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Abstract. An epidemiological predator-prey model with a predating scavenger species is proposed and analysed.

The intermediate predator community is assumed to have a disease and is classified into infected and susceptible.

The recovery of infected predators into susceptible predator is considered to be density-dependent. The role of

the crowding factor of the predator population is discussed in the case of all the equilibrium points. The stability

analysis for the positive equilibrium is done with the help of Routh–Hurwitz criteria. It is observed that increasing

the crowding factor of the predator population promotes the stability of the positive equilibrium. A Period doubling

cascade is observed for the increasing mortality rate of scavenger species. The variation of stocks of all the species

is observed when mortality rates are increased. A positive effect on the biomass of the scavenger species occurs

when scavenger species are removed, culled, or harvested. Finally, the proposed model is modified into a harvesting

model by ignoring the mortality rate of susceptible predator and scavenger. The associated control problem has

been analyzed for optimal harvesting with help of Pontryagin’s maximum principle.
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1. INTRODUCTION

Chaotic dynamics in tri-trophic food web continuous-time ecological model was first ob-

served by Hasting and Powel [1]. Although the functional responses of both the predator species

were nonlinear and saturating [2, 3], they considered a simple linear food chain and neglected

the omnivorous nature of the predators. This aspect was considered by [4] where the authors

numerically demonstrated the appearance of Hopf bifurcation and period-doubling cascades

while considering a tri-trophic food web with an omnivore. Following [4], Previte and Hoffman

[5] introduced a third scavenger species to the classical predator-prey system in a biologically

feasible way showing off-on-off chaos having infinitely many bounded paired cascades and at

most finitely many unbounded cascades. After that, in recent years, many researchers inves-

tigated the tri-trophic scenario with additional effects like harvesting [6, 7, 8], the presence

of small immigrants in all the species [9], etc. Another important effect that is considered in

many ecological modeling is the ‘Hydra effect’. Recent theoretical [10, 11, 12] and empirical

[13] research have shown that increasing mortality can induce a positive impact on the stock of

the same species. This paradoxical result is coined as ‘hydra effect’ by Abrams and Matsuda

[14, 15]. Cortez and Abrams (2016) [16] investigated different predator-prey and food chain

systems where the ‘Hydra effect’ was present. Recently Pal et al. (2019) [18] ensures the exis-

tence of ‘Hydra effect’ in Rosenzweig-Mac Arthur type food chain. They considered a trophic

level of more than four and displayed a complete scenario for stock variations in a table for

harvesting individual trophic levels.

Many articles can be found describing the symptoms, diagnosis, treatment, and prevention

of bacterial and parasitic diseases in aquaculture [23, 24, 25]. Most of the diseases are infec-

tious in nature, and this aspect has drawn considerable attention from the researchers in recent

years. Therefore the effect of disease in the ecological system is a significant issue from a math-

ematical and ecological perspective. After the pioneering work of Kermack and Mc Kendrick,

epidemiological models of SIRS type have received much attention from scientists [26]. Many

researchers have merged the scenario of epidemiology in the prey-predator system in a different

biologically feasible way [Anderson and May(1986) [27]; Hadeler and Freedman(1989) [28];
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Venturino(1995) [29]; Chattopadhyay and Arino(1999) [30]]. Density-dependent demograph-

ics in epidemiological models were first studied by Hethcote and Gao [31, 32].

However, it can not be ruled out that some infectious parasitic and bacterial diseases also

occur due to stressed environments like temperature fluctuation [21]. In some situations, the

presence of microbes in the environment is constant and the infection spreads unrestricted only

when weakness occurs in fish due to a stressed environment (in the form of high population

density) [34]. Moreover, there are various non-infectious diseases caused due to stressed envi-

ronments, for example, Gas bubble disease and disease caused by pollutants like carcinogenic

polycyclic aromatic hydrocarbon (PAH) 7, 12-dimethylbenzanthracene (DMBA), Bayluscide,

etc. [21]. Agricultural run-offs, including pesticides, fertilizer residues, etc., decomposition

of biological waste also increases the ammonia level in the water resulting in ammonia poi-

soning/toxicity [21, 22]. Such water pollutants have a very harmful impact on Tilapias. It is

observed that stress in the form of increasing density worsens ammonia toxicity in rainbow

trout [21]. Though there are several theoretical ways to reduce ammonia concentration but for

large ponds used in commercial aquaculture, most of the approaches seem to be impractical

[33]. Due to the high density of the fish population, the recovery rate becomes slow as high

density increases the stress, resulting in ammonia poisoning. Due to inexperienced farmers,

sometimes it is impossible to detect the problem, which ultimately results in a slow recovery

due to high population density. Such problems were discussed in [24]. Although sometimes

removal of susceptible to an infection-free region can effectively be achieved [34], in general,

either for large ponds used in commercial aquaculture or due to lack of experiences of farmers,

such techniques seem to be impractical [24, 33].

In this paper, the authors consider a Shrimp-Tilapia polyculture in a stressed environment

in the form of high density with a pre-existed non-infectious disease viz. ammonia toxicity

for which the newborn predator, say, Tilapia offspring are harmed directly. Shrimp is often

a choice as a primary or secondary species in polyculture due to its high adaptability in food

habits. It can be omnivorous scavengers, detritus feeders, and predators [19, 20]. Similarly,

Tilapia is also one of the favorable options in polyculture due to its high growth factor. Shrimps

are introduced as scavengers which are assumed to be unaffected by the disease. Recovery of



4

the infected predator population is considered to be density-dependent because of the stressed

environment.

The paper is organized as follows: In section 2, we propose a continuous-time predator-prey

model with a non-infectious disease under density-dependent recovery. All the assumptions

considered in developing the model are described therein. In section 3, the biologically feasible

equilibrium points and their local stability are analyzed. The role of the density-dependent term

is analyzed therein. In Section 4, numerical simulations are done with the help of a hypothet-

ical parameter set which validates our analytical findings. In section 5, a numerical scheme

is described which represents the behaviour of scavengers on system dynamics. In section 6,

mortality of predators towards system dynamics is analysed numerically. In section 7, the linear

mortality is considered as linear harvesting in susceptible predator and scavenger species and

the associated control problem is discussed with the help of Pontryagin’s Maximum Principle.

Section 8 consists of a brief discussion of the outcomes of our proposed model.

2. MODEL FORMULATION

In this section, an eco-epidemiological system consisting of prey–predator–scavenger is pro-

posed mathematically with a disease in the second species in the food web. In order to formulate

the dynamics of such a real life eco-epidemiological system the following hypothetical assump-

tions are adopted:

(1) We consider that predator species have two categories, susceptible and infected.

(2) Let x(t), y(t), z(t) and w(t) represent the densities of the prey, infected predator, suscep-

tible predator and scavenger at time t respectively. It is assumed that the prey species

grows logistically with natural growth rate r1 > 0 while per capita probability to disease

susceptibility is r2 > 0. Per capita death rate of the prey is assumed to be c1 > 0.

(3) We assume that only the susceptible predator class take part in predation in our model.

Preys are consumed by the susceptible predator according to Holling-type II functional

(and numerical) response [36] and by the scavengers in Lotka Volterra type of functional

responses. We assume α > 0 as the attack rate of prey species by susceptible predator,

β > 0 as the conversion coefficient and h as the half saturation constant. Conversion
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coefficient of the scavenger due to predation is considered to be d > 0. Sustainable en-

ergy of the predator together with their growth in terms of offspring has been considered

implicitly in the energy conversion factor.

(4) We have not considered here any horizontal transmission from the same species. The

surrounding environment having pathogens, have been considered as responsible for

disease transmission.

(5) In our model, the recovery from infected to susceptible predator is density-dependent

term by(1−c2y), where b is the maximum per capita recovery rate of the infected preda-

tor and c2 is the (crowding factor). The density dependent recovery is not used till now

so far as author’s knowledge. However, density dependent conversion in stage struc-

tured species is done by Abrams et al. [17]. This is quite practical where recovery is

dependent on treatment from outside and there is a chance of density may exceed the

carrying capacity of the treatment facility and some has to depend his own capability of

recovery resulting in lower recovery as desired. We are assuming that normal recovery

is prolonged and m1 is the mortality due to disease. The death rate is considered as

constant.

(6) The scavenger species scavenges the predator species and itself a predator of the prey

species. The population of scavenger benefits from naturally died predator with benefit

rate e > 0 while the predation rate towards the prey species is p > 0.

(7) Intrinsic death rate of the infected predator population is considered to be m1 > 0, while

in the absence of the prey species, the susceptible predators decays exponentially with

intrinsic death rate m2 > 0. The scavenger in the absence of prey species and all other

resources of food also decays exponentially with natural death rate µ > 0.

(8) The strength of the intra-specific competition among scavengers is considered to be

n > 0, where the term nw2 is referred to the crowding effect among scavenger class.
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According to the above hypothesis the dynamics of the above food web system can be de-

scribe mathematically as follows:

dx
dt

= r1x(1− c1x)− αxz
h+ x

− pxw

dy
dt

= r2z−by(1− c2y)−m1y

dz
dt

= by(1− c2y)+
βαxz
h+ x

−m2z

dw
dt

= dxw+ ew(y+ z)−µw−nw2

(1)

with initial conditions: x(t)> 0, y(t)> 0, z(t)> 0, w(t)> 0.

Theorem 2.1. All the solutions of the system (1) with the given initial condition, which initiate

in R+
4 are uniformly bounded.

Proof. Define a function, G(t) = x(t)
r1

+y(t)+z(t)+w(t) and then by taking the derivative along

the solution of system (1),we get

dG
dt
≤ x(1− c1x)−by(1− c2y)−m1y−m2z−µw−nw2

where η = min{m1,m2,µ} then we get

dG
dt

+ηG≤ x(1+
η

r1
− c1x)−by(1− c2y)− (m1−η)y− (m2−η)z− (µ−η)w−nw2

dG
dt

+ηG≤ x(1+
η

r1
− c1x)

dG
dt

+ηG≤
(1+ η

r1
)2

4c1

dG
dt

+ηG≤ K

where K =
(1+ η

r1
)2

4c1

Now, by using Gronwall lemma,

0 < G(t)≤ G(0)e−ηt− K
η

(
e−ηt−1

)
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Thus G(t) ≤ K
η

as t → ∞ that is independent of initial conditions and hence the system (1) is

bounded. �

3. DYNAMICAL SCENARIO OF THE MODEL

The dynamical scenario of the model is discussed by studying the evolution of the population

trajectory of the system with the help of equilibrium points and their stability. The effect of

stress due to crowding which hinders the recovery of the infected predator population is also

analysed. We assume dx
dt = Ψ1, dy

dt = Ψ2, dz
dt = Ψ3, dw

dt = Ψ4 for discussion in equilibrium points

and their existences.

3.1. Equilibrium points. The ecologically feasible possible equilibria of system (1) are

(i) The trivial equilibrium E0(0,0,0,0) where all populations are extinct, which always exists.

(ii) The axial equilibrium E1

(
1
c1
,0,0,0

)
which always exists without any parameter condition.

(iii) Predator free equilibrium E2

(
−µ(−p)−nr1

c1nr1+d p ,0,0,−c1µr1−dr1
c1nr1+d p

)
which also exists under the

sufficient condition c1µ < d.

(iv) Positive equilibrium: We discuss the feasibility of positive equilibrium E∗(x∗,y∗,z∗,w∗),

where w∗ = σ1, z∗ = σ2, y∗ = σ3 are obtained by solving nullclines of scavenger, susceptible

predator, infected predator respectively and x∗ is obtained from the cubic equation

φ1x3 +φ2x2 +φ3x+φ4 = 0

where φ1 = σ4,φ2 = σ5,φ3 = σ6,φ4 = σ7 obtained from prey nullcline. Although, it is desired

to know population status in parametric form, we bring in the whole tuple

(x,y,z,w,r1,c1,α,h, p,r2,b,c2,m1,β ,m2,d,e,µ,n) to explain the existence of positive equilib-

rium. Let

R= {x̂ = (x∗,y∗,z∗,w∗,r1,c1,α,h, p,r2,b,c2,m1,β ,m2,d,e,µ,n) : x̂ 6= 0,Ψi(x̂) = 0, i = 1,2,3,4}

and R+= {x̂ ∈ R : x̂ > 0}. Let I be the ordered set of all components of x̂, which are independent

in the model and D be the corresponding dependent one. Clearly, D = (x1,x2,x3,x4) where

x1 = x∗, x2 = y∗, x3 = z∗, x4 =w∗ and the tuple I consists of remaining components (parameters)

of x̂. For xi = xi(I), i = 1,2,3,4 and if D > 0 for a suitable choice of I > 0, then x̂ ∈ R+.

To clearify that R+ 6= 0, we consider B = {x̂ ∈ R|z∗ = x∗+h} and B+ = {x̂ ∈ B|x̂ > 0} ⊆ R+.
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Solving Ψi(x̂) = 0, i= 1,2,4 one can get x∗= σ8, y∗= σ9, w∗= σ10. Again Ψ3(x̂) = 0 is solved

for β . β so obtained along with x∗,y∗,w∗ results x̂ ∈ B. We consider this x̂, D = (x1,x2,x3,x4)

where x1 = x∗, x2 = y∗, x3 = β , x4 = w∗ and the touple I contains remaining parameters of the

system. We want to find suitable I > 0 such that D > 0, because if D > 0, z∗ > 0 then ultimately

x̂ ∈ B+ ⊆ R+.

If x1 > 0 then y∗ > 1
c2

then x3 > 0. Interchanging y∗ and µ among the sets D and I, and

solving the equation Ψ2(x̂) = 0 for µ , one can get x2 = µ = σ11. Now, x2 > 0 iff n < ∆1
∆2

under

∆2 < 0. Further ∆1 < 0 imply that 0 < n < ∆1
∆2

. Therefore, ∆1 < 0, ∆2 < 0 together with y∗ > 1
c2

are implied by σ12 which is a sufficient condition for existence of the positive equilibrium.

Here,

σ1 =
dx+ ey+ ez−µ

n

σ2 =
by(c2y−1)(h+ x)
−hm2−m2x+αβx

σ3 =
b(−m2(h+ x)+ r2(h+ x)+αβx)+m1 (αβx−m2(h+ x))

bc2 (−m2(h+ x)+ r2(h+ x)+αβx)

σ4 =−bc2 (αβ −m2 + r2)
2 (c1nr1 +d p)

σ5 = bc2 (αβ −m2 + r2)(m2 (nr1 (2c1h−1)+ p(2dh−µ))+nr1 (αβ + r2 (1−2c1h))

+ p(αβ µ + r2(µ−2dh))− ep(αβ +m1−m2 + r2)(b(αβ −m2 + r2)+m1 (αβ −m2))

σ6 =−bh(m2− r2)(c2 (m2 (nr1 (c1h−2)+ p(dh−2µ))+nr1 (2αβ + r2 (2− c1h))

+ p(2αβ µ + r2(2µ−dh))−2ep(αβ −m2 + r2)−m1 (−m2 (2behp+αbn+2αβehp+2ehpr2)

+αbβ (ehp+αn)+ r2(2behp+αbn+αβehp)+2ehm2
2 p+m2

1 (m2(2ehp+αn)−αβ (ehp+αn))

σ7 = h
(
−bh(m2− r2)

2 (ep− c2 (nr1 +µ p))+m1 (m2− r2)(behp+αbn− ehm2 p)+m2m2
1(ehp+αn)

)
σ8 =

−ehp− epy−αn+nr1 +µ p
c1nr1 +d p+ ep

σ9 =

√
(b(c1nr1+p(d+e))+m1(c1nr1+p(d+e))+epr2)2−4bc2r2(c1nr1+p(d+e))(r1(c1hn+n)+dhp−αn+µ p)

(c1nr1+p(d+e))2

2bc2
+

b+ epr2
c1nr1+p(d+e) +m1

2bc2

σ10 =−
α + c1r1x− r1

p

σ11 =
−bc2y2 (c1nr1 + p(d + e))+by(c1nr1 + p(d + e))−m2 (nr1 (c1h+1)+ p(dh− ey+µ)+α(−n))

α (ep(h+ y)+αn−nr1−µ p)
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σ12 = r1 > 0∧0 < α < r1∧ c2 > 0∧ y >
1
c2
∧m1 > 0∧0 < b <

m1

c2y−1
∧ r2 > 0∧0 < h <

−bc2y2 +by+m1y
r2

∧ e > 0∧d > 0∧0 < c1 <
αr2− r1r2

bc2r1y2−br1y+hr1r2−m1r1y
∧ p > 0∧0 < n

<
−bc2d py2−bc2epy2 +bd py+bepy−dhpr2 +dm1 py+ em1 py+ epr2y

bc1c2r1y2−bc1r1y+ c1hr1r2− c1m1r1y−αr2 + r1r2

∆1 =−bc2d py2−bc2epy2 +bd py+bepy−dhpr2 +dm1 py+ em1 py+ epr2y

∆2 = bc1c2r1y2−bc1r1y+ c1hr1r2− c1m1r1y−αr2 + r1r2

When c2 = 0, the system in the immature form i.e., the infected population is not too high to bring

the crowding stress effect c2. Taking c2 = 0, we get the positive equilibrium E∗ (x∗,y∗,z∗,w∗) where

z∗ = y∗(b+m1)
r2

and w∗ =−αby∗+r1r2(c1x∗−1)(h+x∗)+αm1y∗

pr2(h+x∗)

We determine x∗ from the nullcline of the adult predator species. Thus, x∗ is a positive solution of the

equation:

(2) y∗
(
(b+m1)(αβx∗−m2(h+ x∗))

r2(h+ x∗)
+b
)
= 0

which is found to be x∗ =− h(bm2−br2+m1m2)
α(−b)β+bm2−br2−αβm1+m1m2

provided that αbβ +αβm1 > m2 (b+m1)

After computing x∗, we determine y∗ from the nulcline of the scavenger species. Thus y∗ is a positive

solution of the equation

(3)
(α(−b)y+ r1r2 (h+ x∗)−αm1y)(by(ep(h+ x∗)+αn)+ r2 (h+ x∗)(p(dx∗+ ey−µ)−nr1)+m1y(ep(h+ x∗)+αn))

p2r2
2 (h+ x∗)2 = 0

which is found to be

y∗ = βhr2(b(−m2(p(dh+µ)+nr1)+p(αβ µ+r2(dh+µ))+nr1(αβ+r2))+m1(αβ (nr1+µ p)−m2(p(dh+µ)+nr1)))
(b(αβ−m2+r2)+m1(αβ−m2))(bβehp−bm2n+αbβn+bnr2+m1(βehp−m2n+αβn)+βehpr2)

Substituting x∗ in w∗,

w∗ =
bm2y∗−br2y∗+α(−b)βy∗+βhr1r2 +m1y∗ (m2−αβ )

βhpr2

w∗ is positive for the necessary condition hβ r1−by∗ > 0.

x∗, y∗, z∗, w∗ are positive under the necessary condition,

(4)
m1 (αβ (nr1 +µ p)−m2 (p(dh+µ)+nr1))

m2 (p(dh+µ)+nr1)− p(αβ µ + r2(dh+µ))−nr1 (αβ + r2)
< b <− m1m2

m2− r2

(v) The Scavenger free equilibrium:
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Case (a): c2 6= 0

We discuss the feasibility of scavenger free equilibrium E3(x̄, ȳ, z̄,0). If

R = {x̂ = (x̄, ȳ, z̄,0,r1,c1,α,h, p,r2,b,c2,m1,β ,m2,d,e,µ,n) : x̂ 6= 0,Ψi(x̂) = 0, i = 1,2,3,4}

Then R+ = {x̂ ∈ R : x̂ > 0} is the set of scavenger free equilibrium points.

If x̂ ∈ R then z̄ = t1, ȳ = t2 and x̄ can be solved from the equation

(5) φ1x3 +φ2x2 +φ3x+φ4 = 0

where φ1 = t3, φ2 = t4, φ3 = t5, φ4 = t6.

Now, x̂∈ R+ iff D = (x1,x2,x3)> 0 where x1 = x̄, x2 = ȳ, x3 = z̄ for a suitable choice of the tuple

I > 0 consisting of remaining components of x̂. By solving equation(5) for β , and interchanging

x,β between D and I, implies x1 = β . Clearly D > 0 iff

(i) 0 < c1 <
1
x ,

αβx
h+x + r2 > m2,0 < α < m2(h+x)

βx ,0 < r1 <− αm1
c2(c1x−1)(−m2(h+x)+r2(h+x)+αβx)

or

(ii) 0 < c1 <
1
x ,α > m2(h+x)

βx ,r1 >− αm1
c2(c1x−1)(−m2(h+x)+r2(h+x)+αβx)

In a similar procedure like positive equilibrium, we consider

B = {x̂ ∈ R|z̄ = x̄+h} and B+ = {x̄ ∈ B|x̂ > 0} ⊆ R+

If x̂∈B, then x̄= t7, ȳ= t8 obtained from Ψi(x̂)= 0, i= 1,2 and β = t9, obtained from Ψ3(x̂)= 0.

We find a condition for x̂ ∈ B+. Here D = (x1,x2,x3), x1 = x̄, x2 = ȳ, x3 = β .

Further interchanging ȳ and m1 among D and I by solving Ψ2(x̂) = 0 for m2,

we get x2 = m1 = t10. It can be easily checked that D > 0 iff t11 holds.

t1 =
by(c2y−1)(h+ x)
−hm2−m2x+αβx

t2 =
−bhm2 +bhr2−bm2x+br2x+αbβx−hm1m2 +αβm1x−m1m2x

bc2 (−hm2 +hr2−m2x+ r2x+αβx)

t3 =−bc1c2r1 (αβ −m2 + r2)
2

t4 = bc2r1 (αβ −m2 + r2)(αβ +m2 (2c1h−1)+ r2 (1−2c1h))

t5 =−bc2hr1 (m2− r2)(2αβ +m2 (c1h−2)+ r2 (2− c1h))−αbm1 (αβ −m2 + r2)+αm2
1 (m2−αβ )

t6 = h
(
bc2hr1 (m2− r2)

2 +αbm1 (m2− r2)+αm2m2
1
)

t7 =
r1−α

c1r1
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t8 =

√
(−b−m1) 2−4bc2

(
− αr2

c1r1
+ r2

c1
+hr2

)
+b+m1

2bc2

t9 =
bc1r1y(1− c2y)+m2 (α− r1 (c1h+1))

α (α− r1)

t10 =
bc1c2r1y2−bc1r1y+ c1hr1r2−αr2 + r1r2

c1r1y

t11 = y≥ 1
c2

or 0 < y <
1
c2
,0 < b <

−c1hm2r1 +αm2−m2r1

c1c2r1y2− c1r1y
,r2 >

bc1r1y−bc1c2r1y2

−α + c1hr1 + r1

Case (b): c2 = 0

In the immature form of the system, the infected population is not too high to bring the crowding

stress effect c2. Taking c2 = 0, we get the scavenger free equilibrium E3 (x3,y3,z3,0)

where

x3 =− h(m2(b+m1)−br2)
m1(m2−αβ )−b(αβ−m2+r2)

, y2 =
βhr1r2(b(αβ−m2(c1h+1)+c1hr2+r2)+m1(αβ−m2(c1h+1)))

(b(αβ−m2+r2)+m1(αβ−m2))2

z3 =
βhr1(b+m1)(b(αβ−m2(c1h+1)+c1hr2+r2)+m1(αβ−m2(c1h+1)))

(b(αβ−m2+r2)+m1(αβ−m2))2

which exists for r2 > m2 and c1hm2m1−αβm1+m2m1
αβ−c1hm2+c1hr2−m2+r2

< b <− m1m2
m2−r2

.

3.2. Stability analysis of the equillibria: Jacobian Matrix for the model is


−pw+ xzα

(h+x)2 − xc1r1 +(1− xc1)r1− zα

h+x 0 − xα

h+x −px

0 byc2−b(1− yc2)−m1 r2 0
zαβ

h+x −
xzαβ

(h+x)2 b(1− yc2)−byc2
xαβ

h+x −m2 0

dw ew ew −2nw+dx+ e(y+ z)−µ


(i) Stability of Vanishing equilibrium:

Eigen values of the Jacobian matrix at E0 are:

−µ,r1,
1
2 (−b−m1−m2−φ1) ,

1
2 (−b−m1−m2 +φ1)

where,

φ1 =
√

(b+m1 +m2) 2−4(bm2−br2 +m1m2) and φ1 > 0

Clearly one of the eigen value r1 > 0, therefore the vanishing equilibrium E0 is a saddle point.

(ii) Stability of the axial equilibrium:

Eigen values of the stability matrix at E1 are d−c1µ

c1
, −r1 and

1
2c1 (c1h+1)

(
−bc2

1h−bc1 +αβc1− c2
1hm1− c2

1hm2− c1m1− c1m2 ±
√

ω̄
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where

ω̄ = c2
1
(
(αβ + c1h(b+m1−m2)+b+m1−m2)

2 +4br2 (c1h+1) 2)
Since ω̄ > 0 therefore the axial equilibrium is always locally asymptotically unstable.

(iii) Stability of predator free equilibrium:

Eigen values of the stability matrix at E2 are

−(h+ x2)(r1 (2c1x2−1)−dx2 +µ +w2(2n+ p))±√ω1 (h+ x2)

2(h+ x2)

−bh−bx2−hm1−hm2−m1x2−m2x2 +αβx2±
√

ω2

2(h+ x2)

ω1 =−2r1 (2c1x2−1)(−dx2 +µ +w2(2n− p))+ r2
1 (1−2c1x2)

2−

2w2 (dx2(2n+ p)+µ(p−2n))+(µ−dx2)
2 +w2

2(p−2n)2

ω2 = (h(b+m1 +m2)+ x2 (−αβ +b+m1 +m2))
2−4(h+ x2)(m2 (b+m1)(h+ x2)

−br2 (h+ x2)−αβx2 (b+m1)

where x2 = − µ(−p)−nr1
c1nr1+d p , w2 = − c1µr1−dr1

c1nr1+d p . The predator free equilibrium E2 is locally asymptotically

stable under the conditions: 2r1c1x2 > dx2 + r1; b > αβ and ω1,2 < 0 along with the positiveness of x2

and w2.

(iv) Stability of scavenger free equilibrium:

Jacobian matrix at scavenger free equilibrium E3 is



xzα

(h+x)2 − zα

h+x − xc1r1 +(1− xc1)r1 0 − xα

h+x −px

0 byc2−b(1− yc2)−m1 r2 0
zαβ

h+x −
xzαβ

(h+x)2 b(1− yc2)−byc2
xαβ

h+x −m2 0

0 0 0 dx+ e(y+ z)−µ


The characteristic polynomial of the Jacobian matrix at E3 is a0λ 3 +a1λ 2 +a2λ +a3 where one of the

eigen values is λ1 = dx+e(y+ z)−µ . According to Routh Hurwitz criteria E3 will be locally asymptot-

ically stable iff a1,a2 > 0 and ∆ = a3(a1a2−a0a3)> 0. To show ∆ > 0 it is sufficient to show a3 > 0.

Putting z = by(c2y−1)(h+x)
−hm2−m2x+αβx ; y = −bhm2+bhr2−bm2x+br2x+αbβx−hm1m2+αβm1x−m1m2x

bc2(−hm2+hr2−m2x+r2x+αβx) in the nullcline of suscep-

tible predator we obtain b. With the positiveness condition of z,y and b, λ1 is negative for the sufficient

conditions:
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m2 <
αβx
h+ x

+ r2;d <
µ

x
;x > 0

αm1(dx−µ)

r1 (c1x−1)(m1(h+ x)−m2(h+ x)+hr2 + r2x+αβx)
> e

c1 <
1
x

;α <
m2(h+ x)

βx
αm1

r1 (c1x−1)(−m2(h+ x)+ r2(h+ x)+αβx)
+ c2 < 0

Now, a1 > 0 under the sufficient condition,

0 < t6 < 1; t1 > 0;0 < t3 < 1; t2 > 0;
1
2
≤ t4 < 1;x > 0;0 < t5 < 1

Under the positivity condition of a1 > 0, a2 > 0 under the sufficient conditions:

r1 > 0;
m2(t5−1)(h+ x)
2ht4 +4t4x−2x

+ r1 < 0; t1 > 0

t6 > 0; t6 ≤
r1(x− t4(h+2x))

m2(t5−1)(h+ x)+ r1(ht4 +(2t4−1)x)

t1 > 0;
m2(t5−1)(h+ x)
2ht4 +4t4x−2x

+ r1 ≥ 0; t6 > 0; t6 < 1

Now ∆ = a3(a1a2−a0a3)> 0 for the sufficient condition
−ht4t6−2t4t6x+t6x

ht4−ht6−h−2t4t6x+t6x ≤ t5 < 1;0 < t3 < 1;0 < t6 < 1; 1
2 ≤ t4 < 1; t1 > 0

for r1 = t7− m2(t5−1)(h+x)
2ht4+4t4x−2x where t7 > 0.

(v) Stability of positive equilibrium: The Jacobian matrix J(Ai j) at E∗ is


−pw∗+(1−2x∗c1)r1− hz∗α

(h+x∗)2 0 − x∗α
h+x∗ −px∗

0 −b−m1 r2 0
hz∗αβ

(h+x∗)2 b x∗αβ

h+x∗ −m2 0

dw∗ ew∗ ew∗ −2nw∗+dx∗+ e(y∗+ z∗)−µ


The characteristic equation corresponding to the Jacobian matrix is

λ
4 +D1λ

3 +D2λ
2 +D3λ +D4 = 0
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Here,

D1 =
4

∑
i=1

Aii

D2 =
3

∑
i=1

4

∑
j=i+1

AiiA j j−
3

∑
i=1

4

∑
j=i+1

Ai jA ji

D3 ==
4

∑
i=1

3

∑
j 6=i

4

∑
k= j+1,k 6=i

AiiA jkAk j−
2

∑
i=1

3

∑
j=i+1

4

∑
k= j+1

AiiA j jAkk−
2

∑
i=1

4

∑
j=i+1

4

∑
k 6= j,k>i

Ai jA jkAki

According to Routh–Hurwitz criteria, the positive equilibrium is locally asymptotically stable iff

D1,D3,D4 > 0 and ∆2 = D1D2D3−D2
3−D2

1D4 > 0

4. NUMERICAL SIMULATION

In this section, numerical simulations are conducted to validate the analytical findings of system (1)

numerically. For this purpose, we have adopted the following hypothetical parameter values:

r1 = 1;r2 = 0.5; p = 0.4;d = 1.5;m1 = 0.3;h = 1;m2 = 0.2;α = 0.3;β = 0.2;d = 0.3;e = 0.4;

c1 = 0.04; µ = 0.2.

In case of the positive equilibrium E∗ one can numerically verify that limc2→0(x∗,y∗,z∗,w∗) = (x̂, ŷ, ẑ, ŵ)

i.e., decreasing the parameter value c2 which is actually the crowding factor of predators, the positive

equilibrium of system (1) tends to positive equilibrium of the system without crowding factor (c2 = 0).

It can be observed from Figure(1) that as stress value c2 decreases, the equilibrium value of x∗ and w∗

decreases and the equilibrium value of y∗ and z∗ increases. It is clear that the equilibrium value of x∗ and

w∗ becomes minimum at c2 = 0, and the equilibrium value of y∗ and z∗ maximum at c2 = 0.

In similar way for scavenger free equilibrium one can numerically verify that limc2→0(x̄, ȳ, z̄) = (x̂, ŷ, ẑ)

It can be observed from Figure(2) that as stress value c2 decreases, the equilibrium value of x̄ and z̄

decreases and attains a minimum value at c2 = 0.

Now,using the parameter values mentioned in the beginning of Section 4, from the threshold condition

(4) of existence of the positive equilibrium under c2 = 0 we obtain

0.131034 < b < 0.2

Clearly for 0.131034< b< 0.2, D1 > 0,D2 > 0,D3 > 0. All the population persist when b∈ (0.131034,0.2).

Within this range we compute the values of D4 and D1D2D3−D2
3−D2

1D4. It is observed that within the

range D4 is always positive but (D1D2D3−D2
3−D2

1D4) changes its stability (Figure3).
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(A) (B)

(C) (D)

FIGURE 1. Depicts limc2→0(x∗,y∗,z∗,w∗) = (x̂, ŷ, ẑ, ŵ); (A) x∗ Vs c2, (B) y∗ Vs

c2, (C) z∗ Vs c2 (D) w∗ Vs c2

(D1D2D3−D2
3−D2

1D4) remains positive within b ∈ (0.131034,0.188049) and become negative other-

wise. Thus all the population coexist at stable steady state for all b∈ (0.131034,0.188049). In particular,

when the b = 0.186 the coexisting equilibrium (0.1682,1.1005,1.0697,1.7964) is stable and the popu-

lation experience cyclic dynamics at b = 0.193491.
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Origin is the value of x,y when c2=0

.Data has been plot upto 10-7<= c2<=1

(B)

0.005 0.010 0.015 0.020
c2

0.0

0.5

1.0

z

Origin is the value of x,y when c2=0

.Data has been plot upto 10-7<= c2<=1

(C)

FIGURE 2. (A) x̄ Vs c2, (B) ȳ Vs c2, (C) z̄ Vs c2

We fix b= 0.2 along with the other parameter values mentioned in the beginning of Section 4. Clearly,

the corresponding equilibrium is unstable (Figure:3). Now, we check the stability nature of the equilib-

rium of the complex model when c2 is increased. Clearly, D1,D2,D3 > 0. All the population coexists

for c2 ∈ [0.007,1] (Figure:4). It is also found that D1,D2,D3,D4 remains positive within this interval.

Moreover, in this interval ∆2 = (D1D2D3−D2
3−D2

1D4)> 0. Therefore, we can conclude that increasing

crowding factor of the predators has a stabilizing effect on the system dynamics.
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FIGURE 3. (A) b Vs D3,(B) b Vs D4,(C) b Vs ∆2 (D) b Vs ∆2(enlarge)

5. BEHAVIOUR OF SCAVENGER

5.1. Effect of recovery rate and mortality rate of scavengers : a period doubling cascade: We fix

the parameters c2 = 0.06; b = 0.21 keeping the other parameters fixed as mentioned in section 4. With

these parameter values all the species coexists with equilibrium (0.1569,1.1005,1.0714,1.7897). In-

creasing the death rate of scavengers i.e., µ (keeping other parameters fixed), all of the species undergoes

oscillatory behaviour. All the species enters a cyclic dynamics in the region when µ ∈ (0.722050,3.175599).

In Figure 5 the points H1 = 0.722050,H2 = 3.175599 are Hopf bifurcation points which are calculated
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FIGURE 4. (A) c2 Vs D4,(B) c2 Vs ∆2

using MatCont 6.0[39]. Here, our main attention is to examine the effect of recovery rate of infected

predator on all of the species. Now setting b ≈ 0.21 and varying µ (keeping other parameters fixed) all

the species undergoes a period doubling bifurcation which results a chaotic dynamics. Figure 6 depicts

the coexisting equilibrium undergoes a Hopf bifurcation at µ = 0.5190769 and µ = 4.078909 (H1,H2

respectively). Further it undergoes a period doubling bifurcation at µ = 2.552255 and µ = 3.787953

(PD1,PD2 respectively) which results a chaotic dynamics. For µ = 0.4, the all the population coexists

(Figure:7). For µ ∈ (0.5190769,2.552255) the system undergoes period-2 bifurcation. Figure 8 depicts

period-2 bifurcation for µ = 1.5. Continuous increase in the magnitude of µ results in successive period

doubling and ultimately we find chaotic attractor. We find periodic attractor with period-4, period-8 and

period-16 for µ ∈ (2.552255,2.72545), µ ∈ (2.72545,2.77202), µ ∈ (2.77202,2.78322) respectively

[Figure (9)-Figure (11)]. Further increase in the magnitude of µ results chaotic dynamics which can be

seen in Figure (12) and Figure(13) respectively. The whole period doubling casecade for varying µ can

be observed in Figure(14).

5.2. Effect of predation rate of scavengers towards prey: We fix the parameter d = 0.17 and keep-

ing other parameters as mentioned in section 4. It is observed that all the species enters a cyclic dynamics

when µ ∈ (−0.027483,3.558740) (Points H1,H2 in Figure15). Since all the parameter values must be

positive so we can consider the region as µ ∈ (0,3.558740). Here our main attention is to examine

the effect of predation rate of scavengers towards prey and it’s natural mortality on the whole system.
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FIGURE 5. Hopf bifurcation with respect to the bifurcation parameter µ

FIGURE 6. Hopf and period doubling bifurcation with respect to the bifurcation

parameter µ for b≈ 0.21

Now setting d = 0.17 and increasing µ (keeping other parameter values fixed) it is observed that at

µ = 3.017307 the system undergoes period doubling bifurcation. Numerical calculations reveals that on

further increasing µ the system undergoes another period doubling at µ ≈ 3.088. On further increasing

µ the system becomes stable again at µ = 3.558740 (Figure 16).

5.3. Removing scavenger population. In this subsection, we examine whether the mortality of scav-

enger species can result a positive hydra effect. First we check for the system with c2 = 0. We fix
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(A) (B)

FIGURE 7. For µ = 0.4: (A) Time series for stable solution w, (B) Stable solu-

tion in the positive xzw-octant

(A) (B)

FIGURE 8. For µ = 1.5: (A) Time series for periodic solution w, (B) Periodic

solution in the positive xzw-octant.
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(A) (B)

FIGURE 9. For µ = 2.6: (A) Time series for periodic solution w, (B) Periodic

solution in the positive xzw-octant.

(A) (B)

FIGURE 10. For µ = 2.76: (A) Time series for periodic solution w, (B) Periodic

solution in the positive xzw-octant.
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(A) (B)

FIGURE 11. For µ = 2.78: (A) Time series for periodic solution w, (B) Periodic

solution in the positive xzw-octant.

(A) (B)

FIGURE 12. For µ = 2.788: (A) Time series for periodic solution w, (B) Peri-

odic solution in the positive xzw-octant.
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(A) (B)

FIGURE 13. For µ = 2.87: (A) Time series for periodic solution w, (B) Periodic

solution in the positive xzw-octant.
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w

FIGURE 14. Bifurcation diagram with respect to the parameter µ

b = 0.186 along with the other parameters as mentioned in the beginning of section 4 for which all the

species coexists for µ ∈ (0,0.257135]. With these parameter values when mortality rate of scavenger

species is increased it is observed that there is no hydra effect appears in scavenger population. Next for

the system with c2 6= 0 again we set b = 0.186 and c2 = 0.06 along with other parameter as above. With
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FIGURE 15. Period doubling scenario with respect to the parameter µ
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FIGURE 16. Bifurcation diagram with respect to the parameter µ

these parameter values all the species coexists when µ ∈ (0,11.422205) . Calculations reveals that there

is a possibility of hydra effect when µ ∈ (2.56,4.292). On increasing the death rate (µ) from µ = 2.56

to µ = 4.292 the biomass of the scavenger species increases which confirms that there is a positive hydra

effect (Figure 17).

6. PREDATOR BEHAVIOUR

6.1. Impact of mortality of infected predators. In this subsection, we examine whether the mortality

of infected predator species can result a positive hydra effect. For b = 0.186 and c2 = 0 along with the

other parameter values fixed, it is observed that all the populations coexists for m1 ∈ (0.279,0.426). It
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(A) (B)

(C) (D)

FIGURE 17. Depicts stable stocks for all the population when µ is increased.

Biomass of all the population are increased for µ ∈ (2.56,4.292),(D) confirms

the existence of hydra effect.

can be seen that with increasing mortality of the susceptible predator, biomass both the prey and scav-

enger population are increased, while biomass of both the predator decreases. There is no increase in

the biomass of the infected predator population is observed. Thus no hydra effect appears in infected

predator (Figure 18).
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(A) (B)

(C) (D)

FIGURE 18. Depicts stable stocks for all the population when m1 is increased.

Biomass of all the population are coexists for m1 ∈ (0.279,0.426). Hydra effect

cannot be appeared at stable biomass on infected predator.

Next, for the system under c2 6= 0 we set b = 0.186 and c2 = 0.06 along with the other parameter val-

ues fixed. It is observed that all the populations coexists for m1 ∈ (0.258,0.421). It can be seen that with

the increasing mortality rate of susceptible predator, biomass of both the prey and scavenger population

are increased, while biomass of both the predator decreases. Thus, no hydra effect appears in infected

predator(Figure19).

6.2. Impact of mortality of susceptible predators. In this subsection, we examine whether the mor-

tality of susceptible predator species can result a positive hydra effect. For b = 0.186 and c2 = 0



27

(A) (B)

(C) (D)

FIGURE 19. Depicts stable stocks for all the population when m1 is increased.

Biomass of all the population are coexists for m1 ∈ (0.258,0.421). Hydra effect

cannot be appeared at stable biomass on infected predator.

along with the other parameter values fixed, it is observed that all the populations coexists for m2 ∈

(0.191,0.239). It can be seen that with increasing mortality rate of susceptible predator, biomass of both

the prey and scavenger population are increased, while biomass of both the predator decreases. Thus, no

hydra effect appears in susceptible predator (Figure20).
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(A) (B)

(C) (D)

FIGURE 20. Depicts the variations of all the population. The stock correspond-

ing to the stable equilibrium exists when m2 ∈ (0.191,0.239). Hydra effect can-

not be appeared at stable biomass on susceptible predator.

Next, for the system under c2 6= 0 we set b = 0.186 and c2 = 0.06 along with the other parameter

values fixed. It is observed that all the populations coexists for m2 ∈ [0.2,0.238111]. It can be seen

that with the increasing mortality rate of susceptible predator, biomass of both the prey and scavenger

population are increased, while biomass of both the predator decreases. Thus, no hydra effect appears in
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infected predator (Figure 21).

(A) (B)

(C) (D)

FIGURE 21. Depicts the variations of all the population. The stock correspond-

ing to the stable equilibrium exists when m2 ∈ [0.2,0.238111]. Hydra effect

cannot be appeared at stable biomass on susceptible predator.
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7. HARVESTING OF SUSCEPTIBLE PREDATORS AND SCAVENGERS

In such environment no disease free equilibrium is obtained i.e., the system will not become free of

disease until the whole susceptible predator population is transferred into another disease free environ-

ment. The natural death rates can be considered as harvesting rate. Here we are providing a scenario

by adopting the mortality rate due to harvesting. Ignoring the natural mortality rates of the suscepti-

ble predators and scavengers, a harvesting policy is proposed by considering m2 = q1ξ1 and µ = q1ξ2

, where q1,q2 are catchability coefficients for susceptible predator and scavenger species and ξ1,ξ2 are

respectively the efforts while harvesting them. Then the system (1) becomes,

dx
dt

= r1x(1− c1x)− αxz
h+ x

− pxw

dy
dt

= r2z−by(1− c2y)−m1y

dz
dt

= by(1− c2y)+
βαxz
h+ x

−q1ξ1z

dw
dt

= dxw+ ew(y+ z)−q2ξ2w−nw2

(6)

7.1. Optimal Harvesting Policy. In this section, we discuss to obtain an optimum revenue by harvest-

ing susceptible predator and scavenger species. For this we follow the process adopted by Pal et al. and

Gupta et al.[[6, 38]]. Let h1,h2 are the price of per unit biomass of the predator and scavenger species

respectively and k1,k2 are the harvesting cost per unit of the corresponding. Then the net economic

revenue is given by,

P(t,z,w,ξ1,ξ2) = (h1q1z− k1)ξ1(t)+(h2q2w− k2)ξ2(t)

which is optimized by the objective function

(7) J(ξ1,ξ2) =
∫

∞

0
e−δ t {P(t,z,w,ξ1,ξ2)}dt

such that the harvesting species donot become extinct. Here δ is the continuous annual discount rate

which is fixed by harvesting companies. Pontryagin’s maximum principle is used to determine the opti-

mal solution of this problem. The associated Hamiltonian function is given by,

H(t,x,y,z,w,ξ1,ξ2) = (h1q1z− k1)ξ1e−δ t +(h2q2w− k2)ξ2e−δ t+

+λ1[r1x(1− c1x)− αxz
h+ x

− pxw]+λ2[r2z−by(1− c2y)−m1y]+

+λ3[by(1− c2y)+
βαxz
h+ x

−q1ξ z]+λ4[dxw+ ew(y+ z)−q2ξ w−nw2]

(8)
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where λi = λi(t), i = 1,2,3,4 are adjoint corresponding to the variables x,y,z,w respectively. We have,

∂H
∂ξ1

= eδ (−t) (h1q1z− k1)−λ3q1z = ψ1(t)

∂H
∂ξ2

= eδ (−t) (h2q2w− k2)−λ4q2w = ψ2(t)
(9)

The corresponding optimal harvest policy is

Γi(t) =


Γmax

i (t) when ψi(t)> 0

0 when ψi(t)< 0,

Γ∗i (t) when ψi(t) = 0

For i = 1,2 and the singular control is Γ∗i (t) such that 0 < Γ∗i (t)< Γmax
i (t)

For singular control we have ψi(t) = 0, i = 1,2 hence from (8), we get,

λ3 = eδ t
(

h1−
k1

q1z

)
λ4 = eδ t

(
h2−

k2

q2w

)(10)

In order to find a singular control, Pontryagin’s Maximum Principle [37] is utilized and the adjoint

variables must satisfy the adjoint equations given by

dλ1

dt
=−∂H

∂x
dλ2

dt
=−∂H

∂y

dλ3

dt
=−∂H

∂ z
dλ4

dt
=−∂H

∂w

(11)

From (8) and (11) we have

dλ1

dt
= λ1

(
−
(
−c1r1x+ r1 (1− c1x)+

αxz
(h+ x)2 −

αz
h+ x

− pw
))
−dλ4w−λ3

(
αβ z
h+ x

− αβxz
(h+ x)2

)
dλ2

dt
= λ2 (−(bc2y−b(1− c2y)−m1))−λ3 (b(1− c2y)−bc2y)− eλ4w

(12)

Using equilibrium conditions, (12) becomes

dλ1

dt
= λ3

(
−
(

αβ z
h+ x

− αβxz
(h+ x)2

))
−dλ4w

dλ2

dt
= λ3 (−(b(1− c2y)−bc2y))− eλ4w

(13)
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Now using (10), the eq. (13) becomes,

dλ1

dt
=

deδ (−t) (k2−h2q2w)
q2

−
eδ (−t) (k1−h1q1z)

(
αβxz
(h+x)2 − αβ z

h+x

)
q1z

dλ2

dt
=

eeδ (−t) (k2−h2q2w)
q2

− eδ (−t) (bc2y−b(1− c2y))(k1−h1q1z)
q1z

(14)

Integrating (14) we get,

λ1 =−
eδ (−t)

(
dk2q1(h+ x)2−q2

(
q1
(
dh2w(h+ x)2 +αβhh1z

)
−αβhk1

))
δq1q2(h+ x)2

λ2 =−
eδ (−t) (ek2q1z−q2 (q1z(h1 (b−2bc2y)+ eh2w)+bk1 (2c2y−1)))

δq1q2z

(15)

Now using (11)and (15) we get,

dλ3

dt
=

r2eδ (−t) (ek2q1z−q2 (q1z(h1 (b−2bc2y)+ eh2w)+bk1 (2c2y−1)))
δq1q2z

+
eeδ (−t) (k2−h2q2w)

q2
−h1ξ1q1eδ (−t)+

αλ1x
h+ x

dλ4

dt
=−

pxeδ (−t)
(
dk2q1(h+ x)2−q2

(
q1
(
dh2w(h+ x)2 +αβhh1z

)
−αβhk1

))
δq1q2(h+ x)2

−h2ξ2q2eδ (−t)

(16)

Integrating (16) we get,

λ3 =
r2eδ (−t) (−2bc2h1q2q1yz+2bc2k1q2y+bh1q2q1z−bk1q2 + eh2q2q1wz− ek2q1z)

δ 2q1q2z

+
eeδ (−t) (h2q2w− k2)

δq2
+

h1ξ1q1eδ (−t)

δ
+

αλ1tx
h+ x

λ4 =−
eδ (−t)

(
q2
(
q1
(
h2(h+ x)2 (d pwx−δξ2q2)+αβhh1 pxz

)
−αβhk1 px

)
−dk2 pq1x(h+ x)2

)
δ 2q1q2(h+ x)2

(17)

Eqs. (10) and (17) give the optimal harvesting efforts as,

ξ1 =−
2bc2k1r2y

δh1q2
1z

+
2bc2r2y

δq1
+

bk1r2

δh1q2
1z
− br2

δq1
+

ek2r2

δh1q1q2
+

ek2

h1q1q2
− eh2r2w

δh1q1

− eh2w
h1q1

− δk1

h1q2
1z
− αδλ1txeδ t

h1q1(h+ x)
+

δ

q1

ξ2 =−
dk2 px
δh2q2

2
+

d pwx
δq2

− αβhk1 px
δh2q1q2(h+ x)2 −

δk2

h2q2
2w

+
αβhh1 pxz

δh2q2(h+ x)2 +
δ

q2

(18)

Hence solving steady state equations together with ξ1 and ξ2 we get the optimal solution (xδ ,yδ ,zδ ,wδ )

and optimal harvesting efforts ξ1 and ξ2.
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8. CONCLUSION AND DISCUSSION

We have proposed a tri-trophic predator-prey community model with a scavenger species. We have

considered that the predator species has a non-infectious disease that can be occurred due to a stressed

environment. As an outcome, one can see that there is no occurrence of disease-free equilibrium. The

main purposes of the paper are to examine (i) the effect of density-dependent recovery on the stability

of the system, (ii) the effect of the mortality rate of scavengers with a different recovery rate of the in-

fected predator as well as predation rate of scavengers towards prey on the coexistence of the system,

(iii) Positive impacts of increasing population mortality on the stock size. Local stability of the equi-

librium points are discussed analytically. The stability nature of the steady states are examined using

Routh–Hurwitz criteria. Among the equilibrium points the scavenger free equilibrium E3 and positive

equilibrium E∗ involves the term c2 which is the crowding factor of predators. Numerical simulations

are conducted with a hypothetical set of parameter values to validate the analytical findings. From

Figure (1), it is observed that decreasing the crowding factor c2 to 0 the positive equilibrium tends to

(0.7690,1.0156,0.9343,2.0266) which is the positive equilibrium under c2 = 0. In aquaculture increas-

ing the crowding factor increases the social stress in the environments, which is responsible for slower

recovery rate in fish. Practically without reducing the stress environment farmers unable to treat the fish

diseases that occur because of the stress environment. For example, in the case of ammonia poisoning

in ponds or fisheries with a high density of fish. Farmers cannot treat the disease without reducing the

density of the fish population. From Figure(1), one can see a continuous dynamics while increasing the

stress from c2 = 0 to c2 = 1. A similar scenario can be observed in the case of scavenger free system

Figure (2). From Figure(3), one can observe that all the population coexists for a small range of recov-

ery rate b under c2 = 0. From Figure(4), it is observed that an unstable equilibrium under zero density

(c2 = 0), which was unstable for a smaller value of disease recovery rate, could be stable for increasing

the value of the density or crowding factor of the predators. It is seen that with a small disease recovery

rate, all the species coexists for a limited rate of crowding factor. We may also conclude that increasing

the crowding factor of the predators has a stabilizing effect on the system dynamics. Besides predation

of the prey, scavengers feed on carcasses of both the predator species. So there is a possible effect of the

disease recovery rate of infected predators on the scavenger species. From Figure(5-14)it is observed that

scavengers along with all the other species appear a period-doubling cascade with an increasing mortal-

ity rate of the scavenger species. All the population undergoes a period-doubling cascade and becomes

stable again. Similar cascades are also observed Figure(15-16) for the mortality rate of scavenger and
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it’s predation rate for the prey. We have examined the influence of linear mortality for both predator

and scavenger species. This mortality could be treated as the harvesting in fishery science. Numerical

simulation in our analysis reveals that the scavenger stock (Figure 17) is increased at a stable state on in-

creasing its own mortality rate under the density-dependent factor. That is a positive hydra effect appears

on scavenger species. Moreover, we have discussed the scenario by considering the linear mortality rate

of susceptible predator and scavenger species as linear harvesting. The associated The control problem

of the model is discussed with the help of Pontryagin’s maximum principle together with an optimal

control policy.
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[13] A. Schröder, A. van Leeuwen, T.C. Cameron. When less is more: positive population-level effects of mortal-

ity. Trends Ecol. Evol. 29 (11) (2014), 614-624.

[14] P.A. Abrams, H. Matsuda. The effect of adaptive change in the prey on the dynamics of an exploited predator

population. Can. J. Fisher. Aquatic Sci. 62 (4) (2005), 758-766.

[15] H. Matsuda, P.A. Abrams. Effects of predator prey interactions and adaptive change on sustainable yield.

Can. J. Fisher. Aquatic Sci. 61 (2) (2004), 175-184.

[16] M.H. Cortez, P.A. Abrams. Hydra effects in stable communities and their implications for system dynamics.

Ecology 97 (5) (2016), 1135-1145.

[17] P.A. Abrams, C. Quince. The impact of mortality on predator population size and stability in systems with

stage-structured prey. Theor. Popul. Biol. 68 (4) (2005), 253-266.

[18] D. Pal, B. Ghosh, T.K. Kar, Hydra effects in stable food chain models. Biosystems. 185 (2019), 104018

[19] D. Yuan, et al. Effects of addition of red tilapia (Oreochromis spp.) at different densities and sizes on pro-

duction, water quality and nutrient recovery of intensive culture of white shrimp (Litopenaeus vannamei) in

cement tanks. Aquaculture. 298 (2010), 226-238.

[20] J.H. Bailey-Brock, M.M. Shaun. Penaeid taxonomy, biology ans zoogeography. Develop. Aquacult. fisher.

Sci. 23 (1992), 9-27.

[21] A.F.M. El-Sayed, Tilapia culture. Academic Press, 2019.

[22] D.J. Randall, T.K.N. Tsui. Ammonia toxicity in fish. Marine Pollut. Bull. 45 (2002), 17-23.

[23] A. Assefa, F. Abunna. Maintenance of fish health in aquaculture: review of epidemiological approaches for

prevention and control of infectious disease of fish. Vet. Med. Int. 2018 (2018), 5432497.

[24] C. Chitmanat, et al. Tilapia diseases and management in river-based cage aquaculture in northern Thailand.

J. Appl. Aquacult. 28 (2016), 9-16.

[25] K.P. Plant, S.E. LaPatra. Advances in fish vaccine delivery. Develop. Comparat. Immunol. 35 (2011), 1256-

1262.

[26] W.O. Kermack, A.G. McKendrick. Contributions to the mathematical theory of epidemics, part 1. Proc. R.

Soc. Lond. Ser. A. 115 (1927), 700–721.

[27] R.M. Anderson, R.M. May, The invasion, persistence, and spread of infectious diseases within animal and

plant communities. Philos. Trans. R. Soc. Lond., Ser. B. 314 (1986), 533–570.

[28] K.P. Hadeler, H.I. Freedman. Predator–prey populations with parasitic infection. J. Math. Biol. 27 (1989),

609–631.



36

[29] E. Venturino, Epidemics in predator–prey models: disease in the prey. In: O. Arino, D. Axelrod, M. Kim-

mel, M. Langlais, (Eds.), Mathematical Population Dynamics: Analysis of Heterogeneity, vol. 1: Theory of

Epidemics. Wuerz Publishing, Winnipeg, Canada, 1995, pp. 381–393.

[30] J. Chattopadhyay, O. Arino, A predator–prey model with disease in the prey. Nonlinear Anal., Theory Meth.

Appl. 36 (1999), 747–766.

[31] J. Mena-Lorcat, H.W. Hethcote. Dynamic models of infectious diseases as regulators of population sizes. J.

Math. Biol. 30 (7) (1992), 693-716.

[32] L.Q. Gao, H.W. Hethcote. Disease transmission models with density-dependent demographics. J. Math. Biol.

30 (7) (1992), 717-731.

[33] J.A. Hargreaves, C.S. Tucker, Managing ammonia in fish ponds, vol 4603. Southern Regional Aquaculture

Center Stoneville, Stoneville. (2004).

[34] G. Wedemeyer, The role of stress in the disease resistance of fishes. A symposium on diseases of fishes and

shellfishes. American Fisheries Society, Special Publication. Vol. 5. 1970.

[35] A. Senapati, P. Panday, S. Samanta, J. Chattopadhyay, Disease control through removal of population using

Z-control approach, Physica A., Stat. Mech. Appl. 548 (2020), 123846.

[36] C.S. Holling, The functional response of predators to prey density and its role in mimicry and population

regulation. The Memoirs of the Entomological Society of Canada. 97 (S45) (1965), 5-60.

[37] C.W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources. John Wiley

& Sons, New York, (1976).

[38] D. Pal, G.S. Mahaptra, G.P. Samanta. Optimal harvesting of prey–predator system with interval biological

parameters: a bioeconomic model. Math. Biosci. 241 (2) (2013), 181-187.

[39] A. Dhooge, New features of the software MatCont for bifurcation analysis of dynamical systems. Math.

Computer Model. Dyn. Syst. 14 (2) (2008), 147-175.


