that the disease free equilibrium is globally asymptotically stable whenever the basic reproduction number

is less than unity; and unstable otherwise; and our model posses only one endemic equilibrium which is locally

asymptotically stable whenever basic reproduction number is greater than unity. Our sensitivity analysis showed

that the basic reproduction number is very sensitive to ingesting vibrios rate from aquatic environment by vectors,

the rate of contribution to V. cholera in the aquatic environment and the death rate of vector and death rate of

vibrios in aquatic environment which indicates that the vector (i.e. the houseflies) play a very important role in the

transmission procedure.Numerically, we shown that the rate of water contamination by infectious people shedding

V. cholera into the environment has no impact in the infection because it depends on both bacteria shedding of

the infected individuals and the level of sanitation in the environment and since the environment is safe, then

it is obviously has no effects. In addition, if the contact rate of vectors with contaminated water is high in the

presence of increased contribution of each infected vector to the aquatic environment then cholera will persist in

the population. Therefore, to obtain a significant and effective control, the contribution of each infected vector to

the aquatic environment and the rate of exposure to contaminated water must be reduced.
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1. INTRODUCTION

Enteric diseases are considered to be one of the greatest threat to human race, since it causes

mortality of millions of people as well as huge impact on social and economic aspects of pop-

ulations [15]. Enteric diseases are defined as infections caused by viruses or bacteria that enter

the body through the mouth or intestinal system, primarily as a result of eating, drinking and/or

digesting contaminated foods or liquids. Cholera is a waterborne enteric disease which has a

main symptom; acute, watery diarrhea that caused by a bacterium (gram-negative rod), Vib-

rio cholerae. It can be developed to severe watery diarrhoea with vomiting. If people are not

treated promptly, they can lose large amounts of fluid and salts which lead to severe dehydra-

tion and death within hours [22]. The species V. cholerae is subdivided into serogroups, which

are toxigenic (O1 & O139) and non-toxigenic (non-O1) [10]. Strains that have the potential to

cause epidemic cholera and thus are of public health significance belong to serogroups O1 or

O139 and produce cholera toxin (CT) [24, 22]. In its most severe form, cholera is one of the

rapid lethal infectious diseases which can lead to death within hours, especially in places where

drinking water is unprotected from faecal contamination. These characteristics of cholera have

yielded a reputation that cause fear. However, with appropriate treatment, mortality can be kept

low.

In 2014, 190549 cases were notified from 43 countries with 55% in Africa and 2231 deaths

were reported in that year [27]. In 2015, a total of 172454 cholera cases were reported in 42

countries, 41% of which in Africa, 37% in Asia and 21% in Hispaniola (Central American is-

land) [26]. In the same period, 1304 deaths were reported [26]. During 2016, 132 121 cases

were reported from 38 countries, including 2420 deaths [26]. The year 2017 was remarkable for

cholera because it marked 200 years since the onset of the first recognized cholera pandemic in

1817, while the current seventh pandemic continues as the longest ever recorded [25]. Globally,

in 2017, 71 countries provided data on cholera with 34 countries reported a total of 1 227 391

cases and 5654 deaths and the remaining countries reported no cases. 84% of all suspected

cases reported were in Yemen with a total of 1 032 481 cases and 2261 death [25].

The prevalence of cholera depends on numerous environmental and biological variables, in-

cluding seasonal environmental drivers, host immunity and infectivity of the bacteria [9, 24].
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Cholera is usually transmitted through faecally contaminated water, hands or food, and remains

an ever-present risk in many countries. New outbreaks can occur where water supply, sanitation,

food safety, and hygiene are insufficient. The dynamics of cholera is much more complex as it

involves multiple interactions between the human host, other organisms, and the environment

[24]. The transmission of cholera include both indirect (i.e., environment-to-human) and direct

(i.e., human-to-human) routes [24]. The indirect exposure occurs when people ingest water or

food from the environment that is contaminated by the vibrios. The direct transmission may

occur when the vibrios are transmitted from an infected person directly to a healthy person by

close contacts (such as shaking hands or hugging) or by eating food prepared or consumed by

individuals with dirty hands [9, 23, 21]. Some studies show that the infected person or vector

typically shed vibrios in their stool for only 1 day, at approximately 103 vibrios per gram of

stool [24]. Therefore, vectors (e.g. house flies ) can play an important role in the transmission

of the cholera. The mechanism of transmitting cholera infection from house flies (Musca do-

mestica fly [14]) among humans is such that the flies feed, crawl and lay eggs on human food

[14, 28, 11].

To understand the complex dynamics of cholera, several mathematical models have been devel-

oped [6, 9, 17, 23]. Capasso and Paveri-Fontana [6] described cholera model by two equations

of dynamics of infected people and the dynamic of aquatic population. Then Codeco [9] ex-

tended their work by including additional equation of susceptible population in order to study

the long term behaviour of cholera and he explored the role of V. cholera in aquatic environ-

ment in the persistence of the outbreak. His results emphasis the importance of the aquatic

reservoir which depends on the sanitary conditions of the community and seasonal variations of

contact rates force a cyclical pattern of cholera outbreaks. Hartley et al. [17] modified Codeco’s

model by incorporating laboratory observations that passage of V.cholera through the gastroin-

testinal tract results in a short lived, hyper-infectious state. He found that the incorporation of

hyper-infectious state into his model gives a superior fit with the observed epidemic pattern

of cholera which help to prove the clinical relevance of laboratory observations regarding the

hyper-infectious state, and highlight the significance of human-to-human versus environment-

to-human transmission in the generation of epidemic and pandemic disease. Mukandavire et
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al. [23] proposed a model to study the 2008-2009 cholera outbreak in Zimbabwe. The model

explicitly considered both human-to-human and environment-to-human transmission pathways.

The results in this work demonstrated the importance of the human-to-human transmission in

cholera epidemics, especially in such places as Zimbabwe, a land-locked country in the middle

of Africa.

The model proposed here is an extension of Mukandavire work [23]. The formulation of the

model starts by considering two host populations i.e. human and vector populations. The new

contribution is the division of the environment into two sub-environments according to the con-

centration of cholera vibrios. The V. cholerae is associated with contaminated water and food

such as rivers, dams, wells, and ponds [9, 23]. In contrast, there are some places in the environ-

ment such that it can be considered as uncontaminated and safe places (households and market

places). Fundamental in our assumption is that people are well informed of the development

and severity of the disease outbreak, thus will take action to reduce contact with other individ-

uals and/or the contaminated environment. However, they can get infection from safe places as

the vectors can transmit the infection to them..

2. MODEL FORMULATION

To formulate the model we consider two host populations, human population (Nh ) and vec-

tor population (Nv ). Since the model incorporates the indirect environmental transmission, we

add the dynamics of the concentration of free living Cholera vibrios in safe and unsafe envi-

ronments. Let the human host population be divided into the following, susceptible individuals

Sh(t) ,those who are infected with cholera Ih(t) , and those who are recovered and have perma-

nent immunity Rh(t). This implies:

Nh = Sh(t)+ Ih(t)+Rh(t)

Similarly, let the vector population have two categories, susceptible vector Sv(t), and infected

vector Ih(t), such that

Nv = Sv(t)+ Iv(t)

The total population for humans and vectors are assumed to be a constant, which is a reasonable

assumption for a relatively short period of time and for low-mortality diseases such as cholera.
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FIGURE 1. Model flow diagram.

Let also B(t) and E(t) denote the concentration of the vibrios in safe and unsafe environment

respectively. The following Compartmental model (Figure (??)) describes the dynamics of the

model, in which, it is assumed that the susceptible individuals acquire infection with cholera

by human-to-human contact at per capita β Ih
Nh

or due to the environment-to-human transmission

represented by logistic function. The vector get the infection from unsafe environment then it

transmit it to safe environment.

dSh

dt
= µhNh−

βShIh

Nh
− β1ShB

κ1 +B
−µhSh

dIh

dt
=

βShIh

Nh
+

β1ShB
κ1 +B

− (γ +µh)Ih

dRh

dt
= γIh−µhRh

dSv

dt
= µvNv−

λ1SvB
κ1 +B

− λ2SvE
κ2 +E

−µvSv(1)

dIv

dt
=

λ1SvB
κ1 +B

+
λ2SvE
κ2 +E

−µvIv

dB
dt

= εα1Iv−µbB

dE
dt

= α1Iv +α2Ih−µeE
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with

dNh

dt
= 0

dNv

dt
= 0

Note that we have considered the infection through contact with environmental free Cholera

vibrios. As it is the case for most models involving free-living pathogens in the environment

[9, 23, 17, 30], the environmental-related forces of infection,e.g. β1ShB
κ1+B , is modelled using

Michealis-Menten or Holling type II functional responses. The constants κ1,κ2 represent the

minimum amount of vibrios in the environment capable of ensuring 50% chance of contracting

the disease.

The parameters used for system (1) and their biological interpretations are giving in Table (1).

Symbol Parameter

µh Natural human birth and death rate

β Contact rate from human to human

β1 Rates of ingesting vibrios from the safe environment to human

λ1 Rates of ingesting vibrios from the safe environment to vectors

λ2 Rates of ingesting vibrios from the aquatic environment to vector

γ Rate of recovery from cholera

µv Death rate of vector

µb Death rate of vibrios in safe environment

µe Death rate of vibrios in aquatic environment

ε Modification parameter

α1 Rate of contribution to V. cholera in the both environments by vectors

α2 Rate of contribution to V. cholera in the safe environment by human

TABLE 1. Cholera model parameters

.
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3. THEORETICAL ANALYSIS OF THE MODEL

3.1. Basic properties.

3.1.1. Positivity and boundedness of solutions. For model (1) to be epidemiological meaning-

ful, it is important to prove that all state variables are non-negative at all time. That is, solutions

of the system (1) with non-negative initial data will remain non-negative for all time t > 0. This

yields to the following theorem [5].

Theorem 3.1. Let the initial data Sh(0); Ih(0);Rh(0);Sv(0); Iv(0);B(0);E(0) be non-negative.

Then a solution Sh(t); Ih(t);Rh(t);Sv(t); Iv(t);B(t);E(t) of the model (1) are non-negative for

all t > 0, when it exists.

Proof. Suppose Sh(0)> 0. The first equation of system (1) is to

d
dt
(Sh(t)ρ(t)) = µhNhρ(t)

where ρ(t) = exp(
∫ t

0
β It(x)

Nh
+ β1B(x)

κ1+b(x) +µhdx)> 0 is the integration factor. Hence integrating the

last relation with respect to t we get:

Sh(t)ρ(t)−Sh(0) =
∫ t

0
µhNhρ(t)dt

so that the division of both sides by ρ(t) yields

Sh(t) = [Sh(0)+
∫ t

0
µhNhρ(t)dt]ρ−1(t)> 0

The same arguments can be used to prove Sv(t) > 0, Ih(t),Rh(t), Iv(t),B(t),E(t) ≥ 0 for all

t > 0 �

The dynamics of model (1) is dynamical system in the biological feasible compact set

Γ = {(Sh, Ih,Rh,Sv, Iv,B(t),E(t)) ∈ℜ
7
+,0 < Sh + Ih +Rh ≤ Nh,0 < Sv + Iv ≤ Nv}

3.1.2. Basic Reproductive Number. The disease-free equilibrium (DFE) for the cholera model

(1) is given by

P0 = (S0
h,0,0,S

0
v ,0,0,0)(2)
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where S0
h = Nh and S0

v = Nv

To compute the basic reproduction number of the model, we use the standard method of the next

generation matrix developed in [29, 12] by separating the infected states form the uninfected

states. Here, the associated next generation matrices are given by:

T =


β 0 β1Nh

κ1
0

0 0 λ1Nh
κ1

λ2Nh
κ2

0 0 0 0

0 0 0 0


and

Σ =


−(γ +µh) 0 0 0

0 −µv 0 0

0 εα1 −µb 0

α2 α1 0 −µe


The expression of the basic reproductive number is given by:

(3) R0 =
D+
√

D1

2κ2(γ +µh)µeκ1µvµe

where:

D = d + f

d = ((λ2γ +λ2µh)µeNvκ1 +(λ1εγ +λ1εµh)µeNvκ2)α1

f = β µeκ1κ2µvµb

D1 = (d− f )2 +4κ1κ2µeµvµbNhNvα1α2εβ1λ2(γ +µh)

Using Theorem 2 in [29], the following result is established:

Lemma 3.2. The DFE of system (1) is locally asymptotically stable (LAS) whenever R0 < 1,

and unstable whenever R0 > 1.

Lemma 3.2 implies that the cholera can be eliminated from the community when R0 < 1 and

the initial sizes of the host populations in the model are in the basin of attraction of the DFE.

However, to guarantee that the disease will be eliminated independently of the initial sizes of
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host populations, the DFE must be global asymptotically stable (GAS) of the DFE when R0 < 1

as showing in the following theorem.

Theorem 3.3. The DFE P0 of system (1) is GAS if R0 < 1 in the compact set Γ.

Proof. Using theorem Castillo-Chavez et al. in [7] model (1) can be written in the form:

dX
dt

= F(X ,Z)

dZ
dt

= G(X ,Z) = G(X ,0) = 0

where X and Z denote the uninfected and infected compartments respectively, that is,X =

(Sh,Rh,Sv) and Z = (Ih, Iv,B,E) We begin by showing condition i of Castillo-Chavez et al. in

[2] as

F(X ,0) =


µhNh−µhSh

−µhRh

µvNv−µvSv


and solving these three ordinary differential equations gives

Rh(t) = Rh(0)e−µht(4)

Sh(t) = Nh− (Nh−Sh(0))e−µht(5)

Sv(t) = Nv− (Nv−Sv(0))e−µvt(6)

Thus, Rh(t)−→ 0, Sh(t)−→ Nh and Sv(t)−→ Nv as t −→ ∞, regardless of the values of initial

conditions. Thus, P0 is globally asymptotically stable. Next, applying Castillo-Chavez et al.

Theorem to cholera model (1) to show condition ii:

G(X ,Z) =


β

ShIh
Nh

+ β1ShB
κ1+B − (γ +µh)Ih

λ1SvB
κ1+B + λ2SvE

κ2+E −µvIv

εα1Iv−µbB

α1Iv +α2Ih−µeE
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and

A =


β − (γ +µh) 0 β1Nh

κ1
0

0 −µv
λ1Nv

κ1

λ2Nv
κ2

0 εα1 −µv 0

α2 α1 0 −µe


which is clearly an M-matrix. Meanwhile, we find

Ĝ(X ,Z) =


β (1− Sh

Nh
)Ih +

β1NhB
κ1
− β1ShB

κ1+B
λ1NvB

κ1
− λ1Sv1B

κ1+B + λ2NvE
κ2
− λ2SvE

κ2+E

0

0


and since 0 ≤ Sh ≤ Nh and 0 ≤ Sv ≤ Nv, then it follows that Ĝ(X ,Z) ≥ 0 Thus, P0 is GAS

whenever R0 < 1. �

3.2. Existence of Endemic Equilibrium of Model (1). In this section, we investigate the

existence of other equilibrium points, i.e. possible boundary equilibrium points and interior

equilibria. First, we assume that there is an equilibrium such that Iv = 0, then from the sixth

equation in model (1), B = 0 and substituting these values in the fifth equation yields E = 0. it

follows from the other equations that Ih = Rh = 0. Thus, this equilibrium point is disease free.

Similarly, if an equilibrium of (1) is such that B = 0, then from the sixth equation in model

(1), Iv = 0 and same substitutions yield to E = Ih = Rh = 0. Therefore, this equilibrium point is

disease free as well. Next, if the equilibrium of (1) is such that E = 0, then from the last equation

of model (1) Ih =−α2
α1

Iv which have no biological meaning. Hence, Ih = Iv = 0 and introducing

these values in the third and sixth equations of cholera model leads to the Rh = B = 0, and once

more, the corresponding equilibrium is disease free. On the other hand, assume disease absent

in the human population i.e. Ih = 0, then it is follows fron second equation of model (1) that the

cholera vibrios concentration B = 0, and hence, we have Iv = Rh = E = 0. Thus, the full system

is disease free. Note that, the non existence of boundary equilibria is due to the fact the disease

transmission is one way” (that is, from vectors to humans and not the other way round). As a

result, we have proven the following result:

Lemma 3.4. System (1) has no other boundary equilibrium than the disease-free equilibrium.
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This lemma is considered as an important result because it eliminates the possibility for the

model (1) to have non-trivial equilibriums on the boundary . Therefore, the cholera model (1)

could have a unique interior (endemic) equilibrium with the disease being present in all the

populations under consideration [20]. This lemma with the existence and uniqueness of interior

equilibrium for system (1) related sub-models suggested in [4, 20, 19, 5], yields to the following

conjecture [20]

Conjecture 3.5. Assume that R0 > 1 for system (1). Then there exists a unique interior (en-

demic) equilibrium.

The endemic equilibrium of the model is denoted by Pe = (S∗h, I
∗
h ,R
∗
h,S
∗
v , I
∗
v ,B
∗,E∗) and it

satisfies the following:

S∗h = Nh−
(µh + γ)I∗h

µh

R∗h =
γI∗h
µh

S∗v = Nv− I∗v(7)

B∗ =
εα1I∗v

µb

E∗ =
α1I∗v +α2I∗h

µe

(8) AI∗2h +BI∗h +C = 0

where

A =
−β (γ +µh)

µhNh

B = β − (γ +µh)β1α1εI∗v
µh(εα1I∗v +κ1µb)

− (γ +µh)

C =
(γ +µh)β1α1εI∗v Nh

εα1I∗v +κ1µb

(9) A0I∗3v +B0I∗2v +C0I∗v +D0 = 0
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where

A0 = −α
2
1 ε(λ1 +λ2 +µv)

B0 = −α1(−Nvε(λ1 +λ2)α1 +(λ2α2I∗h +(λ1 +µv)(κ2µe +α2I∗h ))ε +µbκ1(λ2 +µv))

C0 = (Nv((λ2α2I∗h +λ1(κ2µe +α2I∗h ))ε +λ2κ1µb)α1−µb(λ2α2I∗h +µv(κ2µe +α2I∗h ))κ1)

D0 = λ2Nvα2I∗h κ1µb

The endemic equilibrium is LAS whenever R0 > 1 [4,5] and this will be shown numerically at

a later stage.

3.3. Bifurcation analysis of the model. To study the possibility of backward bifurcation, we

use the theorem in Castillo-Chavez and Song [8]. Introducing x1 = Sh,x2 = Ih,x3 = Rh,x4 =

Sv,x5 = Iv,x6 = B,x7 = E, the system (1) becomes:

x′1 = µhNh−
βx1x2

Nh
− β1x1x6

κ1 + x6
−µhx1 = f1

x′2 =
βx1x2

Nh
+

β1x1x6

κ1 + x6
− (γ +µh)x2 = f2

x′3 = γx2−µhx3 = f3

x′4 = µvNv−
λ1x4x6

κ1 + x6
− λ2x4x7

κ2 + x7
−µvx4 = f4(10)

x′5 =
λ1x4x6

κ1 + x6
+

λ2x4x7

κ2 + x7
−µvx5 = f5

x′6 = εα1x5−µbx6 = f6

x′7 = α1x5 +α2x2−µex7 = f7

Consider the case when R0 = 1 and suppose that φ = λ2 is chosen as a bifurcation parameter.

Then, R0can be seen, in terms of the parameter λ2 = λ ∗2 = (Nvα1ελ1κ1µvµb)(β−(γ+µh))κ2µe
α1Nv(µb(−β+(γ+µh))κ1+α2β1µhε) . The

Jacobian of the system (10) at the disease-free equilibrium is given by the following:
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J =



−µh −β 0 0 0 −β1Nh
κ1

0

0 β − (γ +µh) 0 0 0 β1Nh
κ1

0

0 γ −µh 0 0 0 0

0 0 0 −µv 0 −λ1Nv
κ1

−λ2Nv
κ2

0 0 0 0 −µv
λ1Nv

κ1

λ2Nv
κ2

0 0 0 0 εα1 −µb 0

0 α2 0 0 α1 0 −µe


3.3.1. Calculation of the eigenvectors of Jφ . It can be shown that the Jacobian of the system

(10) at Φ= λ2 (denoted by Jφ ) has a right eigenvector given by W =(w1,w2,w3,w4,w5,w6,w7)
T ,

where

w1 = −(γ +µh)

µh
w2

w2 = w2

w3 =
γ

µh
w2

w4 = −Nv(λ1κ2w6 +φκ1w7)

κ1κ2µv
(11)

w5 =
µb(−β + γ +µh)κ1

β1Nhεα1
w2

w6 =
(−β + γ +µh)κ1

β1Nh
w2

w7 =
α2w2 +α1w5

µe

and a left eigenvector given by V = (v1,v2,v3,v4,v5,v6,v7), where

v1 = v3 = v4 = 0

v2 =
α2

−β + γ +µh
v7

v5 = v5(12)

v6 = µvv5−α1v7

v7 =
φNv

κ2µe
v5
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3.3.2. Computation of a and b: From system (10), it can be shown that:

∂ 2 f1

∂x1∂x2
=

∂ 2 f1

∂x2∂x1
=− β

Nh

∂ 2 f1

∂x1∂x6
=

∂ 2 f1

∂x6∂x1
=−β1

κ1

∂ 2 f1

∂x2
6

=
2β1Nh

k2
1

∂ 2 f2

∂x1∂x2
=

∂ 2 f2

∂x2∂x1
=

β

Nh

∂ 2 f2

∂x1∂x6
=

β1

κ1

∂ 2 f4

∂x4∂x6
=

∂ 2 f4

∂x6∂x4
=−λ1

κ1
(13)

∂ 2 f4

∂x4∂x7
=

∂ 2 f4

∂x7∂x4
=− φ

κ2

∂ 2 f4

∂x2
6

=
2λ1Nv

κ2
1

∂ 2 f4

∂x2
7

=
2φNv

κ2
2

∂ 2 f5

∂x6∂x4
=

λ1

κ1

∂ 2 f5

∂x2
6

= −2λ1Nv

κ2
1

∂ 2 f5

∂x7∂x4
=

φ

κ2

∂ 2 f5

∂x2
7

= −2φNv

κ2
2

and

∂ 2 f4

∂x7∂φ
= −Nv

κ2

∂ 2 f5

∂x7∂φ
=

Nv

κ2
(14)



THE ROLE OF HOUSEFLIES IN CHOLERA TRANSMISSION 15

and all the other second-order partial derivatives are equal to zero. Thus, we can compute the

coefficient a and b defined in (thereom 4.1 in [8]), that is,

(15) a = v2w1[2w2
β

Nh
+w6

β1

κ1
]+ v5[w4(w6

λ1

κ1
+w7

φ

κ2
)− 2λ1Nv

κ2
1

w2
6−

2φNv
κ2

2
w2

7]

and since w1&w4 are negative,then a < 0. and

(16) b = v5w7
Nv

κ2
> 0

Therefore, we have the following result:

Theorem 3.6. The direction of the bifurcation of system (10) (or system (1)) at R0 = 1 is for-

ward. Since the bifurcation parameter changes from negative to positive, then the DFE changes

its stability from stable to unstable. Therefore, a negative unstable equilibrium becomes positive

and locally asymptotically stable

Theorem 3.6 proves that the unique endemic point is locally asymptotically stable.

4. SENSITIVITY ANALYSIS (SA) OF THE BASIC REPRODUCTION NUMBER WITH RE-

SPECT TO THE MODEL PARAMETERS

One of the most important concerns about the infectious disease is its ability to invade a pop-

ulation. The useful and valuable quantity which helps determine whether or not an infectious

disease can spread through a population is basic reproduction number (R0) [29, 7]. R0 measures

whether a disease can persist in a population. When R0 is less than 1, on average each infected

individual infects less than one individual, and the disease will die out. In contrast, when R0

exceeds unity there is an exponential rise in the number of cases over time, and an epidemic

results [29, 7]. Therefore, we studied the sensitivity analysis of the basic reproduction number,

with respect to the model parameters in order to discover parameters that have a high impact

on R0 and should be targeted by intervention strategies. There are many ways of conducting

sensitivity analysis, all resulting in a slightly different sensitivity ranking [18]. We used the

normalized forward sensitivity index which is also called elasticity. The normalized forward

sensitivity index of a variable with respect to a parameter is defined as the ratio of the relative
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change in the R0 to the relative change in the parameter [3, 16, 18]. It is given by:

(17) SR0
p =

∂R0

∂ p
p

R0

Given the explicit formula (3) for R0, one can easily derive an analytical expression for the sen-

sitivity of R0 with respect to each parameter that comprise it. The obtained values are described

in Table 2, which presents the sensitivity indices for the baseline parameter values for R0 < 1

and R0 > 1 given in Table (4).

Symbol Value Source

µh 0.00004d−1 [30]

β 0.000105−0.000111 [23]

β1 .055−0.094 [23]

κ1 106cells/mL Assumed

κ2 106cells/mL [23]

λ1 0.0056−0.097 Assumed

λ2 0.0057−0.1 Assumed

γ (5d)−1 [23]

µv 0.189d−1 [13]

µb (30d)−1 Assumed

µe (30d)−1 [23]

ε 0.001−0.01 Assumed

α1 12 cells mL−1d−1 per vector Assumed

α2 10 cells mL−1d−1 per person [23]

TABLE 2. Parameter values
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Parameter Sensitivity index Sensitivity index

(R0 < 1) (R0 > 1)

β +0.00004 +0.00001

β1 +0.004 +0.002

γ −0.4e−2 +0.008

κ1 −0.1e−1 −0.8e−2

κ2 −0.99 −0.98

λ1 +0.009 +0.005

λ2 +0.987 +0.992

α1 +0.996 +0.997

α2 +0.004 +0.003

µh −8.2e−7 −5.8e−7

µv −0.995 −0.997

µb −0.13e−1 −0.79e−2

µe −0.987 −0.992

ε +0.012 +0.008

TABLE 3. Parameter values for sensitivity analysis

The sensitivity analysis results indicate that both the environment-to-human and human-to-

human transmission pathways are sensitive, and important, in determining the cholera infec-

tions as all the parameters will affect the system either positively or negatively. The sensitivity

index tells the quantitative changes produced by a small variation in a parameter. The most in-

fluential parameters are the ingesting vibrios rate from aquatic environment by vectors (λ2) and

rate of contribution to V. cholera in the aquatic environment α1) which have positive impact in

the value of R0 in which the impact will be greater if R0 > 1. For example, SR0
λ2

= 0.989 means

that increasing λ2 by 10% increases R0 by 9.87%. Death rate of vector (µv) and death rate of

vibrios in aquatic environment (µe) also have strong negative influence in the value of R0 which

occurs more in endemic case. Note that the recovery rate has negative influence when R0 < 1

such that if it increases then the disease dies out. However, it has positive influence when R0 > 1

because in endemic case the disease persist.
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5. NUMERICAL SIMULATION

In this section, we perform a numerical simulation of model system (1) to confirm our analyt-

ical results and to illustrate the asymptotic behaviour of the model. At this stage, we solve the

model numerically with three sets of initial conditions with total human population is 10000 and

vector population is 30000. We choose a set of parameter values in model system (1) according

to Table 4 where some of the parameter’s values were obtained from literature, and some of

them were assumed or made varying in order to study their role.

The GAS of the disease-free equilibrium P0 demonstrated in Theorem 3.2 and the existence and

stability of a unique endemic equilibrium as stated in Conjecture 1 for the model is shown on

Figure 2 and Figure 3, respectively.
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FIGURE 2. GAS of the model disease-free equilibrium with R0 is 0.69
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FIGURE 3. GAS of the model endemic equilibrium with R0 is 1.8
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Varying the values of β1,λ1 and λ2 (the ingesting vibrios rate from the safe environment

to human, vectors, and ingesting vibrios rate from the unsafe environment to vectors re-

spectively)

Numerical simulation shows that the increase in the value of β1 leads to an increase in the num-

ber of both infected human and infected vector with the effect is more in human population as

seen in Figure 4.

It can be seen from Figure 5 that the effect of varying the values of λ1 affects the infected human

and vector populations positively with more effect in vector population which is something pre-

dictable. On the other hand, the impact of increasing the value of λ2 on the infection of human

population occurs after some time. In addition, after ingesting a sufficient dose of V. cholera

vibrios by vectors then the infection starts to persist and hence the cholera transmission can

become endemic. Consequently,the basic reproductive number is significantly increased over

unity and hence this will affect the vector population (Figure 6).
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FIGURE 4. Simulation results for different values of β1.

FIGURE 5. Simulation results for different values of λ1.

Varying the values of α1,α2(Rate of contribution to V. cholera in the aquatic and safe

environment respectively)

It is clear from Figure 7 that,the impact of increasing the values of α1 leads to increase the

number of infected human and vectors. However, results (Figure 8 ) show that there is no

relationship between α2 and the fraction of infected humans and vectors.
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FIGURE 6. Simulation results for different values of λ2.

FIGURE 7. Simulation results for different values of α1.

FIGURE 8. Simulation results for different values of α2.
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6. CONCLUSION

We develop a general model for the dynamics of cholera that incorporates an indirect trans-

mission of V. cholera to yhe environmental reservoir. The proposed model divided the environ-

ment into two sub-environments according to the concentration of V. cholera. Our analysis of

the model showed that the disease free equilibrium is globally asymptotically stable when R0

is less than unity; and unstable when R0 is greater than unity, and our system posses only one

endemic equilibrium and we showed that it is locally asymptotically stable when R0 is greater

than unity since the direction of the bifurcation is forward.

Our sensitivity analysis showed that R0 is sensitive to all of model parameters either positively

or negatively, and the most influential has been the ingesting vibrios rate from aquatic environ-

ment by vectors, the rate of contribution to V. cholera in the aquatic environment and the death

rate of vector and death rate of vibrios in aquatic environment which indicates that the best

control strategy is by eliminating vector populations and by sanitizing the aquatic environment.

Numerical simulations were used to examine the effect of all of the parameters of the model.

The results showed that β1,λ1 and α1 have a positive effects in disease transmission as the

increase in their values contribute significantly to the spread of the cholera infections in the

system. Also, the simulations showed that the rate of water contamination by infectious peo-

ple shedding V. cholera into the environment (α2) has no impact in the infection because it

depends on both bacteria shedding of the infected individuals and the level of sanitation in the

environment and since the environment is safe, then it is obviously has no effects. In addition,

if the contact rate of vectors with contaminated water (λ2) is high in the presence of increased

contribution of each infected vector to the aquatic environment (α1) then cholera will persist in

the population. Therefore, to obtain a significant and effective control, the contribution of each

infected vector to the aquatic environment and the rate of exposure to contaminated water must

be reduced. Moreover, to reduce the epidemic’s peak other interventions are needed.
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[7] C Carlos-Chavez, F. Zhilan, W. Huang. On the computation of and its role on global stability. Institute for

Mathematics and its Application, Vol. 125, 2001.

[8] C. Castillo-Chavez, B. Song. Dynamical models of tuberculosis and their applications. Math. Biosci. Eng.

1(2) (2004), 361–404.
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