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Abstract. Approximate Bayesian Computation (ABC) is a powerful tool to solve problem in likelihood-free

methods. Markov Chain Monte Carlo and Sequential Monte Carlo based on ABC are effective techniques for

obtaining the posterior sample points. However, without consideration of convergence criterion and choice of

proposal kernels, these methods will lead to inefficient sampling or large deviations in statistical inference. By

contrast, for ABC rejection sampling, despite being computationally inefficient sampling, independent identically

distributed samples are obtained from approximate posterior. In order to combine the advantages of the methods

mentioned, an alternative method is proposed for the acceleration of likelihood-free Bayesian inference that uses

the pseudo-prior to replace the prior in ABC rejection algorithm and weights each sample point obtained, where

the prior is obtained based on historical information and experience and the pseudo-prior is a distribution different

from the prior. And the weighted sample are considered to be from the target distribution. In our method, choosing

a suitable pseudo-prior not only greatly improves the efficiency of the algorithm but also retains the accuracy

advantages of rejection sampling. The approach is illustrated by parameter estimation in bioscience.
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1. INTRODUCTION

Approximate Bayesian Computation (ABC) is considered to be the first member of a class

of likelihood-free methods, which is indispensable in promoting study of Monte Carlo methods

in the past decade. ABC was originally applied to solving challenging inferential problems in

population genetics, where the complexity of a model means that the likelihood function is com-

putationally difficult to handle. The essence of ABC method is that a numerical assessment of

the likelihood function is replaced with an evaluation of the probability that the model generates

the observed data, based on comparing the observed data and simulated data generated by the

model. For this reason, it has been gaining popularity as an analysis tool in systems biology [1],

population genetics [2][3], dynamic ecological models [4], cosmology and astrophysics [5][6].

The earliest ABC method [7][8] is basic rejection sampling algorithm (ABC-REJ), which

originates from population genetics. In ABC-REJ, first of all, the candidate parameter θ
′

is

sampled from the prior distribution π(θ), and then substituting it into the model to obtain sim-

ulated data x
′
. Subsequently, comparing the simulated data x

′
and observed data xobs, if the

distance from x
′

to xobs is within the tolerance ε , then the observed data generated by θ
′

is

credible for this model, and so θ
′

is accepted. Conversely, if x
′

and xobs are dissimilar, then the

reliability of generating observed data by θ
′

is low for this model, and so θ
′

is rejected. This

method results in independent identically distributed samples from the approximated posterior

πε(θ |xobs). However, ABC-REJ algorithm admits the inefficient sampling, that is, as most can-

didate parameter vectors are rejected, caused by the large difference between the prior and the

posterior distribution. Various ABC methods were proposed to improve the acceptance rate of

candidate parameters.

Regression approaches based on ABC (ABC-REG) was introduced to sovle the complex

problems in population genetics [2]. After ABC-REJ algorithm is implemented by retaining

parameters that produce simulated data close enough to observed data, parameters are adjusted

to explain the discrepancy between simulated and observed data. ABC-REG method won’t

materially affect the accuracy of the estimated parameters if the tolerance is increased properly

[2]. Therefore, to some extent this method can avoid the inefficient sampling of ABC-REJ.
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However, the support of prior is not taken into account in this regression adjustment, that is, it

may cause the support of posterior not to be in the support of prior[9].

ABC method based on Markov chain Monte Carlo (ABC-MCMC) was originally developed

by Marjoram et al. What we obtain is a Markov Chain with the stationary distribution π(θ |xobs)

by the ABC-MCMC [10]. If the current chain state is at θ (i), and then sampling a candidate

parameter θ
′

from a transition kernel q(θ |θ (i)). Subsequently, θ
′

is substituted into the model

to obtain simulated datasets x
′
. Next, comparing the simulated and observed data, if x

′
and xobs

are similar, then accepting θ
′
with probability α = min{1, π(θ

′
)q(θ (i)|θ ′)

π(θ (i))q(θ ′ |θ (i))
}, and otherwise stay at

θ (i). ABC-MCMC method solves the problem of inefficient sampling by constantly adjusting

the transition kernel, so that the candidate parameters sampled from the transition kernel are

easier to simulate the observed data. However, an inappropriate transition kernel will have

significant impact on the efficiency of ABC-MCMC [11]. The problem of choosing a transition

kernel is non-trivial. In general, the transition kernel is determined heuristically. However,

the optimal proposal can be obtained by adaptive schemes in some cases [12][13]. Another

challenge is to determine when the Markov Chain has converged [14].

ABC method based on sequential Monte Carlo (ABC-SMC) sampling was introduced by

Sisson et al [15], which is driven from a sequential importance sampling (SIS) algorithm

[16][17]. In ABC-SMC, A set of samples θ1, ...,θN (called particles) is evolved from the

prior distribution π(θ). And it is propagated through a sequence of intermediate distributions,

π(θ |ρ(x,xobs) ≤ εi), i = 1, ...,T − 1, up till the particles denotes a sample from the target dis-

tribution π(θ |ρ(x,xobs) ≤ εT ). The tolerances are selected such that ε1 > ... > εi > ... > εT ≥

0, i = 1, ...,T . Therefore, the intermediate distributions gradually approach the target distribu-

tion. The advantage of ABC-SMC method is that it can avoid the above-mentioned disadvan-

tages of ABC-REJ and ABC-MCMC methods at least to some extent. The disadvantage of

ABC-SMC is to choose a suitable sequence of acceptance thresholds. In order to resolve this

problem, some schemes were proposed to generate these sequences adaptively [18][19].

The above algorithms respectively use different ideas to solve the problem that the ABC

rejection algorithm is inefficient when the prior and posterior are dissimilar. In this paper, we

propose a new idea based on a pseudo-prior adjustment to solve this problem. First, we find
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a suitable pseudo-prior to replace the given prior in ABC rejection algorithm. The resulting

samples are derived from the posterior corresponding to the pseudo-prior. Then, each sample

point is given a weight to ensure that it comes from the posterior corresponding to the given

prior. In this method, choosing a suitable pseudo-prior not only greatly improves the efficiency

of the algorithm but also retains the accuracy advantages of rejection sampling.

2. METHODS

2.1. ABC Rejection Sampling. The parameter to be estimated in the model is θ , and the prior

is π(θ). Given the observed data, xobs, and the likelihood of the model, L(x|θ), the ABC-REJ

algorithm is as follows.

Algorithm 1 ABC Rejection sampler
1: for i = 1; i < N; i++ do

2: repeat

3: θ ∗ ∼ π(θ);

4: x∗ ∼ L(x|θ ∗)

5: until ρ{S(x∗),S(xobs)} ≤ ε

6: set θ (i) = θ ∗

7: end for

where the marks of the algorithm are

−S, a function on x defining a statistic which most often is not sufficient.

−ρ > 0, a distance on S(x).

−ε > 0, a tolerance level.

2.2. Pseudo-prior ABC. We propose two innovations based on ABC-REJ sampling: using

the pseudo-prior φ(θ) instead of the prior π(θ) and weighting each sample point. The pseudo-

prior is different from the prior but the same support as the prior. We choose a pseudo-prior

based on the following two points. The first is to improve the efficiency of ABC-REJ sampling.

The second is that the mode of the pseudo-prior chooses the parameter corresponding to the

point that makes the likelihood function as large as possible. As for weighting each sample

point, we realize that the weighted sample are from the target distribution. First, we replace the
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prior π(θ) with the pseudo-prior φ(θ) at step 3 of the Algorithm 1, the resulting sample are

derived from posterior φ(θ |ρ(S(xobs),S(x)) ≤ ε) (called it pseudo-posterior) corresponding to

the pseudo-prior φ(θ). To ensure that the sample are from the posterior π(θ |ρ(S(xobs),S(x))≤

ε), each sample point is given a weight ωi =
π(θi)
φ(θi)

, i = 1, ...,N. The sampler of ABC algorithm

based on pseudo-prior adjustment (ABC-PPA) is as follows.

Algorithm 2 ABC-PPA sampler.
Input: Observation, xobs;

Number of iterations N;

Output: The sample {θ ′1,θ
′
2, ...,θ

′
N};

1: Determine the pseudo-prior φ(θ);

2: Simulate θ1, ...,θN from the posterior φ(θ |ρ(S(xobs),S(x)) ≤ ε) corresponding to the

pseudo-prior φ(θ) by ABC Rejection Sampling;

3: Weight θi by ωi =
π(θi)
φ(θi)

, i = 1,2, ...,N

4: Compute the sum of the weights, ω0 =
N
∑

i=1
ωi

5: Compute the normalised weights ω
′
i = ωi/ω0, i = 1,2, ...,N

6: Sample N times, with replacement from the set {θ1,θ2, ...,θN} using the probabili-

ties {ω ′1,ω
′
2, ...,ω

′
N} (for example, using the lookup method) to generate a new sample

{θ ′1,θ
′
2, ...,θ

′
N}

7: return {θ ′1,θ
′
2, ...,θ

′
N}

2.2.1. Pseudo-prior. when the value of the likelihood function is larger, the probability of

simulating the observed data is greater for this model. If a parameter value that makes the like-

lihood function as large as possible is chosen as the mode of the pseudo-prior, it will greatly im-

prove the efficiency of our algorithm. Now, finding a parameter value that makes the likelihood

function as large as possible is a problem that needs to be solved. But ABC is a likelihood-free

method, it is not feasible to directly obtain the maximum value of the likelihood function. So

an alternative method is proposed for the approximation of the likelihood function that uses the

distance between the simulated data and the observed data [20].

(1) L(xobs|θ) ∝ exp(−E2)



6 GAN LIU, YONGZHEN PEI, CHANGGUO LI

where E2 = ρ{S(x∗),S(xobs)}. Equation (1) shows that the closer the distance between the

simulated data and the observed data is, the larger the likelihood will be. Therefore, the mode

of the pseudo-prior is the parameter values that make the simulated data and the observed data

as close as possible. The algorithm for finding the mode of the pseudo-prior is as follows.

Algorithm 3 The search for a mode of the pseudo-prior.
Input: Observation, xobs;

Simulation times, p;

threshold, δ ;

Output: the mode of the pseudo-prior, θ (∗);

1: Generate a candidate value θ (0) from prior distribution π(θ) and θ (∗) = θ (0);

2: Simulate {x′1,x
′
2, ...,x

′
p} from the model L(x|θ (0));

3: Make x
′
be the mean of {x′i}i=1,...,p;

4: Calculate the distance dist min = ||x′− xobs||;

5: while dist min≤ δ do

6: Generate a proposed value θ (i) from proposal distribution q(θ |θ (∗));

7: Simulate {x′1,x
′
2, ...,x

′
p} from the model L(x|θ (i));

8: Make x
′
be the mean of {x′i}i=1,...,p;

9: Calculate the distance dist = ||x′− xobs||;

10: if dist < dist min then

11: dist min = dist;

12: θ (∗) = θ (i);

13: end if

14: end while

15: return θ (∗);

The mode θ (∗) of the pseudo-prior is obtained by Algorithm 3. The specific form of the

pseudo-prior can be determined according to the actual situation. In general, for continuous

random variables, we choose a Gaussian distribution where the mean is equal to the mode and

the standard deviation is given, for discrete random variables, we choose Poisson distribution.



ABC BASED ON PSEUDO-PRIOR ADJUSTMENT AND ITS ADHIBITION IN BIOSCIENCE 7

2.2.2. Weighting. The prior π(θ) is replaced by the pseudo-prior φ(θ) at step 3 of the Algo-

rithm 1, and the resulting sample are derived from the pseudo-posterior φ(θ |ρ(S(xobs),S(x))≤

ε). To ensure that the sample are from the posterior π(θ |ρ(S(xobs),S(x)) ≤ ε), each sample

point is given a weight ωi =
π(θi)
φ(θi)

, i = 1,2, ...,N. The following is the process of explaining the

form of weights.

Based on Importance Resampling (IR) framework, we now define ABC-PPA as a special case

of IR algorithm, where the target distribution is the posterior, and the proposal distributions is

chosen as the pseudo-posterior, it is as follow:

Algorithm 4 Importance Resampling.

Input: Proposal distributions φ(θ |ρ(S(xobs),S(x))≤ ε);

Target distribution π(θ |ρ(S(xobs),S(x))≤ ε);

Number of iterations N;

Output: The sample {θ ′1,θ
′
2, ...,θ

′
N};

1: Simulate θ1, ...,θN from the pseudo-posterior φ(θ |ρ(S(xobs),S(x))≤ ε);

2: Weight θi by ωi =
π(θ |ρ(S(xobs),S(x))≤ε)
φ(θ |ρ(S(xobs),S(x))≤ε) , i=1, 2, . . . , N

3: Compute the sum of the weights, ω0 =
N
∑

i=1
ωi

4: Compute the normalised weights ω
′
i = ωi/ω0, i = 1,2, ...,N

5: Sample N times, with replacement from the set {θ1,θ2, ...,θN} using the probabili-

ties {ω ′1,ω
′
2, ...,ω

′
N} (for example, using the lookup method) to generate a new sample

{θ ′1,θ
′
2, ...,θ

′
N}

6: return {θ ′1,θ
′
2, ...,θ

′
N}

In Algorithm 4, the sample {θ ′1,θ
′
2, ...,θ

′
N} is from the posterior π(θ |ρ(S(xobs),S(x)) ≤ ε),

but the target distribution π(θ |ρ(S(xobs),S(x))≤ ε) is unknown so that the weight of Algorithm

4 cannot be directly obtained. So we use the Bayesian formula to simplify the weights of

Algorithm 4. The process is as follows.

For prior π(θ), using Bayes theorem, the resulting posterior distribution:

(2) π(θ |ρ(S(xobs),S(x))≤ ε) =
π(θ)L(ρ(S(xobs),S(x))≤ ε|θ)∫
π(θ)L(ρ(S(xobs),S(x))≤ ε|θ)dθ
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For pseudo-prior φ(θ), using Bayes theorem, the resulting pseudo-posterior distribution:

(3) φ(θ |ρ(S(xobs),S(x))≤ ε) =
φ(θ)L(ρ(S(xobs),S(x))≤ ε|θ)∫
φ(θ)L(ρ(S(xobs),S(x))≤ ε|θ)dθ

In equation (2) and equation (3), the likelihood function L(ρ(S(xobs),S(x)) ≤ ε|θ) are the

same for the same tolerance ε . So the following relationship can be obtained equivalently by

equations (2) and (3).

(4)
π(θ |ρ(S(xobs),S(x))≤ ε)

φ(θ |ρ(S(xobs),S(x))≤ ε)
=

π(θ)

φ(θ)
×C

where C=
∫

φ(θ)L(ρ(S(xobs),S(x))≤ε|θ)dθ∫
π(θ)L(ρ(S(xobs),S(x))≤ε|θ)dθ

, and C is a constant.

The weights of Algorithm 4 can be written as follows according to equation (4).

(5) ωi =
π(θi)

φ(θi)
×C

Since the weights need to be normalised, the weights of Algorithm 4 can be further written as

follows.

(6) ωi =
π(θi)

φ(θi)

3. RESULTS

In this section, we first verify the effectiveness of our algorithm with a toy model, then illus-

trate sampling efficiency and accuracy of the estimation results with stochastic process model

of pest (Continuous random variable) and RNA interference model (Discrete random variable).

3.1. Toy model. We first examine how ABC-PPA performs in a toy example, where the pos-

terior is known. The model that we consider is binomial distribution B(100,θ), where θ is the

parameter to be estimated. For the prior we specify the beta distribution Beta(2,5), and for the

observed data we take xobs = 80.

From the above known conditions, ABC-PPA algorithm is applied to estimate parameter θ .

We assume that the pseudo-prior is Gaussian distribution under the support of prior. The mode

of the the pseudo-prior is obtained by Algorithm 3, and in the Gaussian distribution, the mode

is equal to the mean and the standard deviation is given 0.2. The posterior sample are obtained

by the Algorithm 2, where N = 10000 and the tolerance ε = 0.
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FIGURE 1. The bar chart on the left shows that it is obtained with ABC-PPA

algorithm, and the bar chart on the right shows the sample taken directly from

the true posterior distribution.

The true posterior can be directly obtained by Bayesian formula as the beta distribution

Beta(81,21). Figure 1 shows that the sample obtained directly from the true posterior distribu-

tion is very similar to the sample obtained by the ABC-PPA algorithm. The parameter estimated

by the true posterior distribution is 0.7941, and the parameter estimated by ABC-PPA algorithm

is 0.7938. The two estimates are very similar, which also illustrates the feasibility of ABC-PPA.

3.2. Stochastic process model of pest. In this section, we deliberate a cotton aphids model

proposed in [21][22], where N(t) denotes the number of the aphid at current time, λN(t) repre-

sents aphid population birth rate [23], C(t) denotes the environment deteriorated, and ηN(t)C(t)

be mortality of the aphid. and for simplicity, we ignore the condition of immigration and emi-

gration. Modelling these two biochemical reactions as follow,

(7)
N λ−→ 2N +C

N +C
η−→C

For 7, the first reaction means both N and C increasing one unit while the second reaction

shows that N decreasing a unit whereas C is unchanged. These models are called a stochastic

dynamical model in the literature [24]. The parameter values λ = 2.453, η = 0.0094 and

the initial values N(0) = 1, C(0) = 1 are given. Simulations for the dynamic of the aphid by

Gillespie algorithm [25][26] are illustrated in figure 2.
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FIGURE 2. Time evolution of the pest population simulated by Gillespie algorithm

The observed data consist of 8 data points for the aphid with rates (λ ,η) = (2.453,0.0094)

and initial conditions (N(0),C(0)) = (1,1). The prior distributions for λ and η are taken to be

uniform, λ ∼U(0,5), η ∼U(0,0.1).

First, we apply the ABC-REJ sampler approach with ε =50. The inferred posterior distribu-

tions are shown in figure 3(a).

We apply the ABC-REG approach, where the regression model is linear and the weighting

function is the Epanechnikov kernel. The 3% of simulated x
′
that are closest to xobs are assigned

a nonzero weight, and simulation sizes N = 20000. The inferred posterior distributions are

shown in figure 3(b).

Applying the ABC-MCMC approach. We ran a Markov chain for 20000 iterations, and

discarded the first 4000 iterations from this chain as burn-in. The inferred posterior distributions

are shown in figure 3(c).

Next, we apply the ABC-SMC approach. The perturbation kernels for both parameters are

Gaussian distribution, where the standard deviation of the random variable λ is taken 0.1, and

the standard deviation of the random variable η is 0.0001. The number of particles in each

population is N = 1000. To ensure the gradual transition between populations, we take T = 6

populations with ε =(300, 200, 100, 80, 60, 50). The inferred posterior distributions are shown

in figure 3(d).
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Finally, we apply the ABC-PPA approach, where the pseudo-prior takes the form of Gaussian

distribution. And the mean of the pseudo-prior can be obtained by Algorithm 3. The standard

deviation of the pseudo-prior of the random variable λ is taken 0.5. The standard deviation

of the pseudo-prior of the random variable η is 0.002. The inferred posterior distributions are

shown in figure 3(e).

When different ABC methods are applied, the corresponding approximate posterior samples

will be obtained (figure 3), and the number of iterations required to obtain these samples (Table

2). The obtained samples will be averaged to approximate the estimated parameters (Table 1).

TABLE 1. Parameter estimation results.

Method True value ABC-REJ ABC-REG ABC-MCMC ABC-SMC ABC-PPA

λ 2.453 2.459762 2.621292 2.470784 2.422911 2.430638

η 0.0094 0.009841 0.009402 0.009972 0.009720 0.009767

TABLE 2. The number of iterations required to obtain 1000 samples.

Method ABC-REJ ABC-SMC ABC-PPA

times 561135 (1046, 2266, 27093, 4525, 6534, 7729) 10674

Table 1 shows that ABC-PPA has similar accuracy to ABC-REJ in terms of estimation results.

And in the condition of obtaining the same number of samples, Table 2 shows that the number

of iterations required by ABC-PPA is far less than that required by ABC-REJ.
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FIGURE 3. (a):ABC-REJ method for estimating the posterior distribution of parameters

λ and η .(b):ABC-REG method for estimating the posterior distribution of parameters λ

and η .(c):ABC-MCMC method for estimating the posterior distribution of parameters λ

and η .(d):ABC-SMC method for estimating the posterior distribution of parameters λ and

η .(e):ABC-PPA method for estimating the posterior distribution of parameters λ and η .
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3.3. RNA interference model. RNA interference (RNAi) is a gene silencing phenomenon,

which usually caused by the specific transcription of the double-stranded RNA (dsRNA) molecules

[27][28]. First, long dsRNA is cleaved into siRNA by Dicer enzyme with the participation of

ATP. Then the siRNA is derotated by the RNA helicase into a sense strand and an antisense

strand with the participation of ATP, where the antisense strand directs the formation of an

activated RNA-induced silencing complex (RISC). The activated RISC recognizes the target

mRNA under the guidance of single-stranded siRNA, and cleaves the target mRNA from the

target gene corresponding to the siRNA-guided strand center under the action of the endonucle-

ase in RISC, thereby interfering with gene expression.

But, the main obstacle to effective siRNA uptake is the membrane. Although siRNA molecules

are small in size, they still cannot enter the membrane directly because of their negative charge

and hydrophilicity, and they enter the membrane by endocytosis and exocytosis. However, most

of the siRNA is degraded during this process, and only a small fraction can escape to participate

in the effects of RNA interference. And the study found that the escaped siRNA will have an

amplification process. So estimating the amount of escape plays an important role in our study

of RNA interference processes.

Locust is an important agricultural pest in the world, which can harm more than 20 crops.

In recent years, locust outbreaks have become more frequent and serious in China [29]. We

know that the growth of locusts depends strictly on the biosynthesis and degradation of chitin,

which does not exist in plants and vertebrates. And excess or absence of chitinase can cause

locust death. Therefore, chitin metabolism is an attractive target for the development of safe

and effective pesticides.

The number of siRNAs injected into locusts is controlled by random processes including

amplification, degradation, immigration and emigration, which are controlled by parameter set

Φ = {α,β ,γ,η ,}, where α is the amplification rate, β is the degradation rate, γ is the immi-

gration rate and η is the migration rate. And S̄(t) denotes the current number of siRNAs, and

when t = 0, it is the amount of escape s1 = S̄(0). Four kinds of random processes are simulated
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by four biochemical reactions as follows.

(8)

S α−→ 2S

S
β−→∅

∅ γ−→ S

S
η−→∅

It is assumed that the initial injection amount of siRNAs s0 = 1000. The parameter values

α = 0.6, β = 0.3, γ = 0.6, η = 0.23 and the target amount of escape s1 = S̄(0) = 700 are given

[30]. And the number of siRNAs simulated by Gillespie algorithm varies with time as shown in

figure 8. When t = 12 hours, the number of amplified siRNA is used as observed data s2.
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FIGURE 4. Time evolution of the siRNA simulated by Gillespie algorithm.

We apply the ABC-REJ sampler approach with ε = 40. The prior distributions for s1 is taken

to be discrete uniform distribution, s1 ∼ U(1,1000). The inferred posterior distributions are

shown in figure 4.

Applying the ABC-PPA approach with ε = 40. The prior distributions for s1 is taken to be

discrete uniform distribution, s1 ∼U(1,1000), the form of pseudo-prior can be constructed by

the distance to the mode that obtained by Algorithm 3. The inferred posterior distributions are

shown in figure 4.
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The result of the parameter estimation: the amount of escape s1 estimated by the ABC-REJ

method is 701, and it estimated by ABC-PPA is 699. The estimation of both methods are very

accurate.
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FIGURE 5. The posterior distribution of the escape amount: the bar graph on

the left is obtained by the ABC-REJ method, and the bar graph on the right is

obtained by the ABC-PPA method.

4. DISCUSSION

Bayesian statistical inference without likelihood is growing in common, especially in systems

biology and dynamic ecological models, so it is vital to provide efficient and feasible methods to

the practitioner. The deficiencies of existing likelihood-free method have been mentioned in the

introduction. So we introduce ABC-PPA algorithm. The results indicate that, our method not

only greatly improves the efficiency of the algorithm but also retains the accuracy advantages

of ABC-REJ sampling. However, the problem of how to choose the variance of pseudo-prior is

non-trivial. On the one hand, if the variance of pseudo-prior is given to be small, it will cause

a big deviation in the results. On the other hand, if the variance of pseudo-prior is given to be

large, it will affect the efficiency of ABC-PPA.

In stochastic evolution of pest populations, various Bayesian methods are used to estimate pa-

rameters. Through comparison, it is found that ABC-PPA method not only retains the accuracy

advantage of ABC-REJ, but also greatly improves the sampling efficiency.

In the RNA interference mechanism, the part of siRNA that escapes from the endosome is

one of the important factors that determine the efficiency of target mRNA silencing. Estimation
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of the escape amount plays an important role in studying the mechanism of RNA interference,

and also provides a direction for quantitative research to enhance endosomal escape. Here we

use ABC-REJ and ABC-PPA methods to estimate the amount of escape, respectively. The

estimation results of both methods are very accurate. And ABC-PPA method is faster than

ABC-REJ method in sampling. Our study provides two new statistical methods to infer the

amount of siRNAs in the actual RNAi reaction.
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