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Abstract. In this paper, we have studied the global dynamics of HIV model with two transmission paths: direct

transmission through cells-to-cells contact and indirect transmission through virus. We have derived a four dimen-

sional mathematical model including uninfected CD+T
4 cells, infected CD4+T cells, virus and the CTL immune

response cells. The nonnegativity and boundedness property of the solutions the proposed mathematical system

have been analysed, and the basic reproduction ratio R0 has been derived with the help of next generation ma-

trix method. We also discussed the local and global stability with respect to the basic reproduction ratio of both

disease-free and interior equilibrium points under certain conditions. Through numerical simulations, we have

validated the all analytical findings. We have established that the disease-free equilibrium is globally stable for

R0 < 1 and endemic equilibrium is globally stable for R0 > 1 whenever exists. It is also observed that cells-to-cells

transmission rate is more effective compare to virus-to-cells infection rate.
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1. INTRODUCTION

Human Immunodeficiency Virus (HIV) is treated as the most serious infectious disease world-

wide and Acquired Immunodeficiency Syndrome (AIDS) is the last stage of this deadly infec-

tion process. Till date, 35 million people (approx.) have died from AIDS related illness and

30-40 million individual are living with HIV [1, 2]. Mainly, HIV targets the human immune

system and as a consequence immune system breaks down and can’t work properly. As a result,

HIV infected people can easily infected by the other infectious disease (influenza, pneumonia,

tuberculosis etc.). When CD+
4 T cells count is less than 200 mm−3, then HIV infected patient

is treated as an AIDS patient [3, 4].

CD+
4 T cells plays various important role in human immune system.It also acts as the main

defender against the deadly RNA-virus. Viruses can spread by infecting CD+
4 T cells in two

ways namely ‘virus-to-cells’ HIV infection as well as ‘cells-to-cells’ transmission. The pathway

of Virus-to-cells HIV infection is considered as a multistage process [5, 6, 7, 8]. Firstly, the

envelope protein (gp120) on the surface of HIV binds with CD+
4 receptor and two co-receptors

(CXCR4 and CCR5) of healthyCD+
4 T cells. Then, virus injects the genetic material in to

the healthy T cells by fusion process. This genetic material transforms viral RNA genome to

DNA copy by reverse transcriptase enzyme. Then by another viral enzyme this DNA copy

integrates into the viral DNA and at last by protease enzyme it transforms to infected provirus,

thus the cells becomes infected. On the other hand, by the cells-to-cells transmission process

virus is spread in our body through virological synapses which are a predominant mode of viral

transmission [9, 10, 11]. These Virological synapses are formed for the interaction between

CD+
4 and HIV envelope glycoprotein. When the donor and target cells interact with each other,

a large number of infectious particles are accumulated and released at the places of ‘cells-to-

cells’ contacts [12]. It is well known that this cells-to-cells transmission process is significantly

more efficient and faster viral replication mechanism. Also, during both process of infection

due to huge replication of infected T cells and virus, immune system of our body produces

an another type of T cells i.e. Cytotoxic T-lymphocyte cells (CTL). This immune cells has a

significant role in suppressing HIV replication in acute infection [13, 14].
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Since few years, several mathematical models have been proposed to capture the HIV vi-

ral dynamics in theoretical perceptive. In some of models, authors have considered that in-

fection occurs only from free HIV virus to CD+
4 T cells i.e. by “virus-to-cells transmission”

[15, 16, 17, 27]. Recently, many eminent researchers have described that there is an another

viral transmission mechanism for the case of HIV - the “cells-to-cells transmission” [20, 21].

Lai et al. have also proposed a mathematical model considering both mode of infection trans-

mission viz. virus-to-cells and cells-to-cells [22]. Roy et al.[25] have described a mathematical

model by considering the qualitative behavior of CTL response in a HIV model. Yet the global

dynamics of a HIV model including both mode of infection transmission has not been explored.

In this paper, we develop a mathematical model by incorporating both mode of transmission

with the immune response of CTL, which attacks infected cells and play a critical role for

antiviral defense. We also consider that the virus can be proliferated by external viral sources

other than infected T cells. Furthermore, we have analyzed the global stability of our formulated

model by considering a suitable Lyapunov function. By using this global dynamical behavior,

we also try to find out the answers of the following questions: (a) which transmission process

is most effective? (b) how the CTLs response can prevent this effective transmission process?

This article is arranged as follows. Firstly, we formulate the model with initial condition

in section 2. We have found the equilibrium points of the system and determine the basic

reproductive ratio in Section 3. In Section 5 and Section 6, we discuss the local and global

stability depending on the value of basic reproductive ratio respectively. Numerical simulations

are presented in section 7 with discussion. Finally, section 8 concludes the paper with important

findings.

2. MODEL FORMULATION

We construct a mathematical model of HIV disease dynamics considering both virus-to-cells

infection and cells-to-cells transmission. Here CD4+T cells population is partitioned into unin-

fected CD4+T cells(x) and infected CD4+T cells(y), with x(t) and y(t) representing their con-

centration respectively at a time t. We also consider virus population (v) and CTL population

(z), with v(t), z(t) representing their concentration at a time t respectively.
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The uninfected CD4+T cells are produced from bone marrow and mature in thymus at a

constant rate. Here λ be the constant production rate of this uninfected immune cells. We

assume that the uninfected CD4+T cells become infected by direct cells-to-cells transmission

at a rate β1 and by free virus at a rate β2. Here d1 and d2 are the per capita mortality rate of

uninfected CD4+T cells and infected CD4+T cells respectively. Infected T cells are assumed to

produce on average N mature viruses during its lifetime i.e we assume that Nd2 is the growth

rate of virus by infected CD4+T cells. We also consider that av
b+v is the proliferation rate of

virus from other infected cells like macrophages. It should be noted here that the growth rate of

external viral source other than T cells is a and half saturation constant of external viral source

is b. Here d3 represents the natural removing rate of virus.

dx
dt

= λ −d1x−β1xy−β2xv

dy
dt

= β1xy+β2xv−d2y

dv
dt

= Nd2y+
av

b+ v
−d3v(1)

We also consider CTL immune response to defend the virus replication and α is the proliferation

rate due to immense growth of infected CD4+T cells. Here we assume d4 as removing rate of

CTL response. The following equation demontrate the CTL population dynamics.

dz
dt

= αyz−d4z(2)

Here we also consider that the CTL response has a negative impact on infected CD4+T cells

and assume that β3 is the apoptosis rate of infected cells due to CTL response. Based on the

considerations, growth rate of the uninfected CD4+T can rewrite as follows

dy
dt

= β1xy+β2xv−d2y−β3yz(3)

Assembling together the above three system of equation (1, 2, 3), we can rewrite the compact

proposed mathematical model
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dx
dt

= λ −d1x−β1xy−β2xv

dy
dt

= β1xy+β2xv−d2y−β3yz

dv
dt

= Nd2y+
av

b+ v
−d3v

dz
dt

= αyz−d4z(4)

where x(0) > 0, y(0) > 0, v(0) > 0, z(0) > 0 are the initial condition for above system and

for this given initial condition, the solution (x(t),y(t),v(t),z(t)) of the system (4) is positively

invariant and uniformly bounded in a region Π for t > 0 where

Π =

{(
x(t),y(t),v(t),z(t)

)
: 0 < x≤ λ

d1
,0≤ y(t)≤ λ

D1
,

0≤ v(t)≤ 1
2

(
a+

Nd2λ

d′

)
,0≤ z(t)≤ M

D2

}
.(5)

where M = α
λ

d1

[
β1

λ

d′ +
1
2β2
(
a+Nd2

λ

D1

)]
, D1 = min{d1,d2} and D1 = min{d2,d4}.

3. EQUILIBRIA AND STABILITY ANALYSIS

We will analyse the existence and stability of equilibria of the system (4) using the basic

reproductive ratio which is determined below.

3.1. Basic reproductive ratio, R0. Here, in case of both mode of transmission the infectious

compartments of the Jacobian matrix of the system at E0 can be written as

J0 =

 β1x0−d2 β2x0

Nd2
a
b −d3

.

Now we define two matrices F and V as

F =

 β1x0 β2x0

0 0

 and V =

 d2 0

−Nd2
a
b −d3

.

such that J0 = F−V

Thus the basic reproduction number R0 can be defined as the spectral radius of the next gener-

ation operator FV−1 i.e the largest eigen value of the matrix FV−1, where
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FV−1 = 1
d2(d3− a

b )

 β1x0(d3− a
b)+β2x0Nd2 β2x0d2

0 0

.

Therefore,

(6) R0 = ρ(FV−1) =
β1x0(d3− a

b)+β2x0Nd2

d2(d3− a
b)

= R1
0 +R2

0,

where,

(7) R1
0 =

β1λ (d3− a
b)

d1d2(d3− a
b)
, R2

0 =
β2λNd2

d1d2(d3− a
b)
.

3.2. Existence of equilibria. The system has four equilibria namely the infection-free equi-

librium point, E0(
λ

d1
,0,0,0) which is always feasible, the another steady state is the endemic

equilibrium E∗(x∗,y∗,v∗,z∗) satisfying

x∗ =
αλ

αd1 +β1d4 +αβ2v∗
, y∗ =

d4

α
,

z∗ =
αλ (β1d4 +αβ2v∗)−d2β3d4(αd1 +β1d4 +αβ2v∗)

β3d4(αd1 +β1d4 +αβ2v∗)
,

where v∗ is a solution of Θ1v∗2 +Θ2v∗+Θ3 = 0 with the coefficient

Θ1 = αd3, Θ2 = αbd3−Nd2d4−aα, Θ3 =−Nd2d4b

Since Θ1 > 0 and Θ3 < 0 then the above equation has a unique positive root. From the above

expression of x∗,y∗,z∗, it can be shown that the endemic equilibrium point E∗(x∗,y∗,v∗,z∗) is

feasible when R0 > 1.

4. LOCAL STABILITY ANALYSIS

Now the Jacobian of the system at any point E(x,y,v,z) is given by

J(E) =



−d−β1y−β2v −β1x −β2x 0

β1y+β2v β1x−d2−β3z β2x −β3y

0 Nd2
ab

(b+v)2 −d3 0

0 αz 0 αy−d4


.
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Now at the infection-free equilibrium E0, the characteristic equation becomes

(λ +d1)(λ +d4)(λ
2 +A1λ +A2) = 0(8)

where

A1 = d2 +d3−
a
b
− λβ1

d1
and A2 = β1

a
b

λ

d1
− ad2

b
−β1d3

λ

d1
+d2d3−Nβ2d2

λ

d1

If A1 and A2 both positive then by “Routh-Hurwitz Criterion”, all the eigenvalues have nega-

tive real parts and consequently the infection-free equilibrium point E0 is locally asymptotically

stable. Now A1 > 0 and A2 > 0 implies R0 < 1. This concludes that the infection-free equilib-

rium point is locally asymptotically stable if R0 < 1.

Thus we have the following proposition,

Proposition 1. The infection-free equilibrium point E0 is locally asymptotically stable if R0 < 1.

Moreover, the system (4) has a unique endemic equilibria for R0 > 1.

At the endemic equilibrium E∗, the characteristic equation becomes

λ
4 +B1λ

3 +B2λ
2 +B3λ +B4 = 0(9)

where

B1 = −b11−b22−b33−b44

B2 = b11b21 +b11b33 +b11b44 +b22b33 +b22b44 +b33b44−b23b32−b24b42−b12b21

B3 = −b11b22b33−b22b33b44−b33b44b11

−b44b11b22 +b11b23b32 +b44b23b32 +b11b24b42 +b33b24b44

+b12b21b33 +b12b21b44 +b13b32

B4 = b11b22b33b44−b11b44b23b32−b24b42b11b33−b12b21b33b44 +b13b32b44

where

b11 =−d−β1y∗−β2v∗,b12 =−β1x∗,b13 =−β2x∗,b21 = β1y∗+β2v∗,b22 = β1x∗,
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b23 = β2x∗,b24 =−β3y∗,b32 = Nd2,b33 =
ab

(b+ v∗)2 −d3,b42 = αz∗,b44 = αy∗−d4

Now, B1,B3,B4 > 0 and B1B2B3 > (B3)
2 + (B1)

2B4 imply that R0 > 1. Then by “Routh-

Hurwitz Criterion” at the endemic equilibrium point the system is locally asymptotically stable

for R0 > 1..

From the above discussion, we have the following theorem.

Theorem 1. The endemic equilibrium E∗ is locally asymptotically stable if R0 > 1.

5. GLOAL STABILITY ANALYSIS

Theorem 2. The infection-free equilibrium point E0 is globally asymptotically stable if R0 < 1.

Proof. We define a Lyapunov function as

V (t) = x− x0− x0 ln(
x
x0
)+ y(t)+

(
β1x0(d3−

a
b
)+β2x0Nd2

)
v(t)+

β3

α
z(t).

(10)

Here V (t) > 0 for all positive values of x(t), y(t), v(t), z(t) and V (t) = 0 at infection-free equi-

librium point E0. Now calculating time derivative of V (t), we get

˙V (t) =
(
1− x0

x(t)

)x(t)
dt

+
y(t)
dt

+(β1x0(d3−
a
b
)+β2x0Nd2)

v(t)
dt

+
β3

α

z(t)
dt

=
(
1− x0

x(t)

)
[λ −d1x−β1xy−β2xv]+ [β1xy+β2xv−d2y−β3yz]

+
(
β1x0(d3−

a
b
)+β2x0Nd2

)
[Nd2y+

av
b+ v

−d3v]+
β3

α
[αyz−d4z]

≤ d1x0
(
2− x(t)

x0
− x0

x(t)

)
+

y
(d3− a

b)
(R0−1)(11)

Therefore using the fact that Aritheoremetic Mean (A.M.) ≥ Geometric Mean (G.M), we have

obtained V̇ ≤ 0 if R0 < 1. Moreover at E0 , ˙V (t) = 0. Hence infection-free equilibrium point E0

is globally asymptotically stable if R0 < 1.

�

Theorem 3. The endemic equilibrium point E∗ is globally asymptotically stable if R0 > 1.
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Proof. Let us consider a Lyapunov function as

W (t) = x− x∗− x∗ ln(
x
x∗
)+ y− y∗− y∗ ln(

y
y∗
)+ v− v∗− v∗ ln(

v
v∗
)+ z− z∗− z∗ ln(

z
z∗
)

(12)

Here W (t)> 0 for all positive values of x(t), y(t), v(t), z(t) and W (t) = 0 at endemic equilib-

rium point E∗. Now calculating time derivative of W (t), we get

˙W (t) =
(
1− x∗

x(t)

)x(t)
dt

+
(
1− y∗

y(t)

)y(t)
dt

+
(
1− v∗

v(t)

)v(t)
dt

+
(
1− z∗

z(t)

)z(t)
dt

=
(
1− x∗

x(t)

)
[λ −d1x−β1xy−β2xv]+

(
1− y∗

y(t)

)
[β1xy+β2xv−d2y−β3yz]

+
(
1− v∗

v(t)

)
[Nd2y+

av
b+ v

−d3v]+
(
1− x∗

x(t)

)
[αyz−d4z]

= −d1
(x− x∗)2

x
+β1x∗y∗(1− x∗

x
− x

x∗
)+β1x∗v∗(1− x∗

x
− x

x∗
)+β2xv∗+β2x∗v

+β1x∗y+d2y∗+β3y∗z+(
v
N
− v∗

N
)(

a
b+ v

−d3)−d2y
v∗

v
+

β3d4

α
(z∗− z)−β3yz∗

= −d1
(x− x∗)2

x
+β1x∗y∗(1− x∗

x
− x

x∗
)+β1x∗v∗(1− x∗

x
− x

x∗
)+β2xv∗

+
αλd4(β1y+β2v)+λd4(β1d4 +αβ2v∗)−αλ (β1d4 +αβ2v∗)

d4(αd1 +β1d4 +αβ2v∗)

+(
v
N
− v∗

N
)(

a
b+ v

−d3)+d2y(1− x∗

x
− x

x∗
)

≤ −d1
(x− x∗)2

x
+β1x∗y∗(1− x∗

x
− x

x∗
)+β1x∗v∗(1− x∗

x
− x

x∗
)

+d2y(1− x∗

x
− x

x∗
)+

1
d4(αd1 +β1d4 +αβ2v∗

(1−R0)(13)

Therefore using A.M. ≥ G.M., we conclude that the 2nd, 3rd, 4th term of the last equation is

less than zero. Hence Ẇ ≤ 0 if R0 > 1. Moreover at E∗ , Ẇ = 0. Using the Lyapunov-LaSalle

invariance principle, we conclude that E∗ is global asymptotically stable for R0 > 1.

6. NUMERICAL SIMULATIONS

In this section, on the basis of analytical findings, we carry out the numerical results of our

system. We check the numerical results considering parameter values from different articles
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given in Table 1. The dynamics of cells are plotted with respect to time to investigate the

qualitative behavior of considered cells between 100 days. Numerical simulations are done

using MATLAB. In this section, we have tried to focus numerical view on dynamical cells

interaction globally of the system that is considered in our proposed model.

TABLE 1. Parameters value using for numerical simulation [18, 23, 19, 30, 31].

Parameter Description Assigned Value

λ production rate of uninfected T cells 12 day−1

β1 cells-to-cells transmission rate 0.0001 day−1

β2 virus-to-cells transmission rate 0.00024 day−1

β3 apoptosis rate of infected cells due to CTL 0.02 day−1

α proliferation rate infected T cells due to CTL 0.15 day−1

N No of infected cells produce from viruses 2000 day−1

a growth rate of external viral source 2 day−1

b half saturation constant 14 mm3

d1 mortality rate of uninfected T cells 0.05-0.1 day−1

d2 mortality rate of infected T cells 0.2-0.3 day−1

d3 mortality rate of virus 0.34 day−1

d4 mortality rate of CTL 0.12 day−1

Figure 1 shows the contour plot of the basic reproductive ration R0 as a function of β1 (the

rate at which the uninfected CD4+T cells become infected by cells-to-cells transmission) and

d2 (the mortality rate of infected CD4+T cells). This figure reflects the changes of the threshold

value of R0 as β1 and d2 fluctuate. From this figure it is easy to explain that the infection-free

equilibrium will be stable if β1 < 0.00036 with d2 > 0 as well as if β1 increases and d2 > 0

increases rapidly then also R0 < 1 i.e infection-free equilibrium point is stable. Now if d2 > 0

decreases as cells-to-cells transmission rate (β1) increases then the equilibrium state loses its

stability.
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FIGURE 1. Contour plot for R0 as a function of β1 and d2. Color bar denotes

the value of R0.

Figure 2 shows that when R0 < 1 i.e. for infection-free steady state the model variables viz

uninfected CD+
4 T cells (x(t)), infected CD+

4 T cells (y(t)), virus (v(t)), CTL (z(t)) moves to

the stable disease-free condition E0 after 100 days (approximately) as time increases. Due to

the lower infection rates (both cells-to-cells and virus-to-cells) uninfected cells are present in

the system where as the two infected class vanished. According to Theorem 2, the steady state

E0 is globally stable for the set of parameters used.

In Figure 3, we demonstrate the stability property of endemic steady state. When R0 > 1, the

model variables goes to a stable steady state E∗ after approximately 100 days. Due to both type

of transmissions, the infected CD+
4 T cells increases rapidly for first 5-6 days approximately,

but due to CTL immune response after 5-6 days infected cells can’t proliferate swiftly. As a re-

sult, infected cells population decreases to a positive steady state after 30 days (approximately).

Here, uninfected cells decreases and virus population increases as time increases. CTL popu-

lation responses after 5-6 days due to rapid growth of infection and as a result CTL increases

smoothly till infected cells goes to stable state. Then after 30 days, CTL immune responses

decreases to a certain level as infected cells grows. According to Theorem 3, the steady state

E∗ is globally asymptotically stable for the set of parameters used for this figure.
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FIGURE 2. Trajectories showing the time dependent changes in concentration

of the model variables when R0 < 1 (Infection-free steady state).
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FIGURE 3. Trajectories showing the time dependent changes in concentration

of the model variables when R0 > 1 (Endemic steady state).

Figure 4 manifest the dynamical nature of infected CD4+T cells for different value of β1

(cells-to-cells transmission rate) and β2 (virus-to-cells transmission rate). In figure 4(A), we



GLOBAL DYNAMICS OF HIV MODEL 13

0 20 40 60 80 100

Time (day)

400

800

1200

1600

2000

2400

2800

In
fe

ct
ec

te
d 

C
D

4+
T

   

 C
el

l (
m

m
-3

) 
   

 
β

1
=0.01

β
1
=0.001

β
1
=0.0001

0 20 40 60 80 100

Time (day)

300

600

900

1200

1500

In
fe

ct
ec

te
d 

C
D

4+
T

   

 C
el

l (
m

m
-3

) 
   

 

β
2
=0.0024

β
2
=0.00024

β
2
=0.024

(A) (B)

FIGURE 4. Trajectories showing the time dependent changes of infected cells

with different β1 and β2 in (A) and (B) respectively.

plot different time dependent trajectories for variation of β1 in range of 0.01-0.0001. Here we

observe that for low value of β1 (0.0001) the trajectories initially reaches at the level 1680 mm−3

and after 100 days it archives the stable condition at density level 1220 mm−3. For the value of

β1 = 0.01 the trajectories initially increases rapidly at the level 2700 mm−3 within 10 days and

then for 20 days it oscillates and finally after 100 days it goes to the stable state at 1250 mm−3.

Considering the value of β1 as 0.001, a dramatically behaviour is observed as the infected

T cells increases not much rapidly and goes to stable condition at 1300 mm−3 after 100 days

approximately. Figure 4(B) depict that for different values of β2 the infected T cells shows

different qualitative nature but after 100 days all trajectories converge to a single stable region

at density level 1550 mm−3.

Therefore Figure 4 reveals that for variation of β2 the trajectories of infected T cells reaches to

almost same density but for β1 the trajectories goes to different density after 100 days. So finally

from this figure we conclude that β1 is more efficient compare to β2 in disease progression.

7. DISCUSSION AND CONCLUSIONS

In this research, we have studied the global dynamics of HIV infection considering for both

cells-to-cells and virus-to-cells infection. Accordingly, a mathematical model has been formu-

lated and analyzed analytically and numerically. The local stability criterion for infection-free

equilibrium and endemic equilibrium has also been studied depending on the basic reproductive
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ratio, R0. The global stability of the infection-free equilibrium and the endemic equilibrium of

system has been established by considering a suitable Lyapunov function.

We have observed that cells-to-cells transmission rate (β1) is more affective compare to virus-

to-cells infection rate (β2) i.e. cells-to-cells transmission have a great impact on spread of HIV

infection. In presence of CTL, uninfected cells reaches to stable state at density level 375 mm−3

whereas without CTL it was 200 mm−3 after 100 days approximately. Therefore, the theoretical

and the numerical results are in good agreement. Furthermore, our numerical studies also revel

that when cells-to-cells transmission rate is high then CTL response is also quick and prominent.

In a nutshell, our model based results suggest that the system immunity represented by CTL can

control viral replication and reduce the infection under appropriate conditions.

The present study can be extended in many ways. Effect of time delay can be observed

incorporating a time delay in immune response [27, 18]. Another important event is to see the

effect of optimal therapy for controlling the disease in cost-effective and with minimum side

effects[28, 29]. How we can enhance the CTL response when cells-to-cells transmission rate is

high, that will be the great challenge of our future work.
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