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Abstract. The recent Ebola virus disease (EVD) has been difficult to eradicate in the Democratic Republic of

Congo (DRC) due to the presence of war and political instability which stand in the way of disease control, such as;

hospitalization, vaccination, construction and successful running of EVD treatment units and proper functioning

of intervention teams in some parts of the country. Interrupted control usually leads to an increase in disease

transmission, hence making eradication very difficult or even impossible. In this paper, we develop a deterministic

model for EVD dynamics in the presence of war. the model’s steady states are determined. The model has an Ebola

free equilibrium and a unique endemic equilibrium whose existence is subject to the epidemic threshold R(ω) that

is a function interference parameter. The global stabilities of the equilibria are determined. We fit this model to

observed data and evaluate the impact of war on EVD evolution and make suggestions that may influence policy

direction in the management of EVD epidemic. Our results quantify the negative effects of war on EVD control,

thus presenting the usefulness of mathematical models in disease management.
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1. INTRODUCTION

Ebola virus disease (EVD) [6], is one of the most dangerous filoviruses that causes a viral

hemorrhagic fever in humans. The first outbreak of the disease started in 1976 in the Demo-

cratic Republic of Congo (DRC) [2]. The name Ebola is the name of a river in the North west

of the DRC where the first EVD cases were noticed. There are five stains of the virus,namely,

the Sudan Ebola virus species, Bundigbuyo Ebola virus species, Ta1̈ forest Ebola virus species

and Reston Ebola virus species. The Zaire Ebola virus species is the most dangerous species

and has a case fatality rate of 60-90%, [2, 6].

Ebola virus is transmitted to humans by animals. Rodents and bats have always been consid-

ered as potential Ebola virus reservoirs [6]. Ebola is a fluid borne disease and Human infections

occur after unprotected contact with infected patients. After contamination, symptoms can ap-

pear from 2 to 21 days later and the infectious period can last from 4 to 10 days [18]. Once

an individual is infected, the virus rapidly replicates and attacks the individual’s immune sys-

tem. So, depending on the individual’s immune system, the individual can immediately die or

recover after treatment. According to the World Health Organisation (WHO), an infected in-

dividual usually have at least three of the following symptoms: headaches, anorexia, lethargy,

aching muscles or joints, breathing difficulties, vomiting, diarrhoea, stomach pain, inexplicable

bleeding, or any sudden inexplicable death [8].

Laboratory diagnostic of the Ebola virus is done through the measurement of the host-specific

immune response to infection and the detection of virus particles. Reverse Transcription Poly-

merase Chain Reaction and antigen detection (ELISA) are the primary assays to diagnose an

acute infection [6].

There is no confirmed treatment against Ebola disease although recently, there have been reports

on the discovery of a new Ebola cure in the Democratic Republic of Congo (DRC). The New

York Times Magazine, on the 12th August 2019 reported the discovery of two antibody-based

treatments namely, REGN-EB3 and mAb-114 which saved roughly 90% of the patients who

were newly infected. It continued that, the two experimental treatments are working so well

that they will now be offered to all patients in the Democratic Republic of Congo. Also, the
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antibody-based treatments are quite powerful and they raise hopes that the disastrous epidemic

in eastern Congo can soon be stopped and future outbreaks more easily contained. The treat-

ments (REGN-EB3 and mAb-114), are both cocktails of monoclonal antibodies that are infused

intravenously into the blood [28]. The Healthline magazine also reported that two people with

Ebola who were treated with the treatment in the city of Goma in the Democratic Republic of

the Congo (DRC) have been declared cured [29].

Mathematical modelling provides a unique approach to gain insightful knowledge of EVD

transmission and control dynamics. Based on this knowledge, effective prevention and interven-

tion strategies can be designed. The model formulation process clarifies assumptions, variables,

and parameters. Mathematical models provide results such as thresholds, basic reproduction

numbers, contact numbers, and replacement numbers. These results can help health workers

understand and predict the spread of an epidemic and evaluate the potential effectiveness of

the different control measures to be used. They can improve the understanding of the relation-

ship between social and biological factors that influence the spread of a diseases. Mathematical

models and computer simulations are useful experimental tools for building and testing theo-

ries, answering specific questions and estimating key parameters from data.

The 2014 Ebola disease outbreak attracted many researchers with its rapid spread and high

case fatality rate. It revealed the weaknesses and breaches of research on Ebola. Several math-

ematical models of EVD transmission dynamics have been formulated and studied to make

projections and evaluate control strategies for disease eradication [25, 26, 27]. Most of these

researchers looked at the effects of socio-economic factors such as the lack of sufficient hos-

pital resources (hospital beds, medical caregivers, drugs and vaccines, laboratory equipment,

quarantine facilities, emergency response services, information systems, and so on), human

behaviour of the inhabitants of such communities, poverty, cultural and religious beliefs and

practices of the people, burial of deceased individuals, on the transmission and control of EVD,

(see [10, 9, 7, 12, 13, 14, 15, 16, 17]).

However, none of them studied the effects of war or any form of instability on the transmission

and control of EVD. The presence of war or any form of instability can greatly interrupt or stop
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the implementation of control strategies such as vaccination processes, construction and suc-

cessful running of EVD treatment units (usually temporary tents in which infected individuals

are isolated for treatment), proper functioning of intervention teams, which can intern increase

the transmission and death rates. The recent WHO report on EVD in the Democratic Republic

of Congo says, “Repeated bouts of violence have hampered the ability of the response teams to

do their work and the virus has taken advantage of their limitation. Also, efforts to vaccinate

people who have been in contact with infected persons have been suspended for the day because

of the previous day’s attack”, see [17]

Our model, therefore, presents a study of EVD dynamics in the presence of interfered control

where the main object of interference is war or political instability.

2. MODEL FORMULATION

EVD transmission is mostly either by person to person contacts or individuals coming in

contact with objects that have come in contact with infected individuals. It is important to note

that in the presence of war, the contact rate is assumed to be higher. The specific component

of war we are interested in is the impact of war, measured by a parameter ω , defined as the

level of impact of war on infection and hospitalization. With regards to hospitalization, the

parameter ω measures the proportion of the infected population that is not being hospitalized

as a result of the war. As the level of war increases, infection rate increases and hospitalization

rate decreases. However, we assume that 0 < ω < 1 and the increase in the infection rate with

respect to ω is non-linear and saturating. There is, therefore, a need to propose a contact rate

function β that is dependent on the level of war. We propose the following contact function.

(1) β (ω) =
βmax

1+Ae−Kω
.

The constant A is the scale parameter and K is the shape parameter. The parameter A is such

that 1 << A < ∞. Thus, if the level war is very high, the rate of spread of the disease through

person to person contact will be approximately βmax. The parameter K determines how fast

the impact of war can be felt. Note that if ω = 1, β (ω)→ βmax as K → ∞. Therefore, the

parameter K must be chosen such that β (ω)→ βmax as ω → 1. A typical example of change

in contact rate against the level of interference is shown in Fig 1. To evaluate the Ebola virus
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FIG. 1. Contact rate as a function of level of interference

disease dynamics in the presence of interrupted interventions or interfered control, where the

main object of interference is war, we formulate a deterministic model of five compartments.

The human population size N(t) comprises of individuals that are susceptible S(t), infected I(t),

hospitalized H(t), recovered R(t), or deceased D(t). Thus the population at any time t is:

N(t) = S(t)+ I(t)+H(t)+R(t)+D(t).

Individuals are recruited into the susceptible class at a rate proportional to the total population

size N(t). The size of the total population is assumed constant N(t) because it has not varied

considerably during the modelling time (in months). After exposure to the Ebola virus, suscep-

tible individuals become infected and move to the infected compartment. The force of infection

is given by:

(2) λ (t) = β (ω)
(

I +α1H +α2D
)

where β (ω) is the effective transmission rate, that depends on the level of interference ω , α1

and α2 are relative infectivity rates. Hospitalized individuals are assumed to be infectious, but

with lower infectivity than individuals in class I because of the controlled environment in which

they are isolated. So, 0 < α1 < 1. Since dead bodies of EVD deceased are highly infectious, we
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FIG. 2. Compartmental diagram showing population dynamics in the presence

of interrupted interventions

assume that α2 > 1. When access to Ebola treatment units or hospitals is guaranteed, infected

individuals can either be hospitalized at a per capita rate (1−ω)δ or die from the disease at a

rate σ2, or in some rare cases recover at a rate γ1. We assume that when ω = 1, hospitalization

becomes impossible, leading to an increase in disease transmission. However, no matter how

low the level of interference gets, even in the complete absence of interference (war), at least

there will be some level of contact, and hence infectivity will always be there.

Hospitalized EVD patients can recover at a rate γ2 or die at a rate σ1 because of the disease.

The natural death rate µ is assumed for each class and dead bodies are disposed at a rate ρ . The

flows between different compartments of the model are represented by Fig 2. The flow diagram

and the model assumptions give rise to the following system of equations.

dS
dt

= Λ−λS−µS,(3)

dI
dt

= λS− (µ + γ1 +σ2 +(1−ω)δ )I,(4)

dR
dt

= γ1I−µR+ γ2H,(5)

dH
dt

= (1−ω)δ I− (µ + γ2 +σ1)H,(6)

dD
dt

= σ1H +σ2I−ρD,(7)
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where S(0)> 0, I(0)≥ 0, R(0)≥ 0, H(0)≥ 0, D(0)≥ 0, ∀ t ≥ 0.

Since the recovered individuals do not contribute to disease transmission, the system can then

be reduced to the following:

dS
dt

= Λ− (λ +µ)S,(8)

dI
dt

= λS−
(

Q1 +(1−ω)δ
)

I,(9)

dH
dt

= (1−ω)δ I−Q2H,(10)

dD
dt

= σ1H +σ2I−ρD,(11)

where Q1 = µ + γ1 +σ2, Q2 = µ +σ1 + γ2, and λ is as defined in equation (2)

3. MODEL PROPERTIES AND ANALYSIS

3.1. Positivity of solutions. We need to ensure that the variables remain non-negative and

solutions of the system are non-negative ∀ t ≥ 0, given any non-negative initial conditions. We

thus have the following theorem.

Theorem 1. Given the initial conditions S(0)> 0, I(0)≥ 0, H(0)≥ 0, D(0)≥ 0, the solutions

S(t), I(t), H(t), D(t) of the system (8)-(11) remain non-negative ∀ t ≥ 0.

Proof. To show non-negativity of solutions, it is sufficient to show that each of the solutions of

the system (8)-(11) is non-negative ∀ t ≥ 0.

From (8), the differential inequality describing the evolution of the susceptible population over

time is given by:
dS
dt
≥−(λ (t)+µ)S(t).

By separating variables in the differential inequality and solving using simple integration and

Gronwall inequality, we have that:

S(t)≥ S(0)exp
(
−
(∫ t

0
λ (τ)dτ +µt

))
> 0.

Similarly, from (9),
dI
dt
≥−(Q1 +(1−ω)δ )I(t).
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Therefore,

I(t)≥ I(0)exp
(

Q1t +(1−ω)δ t
)
≥ 0.

Similarly, from (10),
dH
dt
≥−Q2H(t),

so that,

H(t)≥ H(0)exp
(
−Q2t

)
≥ 0.

Finally, from (11),
dD
dt
≥−ρD,

and therefore,

D(t)≥ D(0)exp
(
−ρt

)
≥ 0.

Thus all the solutions of the system are non-negative for any non-negative initial conditions. �

3.2. Invariant region.

Theorem 2. The system (8)-(11) is biologically meaningful in the region:

Ω =

{(
S(t), I(t),H(t),D(t)

)
∈ R4 : m(t)≤ Λ

µ
, D(t)≤ (σ1 +σ2)

ρ

}
,

where the basic properties of existence, uniqueness and continuity of solution are valid for the

Lipschitzian system (8)-(11), and

m(t) = S(t)+ I(t)+H(t).

Proof.

Given that,

m(t) = S(t)+ I(t)+H(t),

adding the equations (8)-(10) yields

(12)
dm
dt

= Λ−µm.
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From equation (12),
d
dt

(
mexp(µt)

)
= Λexp(µt).

Integrating, we obtain:

mexp(µt)−m0 =
Λ

µ
exp(µt)− Λ

µ

Thus,

(13) m(t) =
Λ

µ
+
(

m0−
Λ

µ

)
exp(−µt)

For m0 >
Λ

µ
, we have m(t) maximum at t = o. that is, m(t)≤ m(o) = m0 ∀ t.

For m0 <
Λ

µ
, we have m0−

Λ

µ
< 0, and therefore m(t) is maximum at t = ∞, that is, m(t)≤ Λ

µ
.

Hence,

m(t)≤ max
{

Λ

µ
,m0

}
, ∀ t ≥ 0.

Therefore, m(t) is bounded above ∀ t ≥ 0.

Similarly, I(t)< m(t)<
Λ

µ
and H(t)< m(t)<

Λ

µ
.

Also, from equation (11), we have that

(14)
dD
dt
≤
(

σ1 +σ2

)
−ρD.

Therefore,
d
dt

(
Dexp(ρt)

)
= (σ1 +σ2)exp(ρt).

Integrating, we have,

Dexp(ρt)−D0 =
(

σ1 +σ2

ρ

)
exp(ρ)−

(
σ1 +σ2

ρ

)
.

Therefore,

D(t) =
(

σ1 +σ2

ρ

)
+
(

D0−
(

σ1 +σ2

ρ

))
exp(−ρt).

For D0 >
(

σ1 +σ2

ρ

)
, we have D(t) maximum at t = 0. That is, D(t)≤ D0 ∀ t.

For D0 <
(

σ1 +σ2

ρ

)
, we have

(
D0−

(
σ1 +σ2

ρ

))
< 0, and therefore, D(t) is maximum at
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t = ∞. That is, D(t)≤
(

σ1 +σ2

ρ

)
.

Hence,

D(t) =≤ max
{(

σ1 +σ2

ρ

)
,D0

}
∀ t ≥ 0

Therefore, D(t) is bounded above ∀ t.

We can conclude that Ω is positively invariant and attracts all positive solutions of the system

(8)-(11). �

3.3. Disease free equilibrium. The inclusion of demographic dynamics may permit the dis-

ease to persist in the population for a long time. One of the most useful ways of thinking about

what may happen eventually is to explore when the system is at equilibrium. We obtain the

disease-free equilibrium by setting the right-hand side of the system (8)-(11) to zero. In the

absence of Ebola, I∗ = H∗ = D∗ = 0. If we substitute these into (8), we have

S∗ =
Λ

µ
.

Therefore the disease free equilibrium point is given by:

E0 =
(

S∗, I∗,H∗,D∗
)
=
(

Λ

µ
,0,0,0

)
.

Before we look at the disease endermic state, we first determine the model reproduction number

and consider the stability of the disease free equilibrium which we shall call the Ebola-free

equilibrium.

3.4. The effective reproduction number. In this model, new infections are generated either

by person to person contact or by contact between persons and pathogen infested objects. Thus,

the effective reproduction number in the presence of interference R0 = Rω is defined as the av-

erage number of new infections generated by an infected individual in a completely susceptible

population, [1] or through contact with a pathogen infested object. Rω often serves as a thresh-

old parameter that predicts whether an infection will spread or not. We use the next-generation

matrix method, see [5], to compute Rω by transforming the system (8)-(11) into the following:
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dI
dt

dH
dt

dD
dt


=



λS

0

0


−



Q1I +(1−ω)δ I

Q2H +(1−ω)δ I

ρD−σ1H−σ2I


= F −V ,

where F denotes the rate of occurrence of new infections and V denotes the rate of transfer of

individuals into or out of each compartment [4]. The next-generation matrix is given by FV−1,

where F and V are the Jacobian matrices shown below, for some constant β (ω).

F =



π

µ
β (ω)

π

µ
α1β (ω)

π

µ
α2β (ω)

0 0 0

0 0 0


V =



Q1 +(1−ω)δ 0 0

(1−ω)δ Q2 0

−σ2 −σ1 ρ


.

The reproduction number R0 = R(ω) is given as the spectral radius of matrix FV−1 which is

classified as the next generation matrix. Therefore,

R0 = ρ

(
FV−1

)

=
πβ (ω)

µρQ2(Q1 +(1−ω)δ )

(
δ (1−ω)(ρα1 +α2σ1)+Q2(ρ +α2σ2)

)
.

Note that R0 = Ra +Rb +Rc, where, Ra =
πβ (ω)

µ(Q1 +(1−ω)δ )
,

Rb =
πβ (ω)α1(1−ω)δ

µ

(
Q1 +(1−ω)δ

)
Q2

, Rc =
πβ (ω)α2

µρ(Q1 +(1−ω)δ )

(
σ2 +

σ1(1−ω)δ )

Q2

)
,

are the contributions of the infectious, hospitalized and dead individuals respectively to disease

transmission.
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4. GLOBAL STABILITY OF THE DISEASE FREE EQUILIBRIUM

We have the following result on the global stability of E0.

Theorem 3. The disease free equilibrium E0 of the model system (8)-(11) is globally asymptot-

ically stable in the invariant region Ω whenever Rω < 1 and unstable otherwise.

Proof. We choose a suitable Lyapunov function given by:

(15) L(t) = I + v1H + v2D,

which involves individuals who directly contribute to the spread of the infection. The constants

v1, v2, are all non-negative and we ought to find them. We note that the Lyapunov function, L(t)

is a C1 and a positive definite function. The time derivative of the Lyapunov function L(t) is

given by:

dL
dt

=
dI
dt

+ v1
dH
dt

+ v2
dD
dt

,

= λS−Q1I− (1−ω)δ I + v1

(
(1−ω)δ I−Q2H

)
+ v2

(
σ1H−ρD+σ2I

)
,

= (βS−ψ + v1(1−ω)δ + v2σ2)I +(βSα1−Q2v1 + v2σ1)H +βSα1−ρv2)D,

where, ψ = Q1 + (1−ω)δ . Note that at DFE, S ≤ Λ

µ
. Therefore, the Lyapunov function L

satisfies the inequality: [2ex]

(16)
dL
dt
≤
(

β
Λ

µ
−ψ+v1(1−ω)δ +v2σ2

)
I+
(

β
Λ

µ
α1−Q2v1+v2σ1

)
H+

(
β

Λ

µ
α1−ρv2

)
D.

We equate the coefficients of H and D to zero and solve for v1 and v2.

v1 =
βΛ(ρα1 +α2σ1)

µρQ2
, v2 =

Λβα2

µρ
.

Substituting the constants into the inequality 16 we obtain:

dL
dt
≤ ψ(Rω −1)I.
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When Rω ≤ 1,
dL
dt

is negative semi-definite, with equality at Rω = 1 and, or I ∈ E0. Therefore,

the largest compact invariant set in Ω such that
dL
dt

= 0 is the singleton E0. Therefore, by the

LaSalle’s Invariance Principle [19], the disease free equilibrium E0 is globally asymptotically

stable in Ω if Rω ≤ 1 and unstable otherwise. �

Remark 1. While we have defined the local stability of the disease free equilibrium, it is im-

portant to note that the global stability of the disease free equilibrium point implies its local

stability.

5. EXISTENCE AND STABILITY OF THE ENDEMIC EQUILIBRIUM

In this section we find the endemic equilibrium point of the system (8)-(11). Let the endemic

equilibrium be represented by the phase space

E∗∗ =
(

S∗∗, I∗∗,H∗∗,D∗∗
)
∈ R4

+.

At the endemic equilibrium, each of the population phase space variables is constant, such that

the rate of change of each of the components is zero. Thus,

Λ− (λ +µ)S = 0,(17)

λS−
(

Q1 +(1−ω)δ
)

I = 0,(18)

(1−ω)δ I−Q2H = 0,(19)

σ1H +σ2I−ρD = 0.(20)

We solve for each space variable in terms of I∗∗ (in which Λ is as defined in equation 2) as

follows:

From (17) and (18), we have that

S∗∗ =
ρ(δ −δω)Q2

β (−δ (−1+ω))(ρα1 +α2σ1)+Q2(ρ +α2σ2)
=

Λ

µRω

,

and

I∗∗ =
λ

δ −δω +Q1
− µρQ2

β (−δ (−1+ω))(ρα1 +α2σ1)+Q2(ρ +α2σ2)
=

Λ

ψRω

(
Rω −1

)
.
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From (19),

H∗∗ =
(1−ω)δ

Q2
I∗∗,

and from (20),

D∗∗ =
Q3

Q2ρ
I∗∗,

where Q3 = (δ (1−ω)σ1 +Q2σ2).

Clearly, when Rω > 1, each of the state variables S∗∗, I∗∗, H∗∗, D∗∗ is non-negative.

We thus have the following result on the existence of the endemic equilibrium point.

Theorem 4. The model system (8)-(11) has a unique endemic equilibrium point E∗∗ =(
S∗∗, I∗∗,H∗∗,D∗∗

)
that exists if and only if Rω > 1.

Theorem 5. The endemic equilibrium E∗∗ is globally stable for Rω > 1.

Proof. We set the Lyapunov function as:

V =
[
S−S∗∗−S∗∗ ln

( S
S∗∗

)]
+ k1

[
I− I∗∗− I∗∗ ln

( I
I∗∗

)]

+k2

[
H−H∗∗−H∗∗ ln

( H
H∗∗

)]
+ k3

[
D−D∗∗−D∗∗ ln

( D
D∗∗

)]
,

where k1, k2, k3 are positive constants to be determined. At endemic equilibrium, V (E∗∗) = 0.

The partial derivatives with respect to each variable are:

∂V
∂S

=
(

1− S∗∗

S

)
,

∂V
∂ I

=
(

1− I∗∗

I

)
,

∂V
∂H

=
(

1− H∗∗

H

)
,

∂V
∂D

(
1− D∗∗

D

)
.

So the endemic state is a critical point of V and the second derivatives are:

∂ 2V
∂S2 =

S∗∗

S2 ,
∂ 2V
∂ I2 = k1

I∗∗

I2 ,

∂ 2V
∂H2 = k2

H∗∗

H2 ,
∂ 2V
∂D2 = k3

D∗∗

D2 .
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The second derivative being positive at any point in Ω, the Lyapunov function V is concave up

and the endemic equilibrium point is a minimum point of V . We now prove that
dV
dt
≤ 0. The

time derivative of V is given by:

(21)

dV
dt

=
(

1− S∗∗

S

)dS
dt

+ k1

(
1− I∗∗

I

)dI
dt

+ k2

(
1− H∗∗

H

)dH
dt

+ k3

(
1− D∗∗

D

)dD
dt

,

=
(

1− S∗∗

S

)(
Λ−βSI−βSα1H−βSα2D−µS

)
+ k1

(
1− I∗∗

I

)
(

βSI +βSα1H +βSα2D−Q1I− (1−ω)δ I
)
+ k2

(
1− H∗∗

H

)
(
(1−ω)δ I−Q2H

)
+ k3

(
1− D∗∗

D

)(
σ1H−ρD+σ2I

)
.

At endemic equilibrium, the system (8)-(11) yields:

(22)

π = (β I∗∗+βα1H∗∗+βα2D∗∗)S∗∗, ρ =
σ1H∗∗+σ2I∗∗

D∗∗
,

Q1 =
(β I∗∗+βα1H∗∗+βα2D∗∗)S∗∗− (1−ω)δ I∗∗

I∗∗
, Q2 =

(1−ω)δ I∗∗

H∗∗
.

Replacing expressions from the system (22) into equation (21) yields:

(23)
dV
dt

=
(

1− S∗∗

S

)[
βS∗∗I∗∗

(
1− SI

S∗∗I∗∗

)
+α1βS∗∗H∗∗

(
1− SH

S∗∗H∗∗

)

+α2βS∗∗D∗∗
(

1− SD
S∗∗D∗∗

)
+µ(S∗∗−S)

]
+ k1

(
1− I∗∗

I

)[
βS∗∗I∗∗

( SI
S∗∗I∗∗

− I
I∗∗

)

+α2βS∗∗D∗∗
( SD

S∗∗D∗∗
− I

I∗∗

)]
+ k2

(
1− H∗∗

H

)
δ (1−ω)I∗∗

( I
I∗∗
− H

H∗∗

)

+k3

(
1− D∗∗

D

)[
σ1H∗∗

(
H

H∗∗− D
D∗∗

)
+σ2I∗∗

( I
I∗∗
− D

D∗∗

)]
.
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Let

(24)

x =
S

S∗∗
, y =

I
I∗∗

, z =
H

H∗∗
,

w =
D

D∗∗
, H∗∗ = g1I∗∗, D∗∗ = g2I∗∗,

where,

g1 =
(1−ω)δ

Q2
, g2 =

Q3

Q2
.

Substituting the expressions in (24) into
dV
dt

, we have:

dV
dt

=−µ
(S−S∗∗)2

S
+β I∗∗ f (x,y,z,w),

where,

f (x,y,z,w) =
(

1− 1
x

)
S∗∗
[
(1− xy)+α1g1(1− xz)+α2g2(1− xw)

]

+k1

(
1− 1

y

)
S∗∗
[
(xy− y)+α1g1(xz− y)+α2g2(xw− y)

]

+
k3

β

(
1− 1

w

)[
σ1g1(z−w)+σ2(y−w)

]k2

β
δ (1−ω)(y− z).

Expanding and grouping coefficients of the same variable, we have:

f (x,y,z,w) =
k2(1−ω)δ

β
+

k3(g1σ1 +σ2)

β
+S∗∗(k1 +1)+S∗∗(k1 +1)α1g1

+S∗∗(K1 +1)α2g2 + y
(

δ (1−ω)k2

β
+

k3σ2

β

+S∗∗(1− k1)−S∗∗g1k1α1−g2k1α2S∗∗
)
+

y
z

(
− k2(1−ω)δ

β

)

+z
(
− k2(1−ω)δ

β
− g1k3σ1

β
−g1α1S∗∗

)
+w
((g1σ1 +σ2)k3

β
−g2α2S∗∗

)
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+
y
w

(
− k3σ2

β

)
+

z
w

(
− g1k3σ1

β

)
+ xy(k−1)S∗∗+wx(g2k1α1−g2α2)S∗∗

+
wx
y
(−g2k1α2S∗∗)+

xz
y
(−g1k1α1S∗∗)+ xz(g1k1α1−g1α1)S∗∗

+x(−k1S∗∗)+
1
x

(
−1−g1α1−g2α2

)
S∗∗.

We now set the terms containing variables and with non-negative coefficients to zero in order

to get rid of the positive and non constant part of f . The coefficients of y, z, u, xy and ux are

thus set to zero and solved for k1, k2 and k3. We obtain:

k1 = 1, k2 =
β

1−ω

(
α1g1 +σ1g1

α2g2

σ1g1 +σ2

)
S∗∗, k3 = β

α2g2

σ1g1 +σ2
S∗∗.

Then,

(25)

f (x,y,z,w) =
k2(1−ω)δ

β

(
3− 1

x
− zx

y
− y

z

)
+

k3σ2

β

(
3− 1

x
− y

w
− xw

y

)

+
k3σ1g1

β

(
1+

zx
y
− xw

y
− z

w

)
+
(

2− x− 1
x

)
S∗∗.

We need to prove that
dV
dt
≤ 0. We already have the term−µ

(S−S∗∗)2

S
≤ 0 from the expression

of
dV
dt

. It is left for us to prove that f (x,y,z,w)≤ 0.

Applying the arithmetic mean geometric mean inequality stated in the Appendix, we have that

k2(1−ω)δ

β

(
3− 1

x
− zx

y
− y

z

)
≤ 0.

Similarly, we prove that the other terms of f (x,y,z,w) in (25) are negative.

Then f is negative and will be equal to zero if x = y = z = u = 1. So V is positive definite at the

endemic equilibrium and
dV
dt
≤ 0 with equality in the set

G = {(S,H, I,D) : S = S∗∗, I = I∗∗,H = H∗∗,D = D∗∗}.

By LaSalle’s invariance principle [11], E∗∗ is globally asymptotically stable on Ω. �
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6. NUMERICAL SIMULATIONS

In this section, we use Matlab to simulate the model. We first verify our theoretic conclusions

related to stability analysis of the system (8)-(11), then we vary our parameter’s values to better

understand how interference influences the prevalence and transmission of EVD. This will be

followed by data fitting in the model validation process. Hypothetically, we choose a population

size of about 5.7 million people, which is approximately the size of the population of the North

Kivu Province of the DRC. The initial conditions chosen are: S0 = 5,620000, I0 = 80, H0 = 0,

D0 = 0.

6.1. Parameter estimation. There is a lot of uncertainty in the choice of parameter values for

the model. This is because, some of the data from which parameters for models are chosen may

be from experiments, case-control studies, clinical trials or surveys among others. All these

methods are not completely error-proof even though efforts may be made to minimise possible

errors. It is therefore important to carefully study the disease dynamics, put into consideration

individual differences, location, social and economic contexts, while selecting the correct pa-

rameter values. In this section, therefore, we estimate some of the values of the parameters from

existing literature to parameterize the model and the remaining parameters are estimated.

Since the mean infectious period for EVD is set to be from 4 to 10 days, the highest recovery

rate γ2 is set to 1/4. Table 1 gives more details on the parameter values.

6.2. Sensitivity analysis. Sensitivity analysis is the process of ascertaining the degree to

which an input parameter value affects the output of a model. The model system (8)-(11)

has many parameters whose nominal values or parameter ranges are carefully estimated from

published work. Since many of these parameters were not determined experimentally, their

accuracy is not guaranteed. In the same way, the chosen parameter values are not chosen with

absolute certainty but with some reasonable estimation. It is, therefore, necessary to establish

the observed responses and influence of such parameters on the model. The establishment of

such responses can be achieved through uncertainty or sensitivity analysis of the model param-

eters to the disease dynamics in case of an outbreak
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TABLE 1. Model (8)-(11) parameter values.

Parameter Description Range Source

π Recruitment rate 120 day−1 Estimated

β Contact rate [10−7,0.1] day−1 Estimated

µ Natural death rate 0.0035 Estimated

σ1 Disease related death of the infected [0.005,0.9]day−1 [3]

σ2 Disease related death of the hospitalized [10−4−0.5] day−1 Estimated

γ1 Rate of recovery of the infected [0.1,0.25] day−1 [18]

γ2 Rate of recovery of the hospitalized 0.25 Estimated

λ Probability for a contact to be infectious [0.2,1] day−1 [24]

ρ Rate of disposal of dead bodies [0.05,0.5] Estimated

δ Rate of hospitalization of the infectious [0.005, 0.4] Estimated

ω Level of war [0,1] Estimated

In our model’s sensitivity analysis, we use the LHS (Latin hypercube sampling scheme) im-

plemented in Matlab to ascertain the major contributors to the model output in relation to the

parameters in the model. Since we need a baseline or predictor of whether the disease may

break out or not if new infectious individuals get into the vulnerable population, we capitalize

on the model’s basic reproduction number. In this work, we consider all the parameters to be

uncertain. We hypothetically provide the range in which the parameters’ values fall. The simu-

lations are run 1000 times to have a large sample size which will make the results more precise.

We then evaluate the partial rank correlation coefficients (PRCCs) of the parameters of interest.

The results of the simulations are given in the Tornado plot, Fig 3.

From Fig 3, the most sensitive parameters with a positive correlation to the reproduction num-

ber are Λ, β , ω , α2 and σ2. β is the effective transmission rate, which by definition drives

the infection in the total population. ω contributes to decrease the number of hospitalised in-

dividuals while σ1 and σ2 contribute to increase the number of infectious deceased, who are

α2 times more infectious than the infected that are alive. Increasing these parameters with a
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FIG. 3. Tornado plot showing some important parameters driving the EVD epidemic.

positive corelation coefficient will lead to an increase in the effective reproduction number Rω ,

and hence an increase in the disease spread and transmission.

The parameter ρ has a negative correlation with Rω since burials limit EVD transmission. Also,

γ1 and γ2 have a negative correlation to Rω . In fact, recovered individuals are assumed not to

transmit EVD, hence, increasing these parameters will lead to a decrease in Rω , and hence a

decrease in disease transmission.

Fig 4 shows the Scatter plots of parameters with the more negative PRCCs. For these parame-

ters, their increase results in a decrease in the epidemic.

7. SIMULATION RESULTS

Fig 5 shows how Rω varies with the level of interference. The figure shows that the model

reproduction number Rω increases with war. We can actually use the graph to determine the

value of Rω for a given level of interference. We give an example that when ω = 0.8, Rω = 3.65.

This is actually important if we want to determine the level of war given a value of Rω and vise

versa.
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(a) (b)

FIG. 4. Scatter plots of parameters with the more negative PRCCs

FIG. 5. Rω as a function of level of interference (ω). The rest of the parameter

values used are: Λ = 120, β = 10−6, µ = 0.0035, σ1 = 0.007, σ2 = 0.005,

γ1 = 3× 10−4, γ2 = 8× 10−4, ρ = 0.2, δ = 8× 10−3, α1 = 0.5, α2 = 1.2. For

these values, Rω = 3.65 when ω ≈ 0.8.
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FIG. 6. Evolution of the infected population , for different levels of interference

ω . The rest of the parameter values used are: Π = 120, β = 10−6, µ = 0.0035,

σ1 = 0.007, σ2 = 0.005, γ1 = 3×10−4, γ2 = 8×10−4, ρ = 0.2, δ = 8×10−3,

α1 = 0.5, α2 = 1.2. For these values Rω = 3.65 when ω ≈ 0.8.

Figs 6 and 7 depict the effects of decreasing the level of interference on the number of infected

and hospitalized individuals. We observe a slight decrease in the number of hospitalized cases

and a slight increase in the number of infected individuals when the level of war is increased,

indicating that, war alone does not induce a substantial change in the disease transmission pro-

cess. The change is more noticeable with the hospitalized population. This may be because war

interrupts hospitalization processes like construction and running of ETU’s which are usually

temporary tents, vaccination processes and also hinders the proper functioning of the interven-

tion teams. The increase in the infected population as the level of interference increases shows

that interference leads to an increase in the contact rate β . This is because interference inter-

rupts hospitalization, thus, infected individuals can no longer be isolated in ETU’s for treatment.

This then leads to an increase in the person to person contact between susceptible individuals

and infected individuals thus increasing disease transmission. Therefore preventing any form
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FIG. 7. Evolution of the population of the hospitalized, for different levels of

interference ω . The rest of the parameter values used are: Π = 120, β = 10−6,

µ = 0.0035, σ1 = 0.007, σ2 = 0.005, γ1 = 3× 10−4, γ2 = 8× 10−4, ρ = 0.2,

δ = 8×10−3, α1 = 0.5, α2 = 1.2. For these values Rω = 3.65 when ω ≈ 0.8.

of interference is important in containing the EVD outbreak. The reproduction number is made

of parameters which differently influence its values. The relationship between those parameters

can be evaluated through contour plots. We choose two parameters γ1 and σ2, and give the con-

tour plots of Rω as a function of ω and γ1, and Rω as a function of ω and σ2. The contour plots

in Fig 8 show that, when the level of war is very high (in an epidemic outbreak), the person-

to-person contact rate increases and access to hospitalization facilities decrease. This leads to a

decrease in the recovery rate and maximises disease transmission through contact with infected

individuals. As such, the reproduction number Rω increases and the disease related death rate

also increases. The arbitrary values of Rω on the Rω -axis in Figures 8(a) and 8(b) indicate the

corresponding relationship between the level of war and the recovery rate or the death rate of

infected individuals respectively. At high values of Rω , the outbreak may devastate the affected

community and at low values of Rω , the outbreak can be contained.
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(a) (b)

FIG. 8. Contour plot of Rω as a function of level of interference, ω and rate of

recovery of the infected individuals, γ1 and Rω as a function of level of interfer-

ence, ω and death rate of the infected individuals, σ2.

8. MODEL VALIDATION

To validate our model, we use the WHO data obtained for the recent EVD epidemic in the

Democratic Republic of Congo (DRC). We use data from the 2017-2019 outbreaks in the Kivu

province in DRC as shown in table 2. The model presented in the system (8)-(11) is fitted to

data in Table 2. The fitting process involves the use of the least square method in which, the

unknown parameter values are given a lower bound and an upper bound from which the set of

parameter values that produce the best fit are obtained. Fig 9 shows the fit of the model to the

EVD data in Table 2. The model fits reasonably well to the data. The parameters that give the

best fit are given in the caption. The reproduction number in this case is Rω = 2.49.
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TABLE 2. Data from the 2018-2019 outbreaks in the Kivu province in DRC.

Date Number of cases

05/08/2018 43

20/08/2018 102

02/09/2018 122

16/09/2018 142

02/10/2018 162

21/10/2018 238

11/11/2018 333

26/11/2018 421

10/12/2018 500

25/12/2018 585

14/01/2019 658

28/01/2019 743

10/02/2019 816

24/02/2019 872

10/03/2019 923

10/03/2019 1016

14/04/2019 1264

28/04/2019 1466

12/05/2019 1705

26/05/2019 1920

16/06/2019 2168

30/06/2019 2343

13/07/2019 2418

27/07/2019 2430
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FIG. 9. Curve fitting for data from DRC. 18 and 19 on the x-axis stand for the

years 2018 and 2019 respectively.

Fig 10 shows the effect of hospitalization on the infected population in the complete absence

of war (ω = 0). Note that, the absence of war or interference may not bring the population

to a disease-free state as there exist other social and economic factors like poverty, religious

beliefs and practices of the people, insufficient hospitalization facilities (hospital beds, medical

caregivers, drugs and vaccines etc.), lack of media campaign etc, that lead to increase in the

transmission and spread of the disease. However, in the absence of war or interference (ω = 0),

increasing hospitalization leads to a more rapid fall in the infection rate as shown in Fig 10.
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FIG. 10. Graph of delta variations in the complete absence of interference (ω =

0). Note that the horizontal axis is now calibrated in weeks

9. CONCLUSION

In this chapter, a simple deterministic model that incorporates a war dependent person to

person contact rate is presented and analyzed. Important mathematical features of the model

such as the threshold for the epidemic, steady states, positivity and boundedness of solutions as

well as the region of biological significance were determined. The model was shown to have a

disease-free equilibrium which is globally asymptotically stable when the reproduction number

is less than unity. This disease-free equilibrium is unstable when the disease threshold is greater

than unity. The model also has an endemic equilibrium point that is globally stable whenever

Rω > 1. Sensitivity analysis of the model parameters was carried out using the basic repro-

duction number as the threshold value with sampling based on the Latin Hypercube Sampling

scheme. The output of the results of sensitivity analysis are indicated in the Tornado plot as well

as the Scatter plots. The Tornado plot indicates the relative sensitivity of the parameters based

on the obtained values of partial rank correlation coefficients. From the Tornado plot, the level
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of interference has a positive PRCC of about 0.16. Therefore preventing interference would

help contain the epidemic. We have also proven that the presence of interference to Ebola con-

trol efforts in a community undergoing an EVD epidemic is a determining factor in the disease

control. It has been shown that when there is interference, controlling EVD is more difficult

because interference makes hospitalization difficult and sometimes impossible.

As part of the model validation, the model was fitted to data from the Democratic Republic of

Congo (DRC). The model formulated in this work is consistent with the dynamics of EVD in

the DRC but is not without shortcomings. The lack of sufficient data on the number of Ebola

cases recorded each month of the outbreak in the provinces affected by war limited the numeri-

cal analysis and interpretation. Other aspects like personal protective equipment and materials

for laboratories have been useful in Ebola patients’ management and care. These tools could

also be taken into account. It is well documented that the goodness of fit measures the discrep-

ancy between observed data and values expected from the model. In this work, no goodness

of fit tests are done but we relied on the least-squares method for the model fitting. We, how-

ever, argue that the least-squares method of fitting models to data, provides useful insights into

how the model can be linked to data despite the challenge of using statistical tools to test the

goodness of fit of the model.
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