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Abstract. In this paper, we study the stability of a fractional order SIS epidemic model with specific functional

response and time delay, where the fractional derivative is defined in the Caputo sense. Using the theory of stability

of differential equations of delayed fractional order systems, we prove that the disease-free equilibrium is locally

asymptotically stable when the basic reproduction number R0 < 1. Also, we show that if R0 > 1, the endemic

equilibrium is locally asymptotically stable. Numerical simulations are presented to illustrate the theoretical results

of this work.
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1. INTRODUCTION

Epidemiology is the study of the spread of diseases in human populations and the factors

that are responsible for or contribute to their occurrence. Consequently, it has been investigated
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by several researchers through study the dynamical behavior of infectious diseases by mathe-

matical models (see, e.g., [1, 2, 3, 4]). Particularly, the SIS (susceptible-infected-susceptible)

epidemic model is often used to model the dynamics of the diseases such as the bacterial dis-

eases and some sexually transmitted diseases where infection with the disease does not confer

permanent immunity against re-infection so that those who survived the infection revert to the

class of wholly-susceptible individuals [5].

Fractional calculus is the field of mathematical analysis aiming at the investigation of inte-

grals and derivatives of arbitrary (non integer) orders. The main advantage of fractional order

derivative in comparison in integer order is that fractional order derivative can be describe the

memory and hereditary effects in various substances. Therefore, many applied researchers have

treat many real processes using the fractional derivative such as botanical electrical impedances

[6], viscoelasticity of cancellous bone [7], human root dentin [8], financial processes [9], PIλ Dµ

controller [10], and so on.

Due to the memory effects which is has an important role on the spread of an infectious

disease, many investigators have started to study the fractional order epidemic models, see,

e.g., [11, 12, 13, 14]. In 2014, El-Saka in [14] introduced a fractional order SIS model with

variable population size where the author study the stability of equilibrium points. Our aim in

this present work is to extend the model presented in [14] to a model with specific functional

response and time delay. In this way, we propose the following fractional order SIS epidemic

model

(1)


DαS(t) = Λ−µS(t)− βS(t)I(t−τ)

1+α1S(t)+α2I(t−τ)+α3S(t)I(t−τ) + rI(t),

Dα I(t) = βS(t)I(t−τ)
1+α1S(t)+α2I(t−τ)+α3S(t)I(t−τ) − (µ +a+ r)I(t),

where α ∈ (0,1] is the order of the fractional derivative, S(t) is the proportion of susceptible

individuals at time t, I(t) is the proportion of infected individuals at time t, Λ is the recruitment

rate of the susceptible, µ is the natural death rate of the population, a is the death rate due to

disease, r is the recovery rate of infective individuals, β > 0 is the contact transmission coef-

ficient, which measures the infection force of the disease and α1,α2,α3 ≥ 0 are the saturation

factors measuring the psychological or inhibitory effect. The constant τ ≥ 0 is the time delay
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in which the infectious individuals develop in the vector and it is only after that time that the

infected vector can infect a susceptible individual (see, e.g., [15], [16]).

The fractional order derivative used in model (1) is in the sense of Caputo definition, which

is a modification of the Riemann-Liouville integral definition, and has the advantage that the

initial values for fractional differential equations with Caputo derivatives take the same form as

that for integer order differential equations. Also, another advantage of this definition is that the

Caputo derivative of a constant is zero.

The Riemann-Liouville fractional integral and Caputo fractional derivative are defined re-

spectively as follows [17, 18].

Definition 1. The Riemann-Liouville integral of order α > 0 for an integrable function f :

R+ 7→ R is defined as

Iα f (t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s)ds,

where Γ is the Gamma function defined by the integral

Γ(α) =
∫

∞

0
tα−1e−tdt.

Definition 2. The Caputo fractional derivative of order α > 0 for a function f ∈ C n(R+,R) is

defined as

Dα f (t) = In−αDn f (t) =
1

Γ(n−α)

∫ t

0
(t− s)n−α−1 f (n)(s)ds,

where n is a positive integer such that α ∈ (n−1,n]. In particular, when α ∈ (0,1], one has

Dα f (t) =
1

Γ(1−α)

∫ t

0
(t− s)−α f ′(s)ds.

The rest of this paper is organized as follows. In the next section, we investigate the exis-

tence and the local stability of equilibria. In Section 3, we present the numerical simulation to

illustrate our results, and finally we gave our conclusion in Section 4.

2. STABILITY ANALYSIS

In this section, we discuss the existence and the local stability of the equilibria of system (1).

In this sense, we define the basic reproduction number of model (1) as follows

R0 =
βΛ

(µ +α1Λ)(µ +a+ r)
.
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From biological point of view, R0 represents the average number of secondary infections that

occur when one infectious individual is introduced into a completely susceptible population

[19].

The equilibrium of model (1) is obtained by setting DαS = Dα I = 0. Then, system (1) always

has a disease-free equilibrium E0 = (Λ

µ
,0). Further, if R0 > 1, then system (1) has a unique

endemic equilibrium E∗ = (S∗, I∗), where

S∗ =
Λ− (µ +a)I∗

µ
,

I∗ =
2ϖ(µ +α1Λ)(R0−1)

(µ +a)(β −α1ϖ)+ϖ(α2µ +α3Λ)+
√

∆
,

with ϖ = a+µ + r and

∆ = [(µ +a)(β −α1ϖ)+ϖ(α2µ +α3Λ)]2−4α3(µ +a)ϖ [βΛ− (µ +α1Λ)ϖ ]

= [(µ +a)(β −α1ϖ)+ϖ(α2µ−α3Λ)]2 +4α3µϖ
2(µ +a+α2Λ).

Consider the following linear delayed fractional differential system

(2) Dαx(t) = Ax(t)+Bx(t− τ), t ≥ 0,

where α ∈ (0,1], x(t) ∈Rn, A,B ∈Rn×n and τ ≥ 0. The characteristic equation of system (2) is

∆(s) = det(sα In−A−Be−sτ) = 0.

If τ = 0, system (2) can be expressed as

Dαx(t) = Mx(t),

where the coefficient matrix M = A+B.

In the case of A = 0, Deng et al. in [20] obtained the following two stability results.

Lemma 1. If all the roots of the characteristic equation ∆(s) = 0 have negative real parts, then

the zero solution of system (2) is Lyapunov globally asymptotically stable.
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Lemma 2. If all the eigenvalues λ of B satisfy |arg(λ )| > απ

2 , and the characteristic equation

∆(s) = 0 has no purely imaginary roots for any τ > 0, then the zero solution of system (2) is

Lyapunov globally asymptotically stable.

If A 6= 0, according to [21], we have the following conclusion.

Lemma 3. If all the eigenvalues λ of M satisfy |arg(λ )| > π

2 and the characteristic equation

∆(s) = 0 has no purely imaginary roots for any τ > 0, then the zero solution of system (2) is

Lyapunov globally asymptotically stable.

Remark 1. If A 6= 0, the stability of system (2) is not guaranteed under conditions that the

eigenvalues of M are satisfied |arg(λ )| > απ

2 . In fact, when the eigenvalues of M are satisfied
απ

2 < |arg(λ )| ≤ π

2 , and the characteristic equation ∆(s) = 0 has no purely imaginary roots for

any τ > 0, the zero solution has unstable situation (see Section 5 in [21]).

Remark 2. To study the local asymptotic stability of equilibria of nonlinear fractional order

systems, we investigate the stability of the linearized systems of such nonlinear systems around

these equilibria based on the previous lemmas.

2.1. Stability of the disease-free equilibrium. This subsection is devoted to studying the

stability of the diseases-free equilibrium E0 of system (1). For this, let x(t) = S(t)− Λ

µ
and

y(t) = I(t). Then the linearized system of (1) around E0 takes the following form

(3)


Dαx(t) = −µx(t)− βΛ

µ+α1Λ
y(t− τ)+ ry(t),

Dαy(t) = βΛ

µ+α1Λ
y(t− τ)− (µ +a+ r)y(t).

The associated characteristic equation of system (3) can be described as

∆(s) = det

 sα +µ
βΛ

µ+α1Λ
e−sτ − r

0 sα − βΛ

µ+α1Λ
e−sτ +µ +a+ r

= 0,

which leads to

(4) ∆(s) = (sα +µ)
[
sα +(µ +a+ r)(1−R0e−sτ)

]
= 0.
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Theorem 1. If R0 < 1, then the disease-free equilibrium E0 is asymptotically stable for all τ ≥ 0

and α ∈ (0,1]. E0 is unstable if R0 > 1.

Proof. When τ = 0, the coefficient matrix M of system (3) satisfies

M =

 −µ − βΛ

µ+α1Λ
+ r

0 βΛ

µ+α1Λ
− (µ +α + r)

 .

The eigenvalues of the coefficient matrix M are λ1 =−µ < 0 and λ2 = (µ +α +r)(R0−1)<

0 if R0 < 1. Whence |argλi| = π > π

2 (i = 1,2), so that all the eigenvalues λ of M satisfy

|arg(λ )|> π

2 if R0 < 1. If R0 > 1, then λ2 > 0 and consequently E0 is unstable [22].

Now, we research the circumstance of delay τ > 0. We only need to analyze the second factor

of (4) as it contains τ , so substituting s = iw = w(cos π

2 + isin π

2 ) in the second factor of (4), with

w > 0. Then

wα(cos
απ

2
+ isin

απ

2
)+(µ +a+ r) [1−R0(coswτ− isinwτ)] = 0.

Separating real and imaginary parts gives
(µ +a+ r)R0 coswτ = wα cos απ

2 +(µ +a+ r),

(µ +a+ r)R0 sinwτ = −wα sin απ

2 .

Thus

(5) w2α +2wα(µ +a+ r)cos
απ

2
+(µ +a+ r)2(1−R2

0) = 0.

Obviously, since (µ +a+ r)cos απ

2 ≥ 0 for α ∈ (0,1] and our assumption that R0 < 1, then

the Eq. (5) has no positive roots. Which ensures that Eq. (4) has no purely imaginary roots.

According to Lemma 3, the equilibrium E0 is asymptotically stable for any delay τ ≥ 0 and

α ∈ (0,1] if R0 < 1. The proof is completed. �

2.2. Stability of the endemic equilibrium. In this subsection, we analyse the stability of

the endemic equilibrium of the system (1). To begin with, we linearise the system about the

endemic equilibrium E∗. Let the transformation x(t) = S(t)−S∗ and y(t) = I(t)− I∗. Then by

linearizing system (1) around E∗ = (S∗, I∗), we get the following system
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(6)


Dαx(t) = −m1x(t)−m2y(t− τ)+ ry(t),

Dαy(t) = m3x(t)+m2y(t− τ)−m4y(t),

where

m1 = µ +
β I∗(1+α2I∗)

(1+α1S∗+α2I∗+α3S∗I∗)2 > 0,

m2 =
βS∗(1+α1S∗)

(1+α1S∗+α2I∗+α3S∗I∗)2 > 0,

m3 =
β I∗(1+α2I∗)

(1+α1S∗+α2I∗+α3S∗I∗)2 > 0,

m4 = µ +a+ r > 0.

Characteristic equation which is associated with system (6) is given by

∆(s) = det

 sα +m1 m2e−sτ − r

−m3 sα −m2e−sτ +m4

= 0.

Hence, the above equation can be rewritten equivalently as

(7) ∆(s) = s2α +a1sα +a2− (a3sα +a4)e−sτ = 0,

where

a1 = m1 +m4 > 0,

a2 = m1m4− rm3 = (µ +a)m3 +µm4 > 0,

a3 = m2 > 0,

a4 = µm2 > 0.

Theorem 2. If R0 > 1, then the endemic equilibrium E∗ is asymptotically stable for all τ ≥ 0

and α ∈ (0,1].
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Proof. When τ = 0, the characteristic equation of the coefficient matrix M of system (6) is

(8) λ
2 +(a1−a3)λ +(a2−a4) = 0.

Since

m4−m2 = (µ +a+ r)− βS∗(1+α1S∗)
(1+α1S∗+α2I∗+α3S∗I∗)2

=
βS∗

1+α1S∗+α2I∗+α3S∗I∗
− βS∗(1+α1S∗)

(1+α1S∗+α2I∗+α3S∗I∗)2

=
βS∗I∗(α2 +α3S∗)

(1+α1S∗+α2I∗+α3S∗I∗)2 ≥ 0,(9)

then a1−a3 = m1+(m4−m2)> 0 and a2−a4 = (µ +a)m3+µ(m4−m2)> 0. Hence the two

roots λi (i = 1,2) of the Eq. (8) have negative real parts, so that all the eigenvalues of M of

system (6) satisfy |arg(λ )|> π

2 if R0 > 1.

For τ > 0, let s = iw is a root of Eq. (7), with w > 0. Substituting s into (7) gives

w2α(cosαπ + isinαπ)+wαa1(cos
απ

2
+ isin

απ

2
)+a2− (wαa3 cos

απ

2
+a4

+iwαa3 sin
απ

2
)(coswτ− isinwτ) = 0.

We separate the real and imaginary parts to have

(10)


w2α cosαπ +wαa1 cos απ

2 +a2 = wαa3 cos
(

απ

2 −wτ
)
+a4 coswτ,

w2α sinαπ +wαa1 sin απ

2 = wαa3 sin
(

απ

2 −wτ
)
−a4 sinwτ.

Squaring and adding the two equations in (10), we obtain

(11) w4α +η1w3α +η2w2α +η3wα +η4 = 0,

where

η1 = 2a1 cos
απ

2
,

η2 = a2
1−a2

3 +2a2 cosαπ,

η3 = 2(a1a2−a3a4)cos
απ

2
,

η4 = a2
2−a2

4.
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Since α ∈ (0,1] and a1 > 0, then η1 ≥ 0. In addition, we have

a2
2−a2

4 = (a2−a4)(a2 +a4)> 0,

and

a1a2−a3a4 = a1 (a2−a4)+a4 (a1−a3)> 0,

since a2−a4 > 0, a1−a3 > 0 and a1,a2,a4 > 0. Then η3 ≥ 0 and η4 > 0. And since a2 > 0,

we have

η2 = a2
1−a2

3 +2a2 cosαπ

≥ a2
1−a2

3−2a2

= (m1 +m4)
2−m2

2−2(m1m4− rm3)

= m2
1 +2rm3 +m2

4−m2
2.

From (9), we have m2
4−m2

2 ≥ 0 since m4 +m2 > 0. Hence η2 > 0. Therefore the Eq. (11)

has no positive real roots, which implies that Eq. (7) has no purely imaginary roots. Thus,

according to Lemma 3, the equilibrium point E∗ is asymptotically stable for delay τ ≥ 0 and

α ∈ (0,1]. This concludes the proof. �

3. NUMERICAL SIMULATIONS

In this section, we give some numerical simulations in order to illustrate our theoretical re-

sults.

Consider the following parameters Λ = 0,95, β = 0.1, µ = 0.2, a = 0.03, r = 0.3, α1 = 0.1,

α2 = 0.03, α3 = 0.05. By calculation, we obtain R0 = 0.63 < 1, then, by Theorem 1, E0 is

asymptotically stable for different values of τ ≥ 0 and α ∈ (0,1] (see Figs. 1,2 and 3).
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FIGURE 1. Stability of the disease-free equilibrium E0 and τ = 2
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FIGURE 2. Stability of the disease-free equilibrium E0 and τ = 5
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FIGURE 3. Stability of the disease-free equilibrium E0 and τ = 8

Now, we keep all the parameter values except that β is increased to 0.3 from 0.1. In this

case, we have R0 = 1.78 > 1. Hence, we can conclude, by Theorem 2, that E∗ is asymptotically

stable for different values of τ ≥ 0 and α ∈ (0,1] (see Figs. 4,5 and 6).
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FIGURE 4. Stability of the endemic equilibrium E∗ and τ = 2
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FIGURE 5. Stability of the endemic equilibrium E∗ and τ = 5
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FIGURE 6. Stability of the endemic equilibrium E∗ and τ = 8
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4. CONCLUSION

In this paper, we have presented a fractional order SIS epidemic model with the Caputo frac-

tional derivative and a specific functional response with delay given by βS(t)I(t−τ)
1+α1S(t)+α2I(t−τ)+α3S(t)I(t−τ) .

We show that if the basic reproduction number R0, is less than one, the disease-free equilibrium

is locally asymptotically stable for all τ ≥ 0 and 0 < α ≤ 1, which means that the disease will

go to extinction. Moreover, we prove that if R0 > 1, the endemic equilibrium is locally asymp-

totically stable, so the disease will be persistent at the unique endemic equilibrium. In the end

some numerical simulations are given to illustrate the results. From, our theoretical and numer-

ical analysis, we can observe that the different values of α and τ have no effect on the stability

of both equilibria but affect the time to reach the steady states.
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