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Abstract. In this paper, we develop a mathematical model to describe the interactions between Chikungunya virus

(CHIKV), host cells and antibodies. The proposed model considers two types of infected cells and incorporates

two modes of transmission, the classical virus-to-cell infection and the direct cell-to-cell transmission. These both

modes are modeled by two general incidence functions that include many special cases existing in the literature. We

first prove the well-posedness of the model, including the positivity and boundedness of solutions. The stability and

instability of equilibria are established by means of direct and indirect Lyapunov methods. Furthermore, numerical

simulations are presented in order to support our analytical results.
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1. INTRODUCTION

Chikungunya virus (CHIKV) is a mosquito-borne virus responsible for periodic and explo-

sive outbreaks of a febrile disease that is characterized by severe and sometimes prolonged
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polyarthritis [1]. CHIKV was first identified in Tanzania in the early 1952 and has caused peri-

odic outbreaks in Asia and Africa since the 1960s [2]. On 9 December 2013, the Pan American

Health Organization (PAHO) has issued an alert about the transmission of CHIKV in the Amer-

icas [3]. Since then, the transmission of CHIKV was confirmed in 44 countries and territories

in the region, with more than 2 millions reported cases and 403 deaths.

In the literature, many mathematical models have been proposed to understand the dynamics

of CHIKV infection. Most of them describe the disease transmission in mosquito and human

populations [4, 5, 6, 7, 8, 9, 10]. However, there are only few within-host CHIKV infection

models. For this, Wang and Liu proposed and analysed a within-host CHIKV model [11]. An

extension of this model was given by Elaiw et al. [12]. These within-host models are based on

the assumption that the cell infection is caused only by contact with free virus.

To better describe the dynamics of CHIKV in within human body by taking into account

virus-to-cell infection and cell-to-cell transmission via direct contact [13, 14, 15], we propose

the following model:

(1)



Ṫ = λ −dT − f (T, I,V )V −g(T, I)I,

L̇ = (1− p)
(

f (T, I,V )V +g(T, I)I
)
− (δ + γ)L,

İ = p
(

f (T, I,V )V +g(T, I)I
)
+ γL−aI,

V̇ = kI−µV −qBV,

Ḃ = η + cBV −hB,

where T (t), L(t), I(t), V (t) and B(t) are the concentrations of susceptible monocytes, latently

infected monocytes, actively infected monocytes, CHIKV particles and antibodies at time t,

respectively. The susceptible monocytes are produced at a constant λ , die at rate d and be-

come infected either by free virus at rate f (T, I,V )V or by direct contact with actively infected

monocyte at rate g(T, I)I. So, the term f (T, I,V )V +g(T, I)I denotes the total infection rate of

susceptible monocytes. A fraction (1− p) of infected monocytes is assumed to be latently in-

fected monocytes and the remaining p becomes actively infected monocytes, where 0 < p < 1.

The parameters δ , a, µ and h are the death rates of latently infected monocytes, actively infected

monocytes, CHIKV particles and antibodies, respectively. The latently infected monocytes are



CHIKV MODEL WITH BOTH MODES OF TRANSMISSION AND HUMORAL IMMUNITY 3

transmitted to actively infected monocytes at rate γL. The CHIKV particles are produced at

rate kI and neutralized by antibodies at rate qV B. The antibodies are created at rate η and

proliferated at rate cBV .

As in [16, 17], the incidence functions f (T, I,V ) and g(T, I) for both modes are continuously

differentiable and satisfy the following hypotheses:

(H0) g(0, I) = 0, for all I ≥ 0;
∂g
∂T

(T, I) ≥ 0
(
or g(T, I) is a strictly monotone increasing

function with respect to T when f ≡ 0
)

and
∂g
∂ I

(T, I)≤ 0, for all T ≥ 0 and I ≥ 0.

(H1) f (0, I,V ) = 0, for all I ≥ 0 and V ≥ 0,

(H2) f (T, I,V ) is a strictly monotone increasing function with respect to T
(
or

∂ f
∂T

(T, I,V )≥

0 when g(T, I) is a strictly monotone increasing function with respect to T
)
, for any

fixed I ≥ 0 and V ≥ 0,

(H3) f (T, I,V ) is a monotone decreasing function with respect to I and V .

It is very important to note that the model presented by system (1) extends and generalizes

some special cases existing in the literature. For example, we get the within-host CHIKV

infection model with latency [18] when f (T, I,V ) =
β1T

1+α1V
and g(T, I) = 0, where β1 is the

virus-to-cell infection rate and α1 is a non-negative constant that measures the saturation effect.

When f (T, I,V ) =
β1T

1+α1V
and g(T, I) =

β2T
1+α2I

with β2 is the cell-to-cell transmission rate

and α2 is the saturation constant, we obtain the CHIKV infection model with CHIKV-monocyte

and infected-monocyte saturated incidences [19].

The rest of the paper is organized as follows. The next section focused on well-posedness

of the model and the existence of equilibria. The section 3 is devoted to stability analysis of

equilibria. An application and some numerical simulations are presented in section 4. The paper

ends with mathematical and biological conclusions in section 5.

2. WELL-POSEDNESS AND EQUILIBRIA

In this section, we first prove that our model (1) is well-posed by showing the nonnegativity

and boundedness of solutions. After, we derive the threshold parameters for the existence of

equilibria.
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Theorem 2.1. All solutions of model (1) starting from non-negative initial conditions remain

non-negative and bounded for all t > 0.

Proof. We have

Ṫ |T=0 = λ > 0, L̇|L=0 = (1− p)( f (T, I,V )V +g(T, I)I)≥ 0 for all T, I,V ≥ 0,

İ|I=0 = p( f (T,0,V )V + γL≥ 0 for all T,L,V ≥ 0,

V̇ |V=0 = kI ≥ 0 for all I ≥ 0, Ḃ|B=0 = η > 0.

Then IR5
+ is positively invariant with respect (1). It remains to prove the boundedness of solu-

tions. Denote

G(t) = T (t)+L(t)+ I(t)+
a
2k

V (t)+
aq
2kc

B(t).

Then

dG
dt

= Ṫ (t)+ L̇(t)+ İ(t)+
a
2k

V̇ (t)+
aq
2kc

Ḃ(t)

= λ −dT (t)−δL(t)− a
2

I(t)− aµ

2k
V (t)+

aqη

2kc
− aqh

2kc
B(t)

≤ λ +
aqη

2kc
−ρG(t),

where ρ = min{a
2
,d,δ ,µ,h}. Thus,

limsup
t→∞

G(t)≤ λ

ρ
+

aqη

2kcρ
.

Consequently, T (t), L(t), I(t), V (t) and B(t) are bounded.

It is clear that model (1) has always one infection-free equilibrium E0(T0,0,0,0,B0), where

T0 =
λ

d
and B0 =

η

h
. Therefore, we define the basic reproduction number of (1) as follows

(2) R0 =
(δ p+ γ) [k f (T0,0,0)+(µ +qB0)g(T0,0)]

a(δ + γ)(µ +qB0)
.



CHIKV MODEL WITH BOTH MODES OF TRANSMISSION AND HUMORAL IMMUNITY 5

The other equilibrium of model (1) satisfies the following equations:

λ −dT − f (T, I,V )V −g(T, I)I = 0,(3)

(1− p)
(

f (T, I,V )V +g(T, I)I
)
− (δ + γ)L = 0,(4)

p
(

f (T, I,V )V +g(T, I)I
)
+ γL−aI = 0,(5)

kI−µV −qBV = 0,(6)

η + cBV −hB = 0.(7)

By (3)-(7), we have B =
η

h− cV
, I =

µ(h− cV )+qη

k(h− cV )
V = ϕ1(V ), L =

(1− p)a
δ p+ γ

I =

(1− p)a
δ p+ γ

ϕ1(V ), T =
λ (δ p+ γ)− (δ + γ)aϕ1(V )

d(δ p+ γ)
= ϕ2(V ) and

k(δ p+ γ)(h−cV ) f
(
T, I,V

)
+(δ p+ γ)

[
µ(h−cV )+qη

]
g
(
T, I
)
= a(δ + γ)

[
µ(h−cV )+qη

]
.

Since B =
η

h− cV
≥ 0, we have V <

h
c

. Then there is no biological equilibrium when V ≥ h
c

.

So, we consider the function ψ defined on [0, h
c ) by

ψ(V ) = k(δ p+ γ)(h− cV ) f
(
ϕ2(V ),ϕ1(V ),V

)
+(δ p+ γ)

[
µ(h− cV )+qη

]
g
(
ϕ2(V ),ϕ1(V )

)
−a(δ + γ)

[
µ(h− cV )+qη

]
.

We have ϕ2(0) = λ

d > 0, lim
V→( h

c )
−

ϕ2(V ) =−∞ and

ϕ ′2(V ) =− (δ + γ)a
d(δ p+ γ)

ϕ ′1(V )< 0 with ϕ
′
1(V ) =

µ(h− cV )2 +qηh
k(h− cV )2 > 0.

Then the equation ϕ2(V ) = 0 admits a unique solution Ṽ ∈ (0, h
c ). Thus, B̃ = η

h−cṼ
> 0 and

ψ(Ṽ ) = −a(δ + γ)[µ(h− cṼ )+ qη ] < 0. Since ψ(0) = a(δ + γ)(µh+ qη)(R0− 1) > 0, we

deduce that there exists a V1 ∈ (0,Ṽ ) such that ψ(V1) = 0. Hence,

B1 =
η

h− cV1
> 0, I1 =

µ +qB1

k
V1 > 0, L1 =

(1− p)
(δ p+ γ)

aI1 > 0.

Substituting V =V1 and I = I1 in (3) and define a function ϕ3 as

ϕ3(T ) = λ −dT − f (T, I1,V1)V1−g(T, I1)I1.
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Since ϕ3(0) = λ > 0, ϕ3(
λ

d ) = − f (λ

d , I1,V1)V1−g(λ

d , I1)I1 < 0 and ϕ3 is a strictly decreasing

function of T , then there exists a unique T1 ∈ (0, λ

d ) such that ϕ3(T1) = 0. Thus, model (1) has

a unique chronic infection equilibrium E1(T1,L1, I1,V1,B1) when R0 > 1.

The pervious discussions are summarized in the following theorem.

Theorem 2.2.

(i) If R0 ≤ 1, then model (1) has a unique infection-free equilibrium E0(T0,0,0,0,B0),

where T0 =
λ

d
and B0 =

η

h
.

(ii) If R0 > 1, then model (1) has a unique chronic infection equilibrium E1(T1,L1, I1,V1,B1)

besides E0, where T1 ∈ (0, λ

d ), L1 > 0, I1 > 0, V1 > 0 and B1 > 0.

3. STABILITY ANALYSIS

This section investigates the stability of the two equilibria E0 and E1. Firstly, the following

theorem characterizes the global stability of the free-infection equilibrium E0.

Theorem 3.1. The infection-free equilibrium E0 is globally asymptotically stable when R0 ≤ 1

and becomes unstable when R0 > 1.

Proof. Define

Γ =

{
(T,L, I,V,B) ∈ IR5

+ : T ≤ λ

d
and B≥ η

h

}
.

We see that any solution (T (t),L(t), I(t),V (t),B(t)) starting in Γ remains there forever. Indeed,

it follows from Theorem 2.1 that (T (t),L(t), I(t),V (t),B(t)) ∈ IR5
+. It remains to prove that

T (t)≤ λ

d with T (0)≤ λ

d and B(t)≥ λ

d with B(0)≥ λ

d . From the first and fifth equations of (1),

we get

T (t) ≤ λ

d
+

(
T (0)− λ

d

)
e−dt ,

B(t) ≥ η

h
+
(

B(0)− η

h

)
e−ht .

This implies that T (t)≤ λ

d and B(t)≥ η

h
. So, (T (t),L(t), I(t),V (t),B(t)) ∈ Γ.

Construct a Lyapunov functional as follows

U(t) =
γ +δ

δ p+ γ
I(t)+

γ

δ p+ γ
L(t)+

f (λ

d ,0,0)
µ +qη

h
V (t).
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Calculating the time derivative of U along the solutions of (1), we obtain

dU
dt

=

(
f (T, I,V )− µ +qB

µ +qη

h
f (

λ

d
,0,0)

)
V +a

(
k f (λ

d ,0,0)+(µ +qη

h )g(T, I)
a(µ +qη

h )
− γ +δ

δ p+ γ

)
I

≤
(

f (T,0,0)− f (
λ

d
,0,0)

)
V +a

γ +δ

δ p+ γ
(R0−1)I

≤ a
γ +δ

δ p+ γ
(R0−1)I.

Since R0 ≤ 1, we have dU
dt (t) ≤ 0. Further, it is not hard to prove that the largest invariant set

in
{
(T,L, I,V,B)|dU

dt
= 0
}

is the singleton {E0}. It follows from LaSalle’s invariance principle

[20] that E0 is globally asymptotically stable when R0 ≤ 1.

On the other hand, the characteristic equation at E0 is given by

(ξ +d)(ξ +h)P(ξ ) = 0,

where

P(ξ ) = ξ
3 +

(
γ +δ +a+µ +q

η

h
− pg(

λ

d
,0)
)

ξ
2 +

(
(µ +q

η

h
)(γ +δ +a− pg(

λ

d
,0))

−kp f (
λ

d
,0,0)+a(γ +δ )− (δ p+ γ)g(

λ

d
,0)
)

ξ

−a(µ +q
η

h
)(γ +δ )(R0−1).

When R0 > 1, we have P(0) = −a(µ +q
η

h
)(γ + δ )(R0−1) < 0. Since lim

ξ→+∞

P(ξ ) = +∞, we

deduce that there exists a ξ0 ∈ (0,+∞) such that P(ξ0) = 0. Then E0 is unstable. This completes

the proof.

Finally, we investigate the global stability of the chronic infection equilibrium E1. So, we

assume that R0 > 1 and the functions f and g satisfy, for all T, I,V > 0, the following hypothesis:

(H4)

(
1− f (T, I,V )

f (T, I1,V1)

)(
f (T, I1,V1)

f (T, I,V )
− V

V1

)
≤ 0,(

1− f (T1, I1,V1)g(T, I)
f (T, I1,V1)g(T1, I1)

)(
f (T, I1,V1)g(T1, I1)

f (T1, I1,V1)g(T, I)
− I

I1

)
≤ 0.

Theorem 3.2. Assume that (H4) holds. If R0 > 1, then the chronic infection equilibrium E1 is

globally asymptotically stable.
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Proof. Consider the following Lyapunov functional

W (t) = T (t)−T1−
∫ T

T1

f (T1, I1,V1)

f (X , I1,V1)
dX +

γ

δ p+ γ
L1Φ

(
L(t)
L1

)
+

γ +δ

δ p+ γ
I1Φ

(
I(t)
I1

)
+

f (T1, I1,V1)V1

kI1
V1Φ

(
V (t)
V1

)
+

q f (T1, I1,V1)V1

ckI1
B1Φ

(
B(t)
B1

)
,

where Φ(x) = x−1− lnx, x > 0.

Calculating the time derivative of W along the positive solutions of (1) and using:

λ = dT1 + f (T1, I1,V1)V1 +g(T1, I1)I1, kI1 = µV1 +qB1V1, η = hB1− cB1V1,

(δ + γ)L1 = (1− p)( f (T1, I1,V1)V1 +g(T1, I1)I1) and
(δ + γ)

δ p+ γ
aI1 = f (T1, I1,V1)V1 +g(T1, I1)I1,

we obtain

dW
dt

= dT1

(
1− T

T1

)(
1− f (T1, I1,V1)

f (T, I1,V1)

)
− qη f (T1, I1,V1)V1

ckI1B1B

(
B−B1

)2

+ f (T1, I1,V1)V1

(
3− f (T1, I1,V1)

f (T, I1,V1)
+

f (T, I,V )V
f (T, I1,V1)V1

− V
V1
− IV1

I1V

)
+

γ(1− p)
δ p+ γ

f (T1, I1,V1)V1

(
1− f (T, I,V )V L1

f (T1, I1,V1)V1L
− I1L

IL1
− p(γ +δ ) f (T, I,V )V I1

γ(1− p) f (T1, I1,V1)V1I

)
+g(T1, I1)I1

(
2− f (T1, I1,V1)

f (T, I1,V1)
+

f (T1, I1,V1)g(T, I)I
f (T, I1,V1)g(T1, I1)I1

− I
I1

)
+

γ(1− p)
δ p+ γ

g(T1, I1)I1

(
1− I1L

IL1
− g(T, I)IL1

g(T1, I1)I1L
− p(γ +δ )g(T, I)

γ(1− p)g(T1, I1)

)
.

Hence,

dW
dt

= dT1

(
1− T

T1

)(
1− f (T1, I1,V1)

f (T, I1,V1)

)
− qη f (T1, I1,V1)V1

ckI1B1B

(
B−B1

)2

+ f (T1, I1,V1)V1

(
−1− V

V1
+

f (T, I,V )V
f (T, I1,V1)V1

+
f (T, I1,V1)

f (T, I,V )

)
+g(T1, I1)I1

(
−1− I

I1
+

f (T1, I1,V1)g(T, I)I
f (T, I1,V1)g(T1, I1)I1

+
f (T, I1,V1)g(T1, I1)

f (T1, I1,V1)g(T, I)

)
−γ(1− p)

δ p+ γ
f (T1, I1,V1)V1

[
Φ

(
f (T1, I1,V1)

f (T, I1,V1)

)
+Φ

(
f (T, I1,V1)

f (T, I,V )

)
+Φ

(
f (T, I,V )V L1

f (T1, I1,V1)V1L

)
+Φ

(
I1L
IL1

)
+Φ

(
IV1

I1V

)]
−(γ +δ )p

δ p+ γ
f (T1, I1,V1)V1

[
Φ

(
f (T1, I1,V1)

f (T, I1,V1)

)
+Φ

(
f (T, I1,V1)

f (T, I,V )

)
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+Φ

(
f (T, I,V )V I1

f (T1, I1,V1)V1I

)
+Φ

(
IV1

I1V

)]
−γ(1− p)

δ p+ γ
g(T1, I1)I1

[
Φ

(
f (T1, I1,V1)

f (T, I1,V1)

)
+Φ

(
f (T, I1,V1)g(T1, I1)

f (T1, I1,V1)g(T, I)

)
+Φ

(
g(T, I)IL1

g(T1, I1)I1L

)
+Φ

(
I1L
IL1

)]
−(γ +δ )p

δ p+ γ
g(T1, I1)I1

[
Φ

(
f (T1, I1,V1)

f (T, I1,V1)

)
+Φ

(
f (T, I1,V1)g(T1, I1)

f (T1, I1,V1)g(T, I)

)
+Φ

(
g(T, I)

g(T1, I1)

)]
.

By (H2), we deduce that (
1− T

T1

)(
1− f (T1, I1,V1)

f (T, I1,V1)

)
≤ 0.

By (H4), we obtain

−1− V
V1

+
f (T, I,V )V

f (T, I1,V1)V1
+

f (T, I1,V1)

f (T, I,V )
=

(
1− f (T, I,V )

f (T, I1,V1)

)(
f (T, I1,V1)

f (T, I,V )
− V

V1

)
≤ 0

and

−1− I
I1
− f (T1, I1,V1)g(T, I)I

f (T, I1,V1)g(T1, I1)I1
+

f (T, I1,V1)g(T1, I1)

f (T1, I1,V1)g(T, I)

=

(
1− f (T1, I1,V1)g(T, I)

f (T, I1,V1)g(T1, I1)

)(
f (T, I1,V1)g(T1, I1)

f (T1, I1,V1)g(T, I)
− I

I1

)
≤ 0.

Since Φ(x)≥ 0, we have
dW
dt
≤ 0 with equality if and only if T = T1, L = L1, I = I1, V =V1 and

B=B1. From LaSalle’s invariance principle, we conclude that the chronic infection equilibrium

E1 is globally asymptotically stable when R0 > 1.

4. APPLICATION AND NUMERICAL SIMULATIONS

In this section, we first apply our main results to the following model

(8)



Ṫ = λ −dT − β1TV
1+α1V

− β2T I
1+α2I

,

L̇ = (1− p)
(

β1TV
1+α1V

+
β2T I

1+α2I

)
− (δ + γ)L,

İ = p
(

β1TV
1+α1V

+
β2T I

1+α2I

)
+ γL−aI,

V̇ = kI−µV −qBV,

Ḃ = η + cBV −hB,



10 H. BESBASSI, Z. E. RHOUBARI, K. HATTAF, N. YOUSFI

Parameter Value Parameter Value

λ 1.826 a 0.4441

d 0.7979 k 2.02

p 0.5 µ 0.4418

α1 0.01 q 0.5946

α2 0.01 η 1.402

δ 0.5 c 1.2129

γ 0.1 h 1.251

β1 Varied β2 Varied

TABLE 1. Parameter values of model (8).

which is a special case of model (1) by letting f (T, I,V ) = β1T
1+α1V and g(T, I) = β2T

1+α2I . Clearly,

the assumptions (H0)-(H3) hold. In addition, we have

(
1− f (T, I,V )

f (T, I1,V1)

)(
f (T, I1,V1)

f (T, I,V )
− V

V1

)
=

−α1(V −V1)
2

V1(1+α1V )(1+α1V1)
≤ 0

and

(
1− f (T1, I1,V1)g(T, I)

f (T, I1,V1)g(T1, I1)

)(
f (T, I1,V1)g(T1, I1)

f (T1, I1,V1)g(T, I)
− I

I1

)
=

−α2(I− I1)
2

I1(1+α2I)(1+α2I1)
≤ 0.

Then the assumption (H4) is satisfied. By applying Theorems 3.1 and 3.2, we have the following

result.

Corollary 4.1.

(i) If R0 ≤ 1, then the infection-free equilibrium E0 of model (8) is globally asymptotically

stable.

(ii) If R0 > 1, then the infection-free equilibrium E0 becomes unstable and the chronic in-

fection equilibrium E1 of model (8) is globally asymptotically stable.

For the numerical simulations, we consider β1 and β2 as free parameters and the other pa-

rameter values are given in Table 1.
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FIGURE 1. Dynamics of the model (8) when R0 = 0.7582≤ 1.
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FIGURE 2. Dynamics of the model (8) when R0 = 7.5819 > 1.
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Firstly, we choose β1 = 0.05 and β2 = 0.04. By a simple calculation, we have R0 = 0.7582≤

1. Hence, model (8) has an infection-free equilibrium E0(2.2885,0,0,0,1.1207). From Corol-

lary 4.1 (i), we know that E0 is globally asymptotically stable. Figure 1 demonstrates this result.

Secondly, we choose β1 = 0.5 and β2 = 0.3. In this case, we have R0 =

7.5819 > 1. It follows from Corollary 4.1 (ii) that the chronic infection equilibrium

E1(0.9116,0.9102,1.4419,0.8313,5.1502) is globally asymptotically stable (see Figure 2).

5. CONCLUSIONS

In this work, we have presented a within-host CHIKV infection model with humoral im-

munity, two modes of transmission and two classes of infected monocytes that are actively

infected monocytes and latently infected monocytes. We have investigated the well-posedness

of the model by studying the existence, positivity and boundedness of solutions. By construct-

ing suitable Lyapunov functionals, we found sufficient conditions for the global stability of

equilibria. Our study showed that the global dynamics of the model is completely determined

by the basic reproduction number R0. More particularly, if R0≤ 1 the infection-free equilibrium

is globally asymptotically stable, which leads to the removal of virus in the host. When R0 > 1,

the infection-free equilibrium loses its stability and a unique chronic infection equilibrium ap-

pears and it is globally asymptotically stable, which means that the CHIKV persists in the host.

Furthermore, the more recent works presented in [12, 18, 19] are extended and generalized.
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