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Abstract. Pandemics have shaped human history and they remain with us today. Recognizing how these diseases

spread can therefore help identify specific disease control strategies. Classical mathematical models describing

the evolution of infectious diseases underestimate the effect of the spatio-temporal spread of epidemics. Currently,

the COVID-19 pandemic shows the importance of taking into account the spatial dynamics of epidemics and

pandemics and the need for new control strategies including vaccinations, awareness and travel restrictions. Here,

we consider a SIRS discrete-time multi-regional epidemic model that describes the spatial spread of an epidemic in

different geographic areas believed to be related to movements of their populations. We propose a novel approach

of optimal control by defining new functions of importance to identify affected areas based on infection thresholds

that determine whether the need for a control intervention or not. Numerical results are provided to illustrate our

results by applying this new approach in adjacent areas of Morocco, that is, the Casablanca-Settat regions. We

study different scenarios to show the most efficient scenario, based on the threshold values.

Keywords: importance functions; automated optimal control; multi-region SIRS model; vaccination; travel-

restriction.
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1. INTRODUCTION

Mathematics has been intertwined with every major discipline in the biological and biomedical

sciences including epidemiology [1, 2]. Until the twentieth century, epidemiological studies

were mostly concerned with infectious diseases [3]; the mathematical epidemiology aimed for

describing the transmission process of an epidemic and providing a further understanding of

the mechanisms of disease transmission and spread [4]. Mathematical modeling of epidemics

provides an estimate for the potential scale of an epidemic, and helps to pinpoint key factors

in the disease transmission process, then recommend effective control and preventive measures

[5]. Furthermore, it is useful in building and testing theories, and in comparing, planning,

implementing and evaluating various detection, prevention, and control programs [6]. Now

models of disease transmission are recognized as a valuable tool, they are being integrated

into the public health decision-making process more than ever before [7]. But the real impact

of mathematical modeling on public health came with the need for evaluating intervention

strategies for newly emerging and re-emerging pathogens. Epidemiological modeling present

a practical tool for analyzing the process of an epidemic within difined population and taking

into consideration the factor of variation in the geographic areas [8].

The process of an epidemic model consist of two major factors; first is a defined population,

and second is an exposure to infectious material. The simplest model SIR (Susceptible, Infectious,

and Recovered) model was originated in the early 20th century. The members of the population

are related to one of three basic classes: Susceptibles (people who may become infectives when

making contact with the infectious material). Infectives (reacting as hosts to the infectious

material). Removals (Those who have been eliminated for some reason such as death, immunity,

hospitalization..). The idea of this process may be described, as one transformation from

(susceptible) to another (infective) due to the exposure to some phenomenon. This model’s

aim is to understand how an epidemic spreads besides the total number infected, or the duration

of an infectious disease, in addition to this SIR model can show how different public health

interventions could influence the outcome of the epidemic [9, 10]
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Mathematical modeling has played important role in describing and analyzing the evolution

of an epidemic [8], besides the fact of controlling many contagious diseases such as Smallpox

[11], SARS [12], AIDS [13], Tuberculosis [14], Cholera [15], Measles [16], Malaria [17] among

other different kinds of contagious diseases..

Epidemics have shaped human history and they remain with us today. Recognizing how these

diseases spread can contribute consequently to identifying accurate disease control strategies

[18]. A crucial component of this knowledge is the pattern of disease spread in time and space

as the disease could be spatially mobile from one region to another [8]. For example the new

Coronavirus spreads across mainland China and elsewhere around the globe and sometimes,

outbreaks spread over large areas, and can even reach continents. Such cases include the Black

Death plague, measles and smallpox, HIV/AIDS, and SARS [19].

In [8] a discrete-time SIR model is presented and devised in various geographical regions to

control the spatio-temporal propagation of an epidemic, in this model infected people have the

ability to spread the disease from one region to another via travel. The multi-regional discrete-

time SIR model focuses on the intervention of multiple regions, in contrast to other models that

have mainly focused on the optimization of one single region. This presentation could help

managing the issue of regional spread of an infectious disease by organizing many strategies

such as vaccination campaigns in order to decrease the number of infected people, or travel-

restriction blocking movement of people coming from borders of infected regions. The authors

use a finite-dimensional models to analyse the spatio-temporal spread of epidemics as another

option of the partial derivatives models.

In this paper, we propose a new optimal control approach mainly based on a multi-regions

discrete-time model and a new form of multi-objective optimization criteria with importance

functions and which is subject to multi-points boundary value optimal control problems. In this

work, with more clarifications and essential details, we devise a multi-regions discrete model

for the study of the spread of an epidemic in M different zones and we analyze the effectiveness

of vaccination (or awareness) and travel-restriction optimal control strategies when vaccination

campaigns and/or travel restriction are applied in infected zones based on the number of infections.

Also, we study the case when controls are applied to people who belong to all those regions and
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who are supposed to be reachable for every agent (nurse, doctor or media). This last one is

responsible for the accomplishment of control strategies followed against the disease.

We consider an area as an infected zone if its number of infected individuals exceeds a

threshold defined by the health decision-makers. Therefore, varying the values of this threshold

and simulating the infection situation for different values of these thresholds shows that it is

necessary to think about reducing the time between the first infection and the implementation

of the control strategy. Unexpected results that in some situations the neighboring regions

infected and its number of infections exceeds the threshold before the number of infections of

the region source. This makes the implementation of the travel-restriction control strategy more

important.

In our modeling approach, we divide the studied area Ω into different zones that we call cells

(or regions). A cell C j ∈ Ω can represent a city, a country or a larger domain. These cells are

supposed to be connected by movements of their populations within the domain Ω. We define

also a neighboring cells Ck of the cell C j all zones connected with C j via every transport mean,

thus a cell C j ∈Ω can have more than one neighboring cell. Here, we suppose that a cell can be

infected due to movements of infected people which enter from its neighboring zones.

We carry out the map of the studied area. Then we use different threshold values in the

controlled multi-region SIRS model to simulate the epidemic spread within the Casablanca-

Settat region illustrated in the Fig.1, by combining the ArcGIS and Matlab programs.

The paper is organized as follows: In Section 2, we give the proposed discrete-time multi-

region SIRS epidemic system. In Section 3, we announce theorems of the existence and

characterization of the sought optimal controls functions related to the optimal control approach.

In Section 4, we provide simulations of the numerical results applied to the Casablanca-Settat

region as domain of interest. Finally, we give a conclusion in the last Section.
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FIGURE 1. The geographical studied zone Ω: (a) Discretization on region

Casablanca-Settat . (b) Discretization of the region on provinces with numbers.
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2. MODEL DESCRIPTION AND DEFINITIONS

In this section, Based on modeling assumptions of the reference [8], we consider M geographical

zones denoted C j (sub-domains, regions, cities, towns ...) of the studied domain Ω

Ω =

M⋃
j = 1

C j

where C j can represent a city, a country or a larger domain. For instance, the Fig.1 shows an

example of geographical discretization of tow regions of Morocco, that is, the nine zones of

Casablanca-Settat. We define V (C j), the vicinity set, composed by all neighboring cells of C j

given by

V (C j) =
{

Ck ∈Ω /C j∩Ck 6= /0
}
,C j /∈V

(
C j
)

where C j ∩Ck 6= /0 means that there exists at least one mean of transport between C j and

Ck. Note that this definition of V (C j) is more general where it defines a more general form of

vicinity regardless the geographical location of zones.
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Nb Zone Population Nb Zone Population Nb Zone Population

1 BEN SLIMANE 233123 4 Casablanca 3359818 7 Nouaceur 333604

2 Berrechid 484518 5 Mediouna 172680 8 El Jadida 786716

3 Settat 634184 6 Mohammadia 404648 9 Sidi Bennour 452448
TABLE 1. Populations of the regions Casablanca-Settat Fig.1.

The multi-regional discrete-time SIRS model associated to C j when there is no control introduced

yet is then

SC j
i+1 = SC j

i −β j j
IC j
i

NC j
i

SC j
i − ∑

Ck∈V (C j)

β jk
ICk
i

NC j
i

SC j
i +

(
NC j

i −SC j
i

)
d j +θ jR

C j
i(1)

IC j
i+1 = IC j

i +β j j
IC j
i

NC j
i

SC j
i + ∑

Ck∈V (C j)

β jk
ICk
i

NC j
i

SC j
i − γ jI

C j
i −d jI

C j
i −α jI

C j
i(2)

RC j
i+1 = RC j

i + γ jI
C j
i −d jR

C j
i −θ jR

C j
i(3)

where the disease transmission coefficient β jk > 0 is the proportion of adequate contacts in

domain C j between a susceptible from C j ( j = 1, ...,M) and an infective from another domain

Ck. The coefficient d j is the birth and death rate. The parameter γ j is is the recovery rate.

The coefficient α j is the proportion of mortality due to the disease. The biological background

requires that all parameters be non-negative. The parameter θ j is the proportion that a recovered

becomes again a susceptible. The notations SC j
i , IC j

i and RC j
i represent the numbers of individuals

in the susceptible, infective and recovered compartments of C j at time i, respectively. The

population size corresponding to domain C j at time i is given by NC j
i = SC j

i + IC j
i +RC j

i . It is

clear that the population size is not constant for all i≥ 0.

3. TRAVEL-RESTRICTION AND VACCINATION CONTROLS

3.1. Presentation of the model with controls. In this section, we introduce a control variable

uC j
i that characterizes the effectiveness of the vaccination in the above mentioned model (1-3).

This control in some situations can represent the effect of the awareness and media programs

[19, 20].
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In almost all infectious diseases, the authorities determine the threshold of risk based on

many factors, such as availability of medical equipment, budgets, and medical personnel ...

Thus, they can wait some time to see the course of events before the intervention. If the number

of casualties exceeds a predefined limit, decision-makers have no choice but to start trying to

control the situation. This motivate us to define a Boolean function ε
C j
i (εC j

i = 1 or ε
C j
i = 0)

associated to the domain C j, that will be called the importance function of C j. Where ε
C j
i is

either equaling to 1, in the case when the number of infections in the cell C j at instant i is

greater than or equal to the threshold of vaccination I
C j

V defined by the authorities and health

decision-makers, or ε
C j
i = 0 otherwise. Therefore, we define the importance function associated

to the vaccination control ε
C j
v,i by the Heaviside step function H as follows

ε
C j
v,i = H

(
IC j
i −I C j

)
=


0 IC j

i < I
C j

V

1 IC j
i ≥I

C j
V

In the case of epidemics and pandemics, and in the absence of effective treatment, governments

tend to take non-drug measures to reduce the number of victims. Travel restrictions, self-

isolation and social isolation are the most commonly used non-drug measures in such situations.

Therefore, we introduce a second control variable vC j
i that characterizes the travel-restriction

operation which aims to restrict movements of people coming from neighboring zones Ck ∈

V (C j) to the affected zone C j, in order to facilitate the categorization of people depending on

their cases. Thus, we define a threshold based on the number of infections to determine affected

zones. Then, I
C j
T is the tolerable number of infections in the zone C j before the closure of this

zone, i.e. if the number of infections IC j
i in C j exceeds I

C j
T , C j is called an affected zone and

then the travel-restriction will be applied. Therefore, the importance function associated to the

travel-restriction control ε
C j
T,i is also defined by the Heaviside step function H as follows

ε
C j
T,i = H

(
IC j
i − IC j

sT

)
=


0 IC j

i < I
C j
T

1 IC j
i ≥I

C j
T

Based on all these considerations, for a given zone C j ∈Ω, the model is given by the following

equations
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SC j
i+1 = SC j

i −β j j
IC j
i

NC j
i

SC j
i − ∑

Ck∈V (C j)

(
1− ε

C j
T,iv

C j
i

)
β jk

ICk
i

NC j
i

SC j
i

+
(

NC j
i −SC j

i

)
d j +θ jR

C j
i − ε

C j
v,i uC j

i SC j
i(4)

IC j
i+1 = IC j

i +β j j
IC j
i

NC j
i

SC j
i + ∑

Ck∈V (C j)

(
1− ε

C j
T,iv

C j
i

)
β jk

ICk
i

NC j
i

SC j
i

−γ jI
C j
i −d jI

C j
i −α jI

C j
i(5)

RC j
i+1 = RC j

i + γ jI
C j
i −d jR

C j
i −θ jR

C j
i + ε

C j
v,i uC j

i SC j
i(6)

Our goal is obviously to try to minimize the population of the susceptible and infected groups

and the cost of vaccinations and travel-restriction in all affected zones.

3.2. An optimal control approach. We devise in this paper an automated optimal control

approach for each region with different importance functions ε
C j
∗,i , j = 1, ...,M. We characterize

optimal controls that minimize the number of the infected people and maximize the ones in

the recovered category for all affected regions. Then, we are interested by minimizing the

functional

(7) J(u,v) =
M

∑
k=1

max
(

ε
C j
v,i ,ε

C j
T,i

)
Jk

(
uCk ,vCk

)
where J j(uCk ,vCk) is given by

(8) J j(uC j ,vC j) =
(

α
I
jI

C j
N −α

R
j RC j

N

)
+

N−1

∑
i=1

[
α

I
jI

C j
i −α

R
j RC j

i + ε
C j
v,i

A j

2

(
uC j

i

)2
+ ε

C j
T,i

B j

2

(
vC j

i

)2
]

where A j > 0, B j > 0, α
C j
I > 0, α

C j
R > 0 are the weight constants of controls, the infected

and the recovered populations in the region C j respectively, and u =
(
uC1 , ....,uCM

)
with uC j =(

uC j
0 , ...,uC j

N−1

)
, and v =

(
vC1, ....,vCM

)
with vC j =

(
vC j

0 , ...,vC j
N−1

)
.

Our goal is to minimize the infected individuals, minimize the systemic costs of vaccinations

and travel-restriction attempting to increase the number of recovered people in each zone C j ∈

Ω. In other words, we are seeking optimal controls u∗ and v∗ such that

J (u∗,v∗) = min{J (u,v)/u ∈U, v ∈V}
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where U and V are the control sets defined by

(9) U =
{

umeasurable/uC j
min ≤ uC j

i ≤ uC j
max, i = 0, ...,N−1, j = 1, ...,M

}

(10) V =
{

vmeasurable/vC j
min ≤ vC j

i ≤ vC j
max, i = 0, ...,N−1, j = 1, ...,M

}
where 0 < uC j

min < uC j
max < 1 and 0 < vC j

min < vC j
max < 1, by using Pontryagin’s Maximum Principle

[21] we derive necessary conditions for our optimal controls. For this purpose we define the

Hamiltonian as

H =
M

∑
k=1

max(εCk
v,i ,ε

Ck
T,i)

[
α

I
kICk

i −α
R
k RCk

i + ε
Ck
v,i

Ak

2

(
uCk

i

)2
+ ε

Ck
T,i

Bk

2
(vCk

i )2
]

+∑
M
j=1 max(εC j

v,i ,ε
C j
T,i)

(
ζ

j
1,i+1

[
SC j

i −β j j
IC j
i

NC j
i

SC j
i − ∑

Ck∈V (C j)

(
1− ε

C j
T,iv

C j
i

)
β jk

ICk
i

NC j
i

SC j
i

+
(

NC j
i −SC j

i

)
d j +θ jR

C j
i − ε

C j
v,i uC j

i SC j
i

]
+ ζ

j
2,i+1

[
IC j
i +β j j

IC j
i

NC j
i

SC j
i + ∑

Ck∈V (C j)

(
1− ε

C j
T,iv

C j
i

)
β jk

ICk
i

NC j
i

SC j
i

−γ jI
C j
i −d jI

C j
i −α jI

C j
i

]
+ ζ

j
3,i+1

[
RC j

i + γ jI
C j
i −d jR

C j
i −θ jR

C j
i + ε

C j
v,i uC j

i SC j
i

])
(11)

Theorem 1. Given optimal controls uC j∗, vC j∗ and solutions SC j∗, IC j∗ and RC j∗, there exists

ζ
j

k,i, i = 1, ...,N, k = 1,2,3, the adjoint variables satisfying the following equations

∆ζ
j

1,i = −max(εC j
v,i ,ε

C j
T,i)

1−β j j
IC j
i

NC j
i

− ∑
Ck∈V (C j)

(
1− ε

C j
T,iv

C j
i

)
β jk

ICk
i

NC j
i

−d j− ε
C j
v,i uC j

i

ζ
j

1,i+1

+

β j j
IC j
i

NC j
i

+ ∑
Ck∈V (C j)

(
1− ε

C j
T,iv

C j
i

)
β jk

ICk
i

NC j
i

ζ
j

2,i+1 + ε
C j
v,i uC j

i ζ
j

3,i+1

(12)

∆ζ
j

2,i = −max(εC j
v,i ,ε

C j
T,i)

[
α

I
j +β j j

SC j
i

NC j
i

(
ζ

j
2,i+1−ζ

j
1,i+1

)
+
(
1− γ j−d j−α j

)
ζ

j
2,i+1 + γ jζ

j
3,i+1

]
(13)

∆ζ
j

3,i = −max(εC j
v,i ,ε

C j
T,i)
[
−α

R
j +
(
1−d j−θ j

)
ζ

j
3,i+1 +ζ

j
1,i+1θ j

]
(14)
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where ζ
j

1,N = 0,ζ j
2,N = max

(
ε

C j
v,i ,ε

C j
T,i

)
α I

j ,ζ
j

3,N = −max
(

ε
C j
v,i ,ε

C j
T,i

)
αR

j are the transversality

conditions. In addition

u∗ =
(

uC1∗, ...,uCp∗
)

and v∗ =
(

vCM∗, ...,uCM∗
)

where uC j∗ =
(

uC j∗
0 , ...,uC j∗

N−1

)
and vC j∗ =

(
vC j∗

0 , ...,vC j∗
N−1

)
are given by

u
C j∗
i = min

max

u
Ω j
min,max

(
ε

C j
v,i ,ε

C j
T,i

) (ζ
j

1,i+1−ζ
j

3,i+1

)
S

C j∗
i

A j

 ,u
C j
max

 if ε
C j
v,i = 1

u
C j∗
i = 0, Otherwise(15)

v
C j∗
i = min

max

v
Ck

j
min,max(ε

C j
v,i ,ε

C j
T,i)

(ζ j
2,i+1−ζ

j
1,i+1)

B j
∑

CkεV (C j)

β jk
ICk
i

N
C j
i

S
C j
i

 ,v
Ck

j
max

 if ε
C j
T,i = 1(16)

v
C j∗
i = 0, Otherwise.

Proof. Using Pontryagin’s Maximum Principle [21], we obtain the following adjoint equations

∆ζ
C j
1,i =−

∂H

∂SC j
i

= −max(εC j
v,i ,ε

C j
T,i)

[(
1−β j j

IC j
i

NC j
i

− ∑
Ck∈V (C j)

(
1− ε

C j
T,iv

C j
i

)
β jk

ICk
i

NC j
i

−d j− ε
C j
v,i uC j

i

)
ζ

j
1,i+1

+

(
β j j

IC j
i

NC j
i

+ ∑
Ck∈V (C j)

(
1− ε

C j
T,iv

C j
i

)
β jk

ICk
i

NC j
i

)
ζ

j
2,i+1 + ε

C j
v,i uC j

i ζ
j

3,i+1

]

∆ζ
C j
2,i =−

∂H

∂ IC j
i

= −max
(

ε
C j
v,i ,ε

C j
T,i

)[
α

I
j +β j j

SC j
i

NC j
i

(
ζ

j
2,i+1−ζ

j
1,i+1

)
+(1− γ j−d j−α j)ζ

j
2,i+1 + γ jζ

j
3,i+1

]

∆ζ
C j
3,i =−

∂H

∂RC j
i

= −max
(

ε
C j
v,i ,ε

C j
T,i

)[
−α

R
j +(1−d j−θ j)ζ

j
3,i+1 +ζ

j
1,i+1θ j

]
with ζ

C j
1,N = 0,ζC j

2,N = ε
C j
i α

C j
I ,ζ

C j
3,N = −ε

C j
i α

C j
R . To obtain the optimality conditions we take

the variation with respect to control uC j
i and vC j

i and solve for uC j and vC j respectively we get

u
C j∗
i = max

(
ε

C j
v,i ,ε

C j
T,i

) (ζ
j

1,i+1−ζ
j

3,i+1

)
S

C j∗
i

A j

v
Ck

j∗
i = max(ε

C j
v,i ,ε

C j
T,i)

(ζ j
2,i+1−ζ

j
1,i+1)

B j
∑

CkεV (C j)

β jk
ICk
i

N
C j
i

S
C j
i

By taking bounds of controls from U and V we get the result. �
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Parameter Description Value

β Infection rate 1×10−3

d Birth and death rate 1×10−5

γ Recovery rate 1×10−5

α Death due to the infection 1×10−4

θ loss of immunity 1×10−6

TABLE 2. Parameters values of β ,d,θ , α and γ utilized for the resolution of

all multi-regions discrete systems and then leading to simulations obtained from

Fig.2 to Fig.31, with the initial populations given in Table 1.

4. NUMERICAL RESULTS

In this section, we present numerical simulations associated to the above mentioned optimal

control problem. We write a code in MAT LABT M and simulated our results for several scenarios.

The optimality systems is solved based on an iterative discrete scheme that converges following

an appropriate test similar the one related to the Forward-Backward Sweep Method (FBSM).

The state system with an initial guess is solved forward in time and then the adjoint system is

solved backward in time because of the transversality conditions. Afterwards, we update the

optimal control values using the values of state and co-state variables obtained at the previous

steps. Finally, we execute the previous steps till a tolerance criterion is reached.

4.1. Area of interest. We chose the Casablanca-Settat region as the studied area Ω in this

paper because we are convinced that we can find some useful data to support our work. They

are the most populated and dynamic regions of Morocco, which contain Casablanca city as

the economic and industrial capital of Morocco because with its demographic growth and

continuous development of the industrial sector, and the 14 other provinces (see Fig.1), in order

to illustrate the objective of our work.

Fig.1 illustrates an example of discrete geographical zones of Casablanca-Settat regions

(Morocco) where M = 9, this image was originally made based on information from [22].
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4.2. Geographical vicinity. A shape-file is a simple, non topological format for storing the

geometric location and attribute information of geographic features. Geographic features in a

shape-file can be represented by points, lines, or polygons (areas). The workspace containing

shape-files may also contain database tables, which can store additional attributes that can

be joined to a shape-file’s features [23]. ArcMap is a central application used in ArcGIS

software, where we can view and explore GIS database for our study area, and where we assign

symbols and create map layouts for printing or publication. In this application we can represent

geographic information as a set of layers and other elements in a map. Common map elements

of a map include the data frame containing the map layers for a given extent [24]. Neighborhood

tools create output values for each cell location based on the location value and the values

identified in a specified neighborhood [25]. We use this tool to create the neighborhood V (C j)

of each separated zone C j within the area of interest Ω. For instance

V (C15) = {C5,C6,C7}

Without loss of generality, we set the same infection thresholds for all zones, therefore,

hereafter we note I
C j
T as I T

min and I
C j

V as I V
min.

4.3. Scenario 0: Simulation of the multi-region model without any control. In all the rest

geographical figures, we consider four time steps (a) i = 0, (b) i = 40, (c) i = 80 (d) i = 120, (e)

i = 160 and (f) i = 200. Dark color represents the highest values. Geographical figures show the

transmission of infection between different zones while associated graphs show states’ changes

over time.

Figures 3. (a), (b), (c), (d), (e) and (f) indicate the number of susceptible people in the 9

regions without any control strategy at the moments i = 0, i = 40, i = 80, i = 120,i = 160 and

i = 200 respectively. We see from Fig.2 and 3 that the numbers of susceptible people in all

regions, except C9, are constant until the instant i = 150, then it decreases by varying between

3.8 103 and 7.7 104 person. In regions C2, C3 and C10 the number of susceptible people is almost

constant, but in region C9 the number is constant until i = 160 and then it decreases about 104.

Fig.4 and Fig.5 represent the evolution and the geographical distribution of the infected

individuals in the different regions without controls.
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FIGURE 2. Temporal evolution of susceptible populations without the control strategy.
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FIGURE 3. Geographical spread of susceptible individuals without the control strategy.

3

8

9

2

1
7

6

5
4

98647,0 - 150000

150001 - 200000

200001 - 250000

250001 - 300000

300001 - 400000

400001 - 500000

500001 - 600000

600001 - 800000

800001 - 3000000

3000010 - 3359820

(a) (c)(b)

(e)(d) (f)

3

8

9

2

1
7

6

5
4

3

8

9

2

1
7

6

5
4

3

8

9

2

1
7

6

5
4

3

8

9

2

1
7

6

5
4

3

8

9

2

1
7

6

5
4

Following Fig.5, at the beginning, all the regions did not record any infection until moment

i = 120. From the moment i = 120, the number of infected increases exponentially. This results

is shown clearly in the Fig.4, which has kept the same display in the four first maps (Fig.6(a),

(b), (c) and (d)), which means that the number of infected did not exceed 9600 in all regions. In

the instant i = 160, the region of Casablanca (C4) and the neighboring regions C1,C2,C5,C6,C7

exceeded the 9600 infected. In the final state i = 200 we see a strong evolution, all the regions

have exceeded 19200 infected except C9, which has just reached 105. The regions C2 and C5

have exceeded 67300 infected.
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FIGURE 4. Geographical spread of infected individuals without the control strategy.
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FIGURE 5. Temporal evolution of infected populations without the control strategy.
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Fig.6 and Fig.7 show the development of the recovered population without controls in the

provinces of Casablanca-Settat.

We note that the numbers of the recovered, like the case of the infected, only change from

the instant i = 100 and gradually increases to reach in the regions C4, C6, C5, C7 and C2 that

surrounds the city of Casablanca, small values varying between 20 and 40 recovered cases.

In the final state i = 200, the C4 region and its neighboring regions reach values between 130

and 200. In the other regions, that are geographically further from C4, the number of recovered

have do not exceed the 100 cases at the final state.
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FIGURE 6. Geographical spread of recovered individuals without the control strategy.
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FIGURE 7. Temporal evolution of recovered populations without the control strategy.
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These simulations show the necessity of some interventions to avoid these huge numbers of

infections, especially in the epicenter of the epidemic and the surrounding zones.

4.4. Scenario 1: Travel-restriction only where I T
min = 1000. Figures 8 and 9 show the

number of susceptible people from the 9 regions applying the travel-restriction control strategy

from 1000 infected. In all regions, the number of susceptible individuals remains constant

throughout the strategy period. On the other hand, for the case without control, the number of

susceptible people experienced a slight decrease from the instant i = 150 to reach a regression

of about 104 cases towards the end.
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FIGURE 8. Temporal evolution of susceptible populations with only the travel-

restriction control where I T
min = 1000.
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FIGURE 9. Geographical spread of susceptible individuals with only the travel-

restriction control where I T
min = 1000.
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Figures 10 and 11 represent the evolution of the infected by applying the travel-restriction

control strategy from 1000 infected in the different regions. We note that at the beginning all the

regions register no infected and that from the instant i = 100, the number of infected increases

rapidly, especially for the regions C2, C5, C6, C7, which surround the metropolis C4, and who

have reached a maximum value about 14000 infected. The regions C8, and C9 recorded, at the

moment i = 200, a maximum value which is less than 6000 cases. On the other hand, without a
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FIGURE 10. Temporal evolution of infected populations with only the travel-

restriction control where I T
min = 1000.
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FIGURE 11. Geographical spread of infected individuals with only the travel-

restriction control where I T
min = 1000.
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control strategy, the infected began to evolve from the moment i = 150 and recorded numbers

of infected 6 times more than with the travel-restriction strategy.

Figures 12 and 13 show the evolution of the recovered with the strategy of travel-restriction

controls from 1000 infected in the provinces of Casablanca-Settat . It is noted in the regions

closest to metropolitan C4, the numbers of recovered persons began to change from the time

i = 50. Then the other regions further afield, their numbers of recovered only change from the

instant i = 75 and gradually increase to reach their maximum values at the end of the controls
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FIGURE 12. Temporal evolution of recovered populations with only the travel-

restriction control where I T
min = 1000.
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FIGURE 13. Geographical spread of recovered individuals with only the travel-

restriction control where I T
min = 1000.

3

8

9

2

1
7

6

5
4

0 - 6

7 - 11

12 - 17

18 - 23

24 - 29

30 - 34

35 - 40

41 - 46

47 - 51

52 - 57

(a) (c)(b)

(e)(d) (f)

3

8

9

2

1
7

6

5
4

3

8

9

2

1
7

6

5
4

3

8

9

2

1
7

6

5
4

3

8

9

2

1
7

6

5
4

3

8

9

2

1
7

6

5
4

campaign. These numbers of recovered are very low compared to the case without control

which does not exceed 55 cases for the regions close to Casablanca and the other regions less

than 38 cases and this is due to the fact that the numbers of infected are also low compared to

the case without control.

4.5. Scenario 2: Travel-restriction only where I T
min = 100. Now, we propose another

strategy which consists in defining a travel-restriction on all the provinces from 0 infected i.e

by blocking the travel between the regions. This type of strategy is introduced when there is
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FIGURE 14. Temporal evolution of susceptible populations with only the travel-

restriction control where I T
min = 100.
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FIGURE 15. Geographical spread of susceptible individuals with only the

travel-restriction control where I T
min = 100.
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a second wave of the epidemic, when we detect infections in a region and we are aware of

the gravity of the virus spread, for example, the case of the Corona-virus pandemics (SARS,

MERS, or COVID-19) or Ebola ...

Figures 14 and 15 show the evolution of the numbers of susceptible people in the 9 regions

by applying the travel-restriction strategy in all regions from zero infection. We note that

throughout the strategy, the number of susceptible remained constant in all 9

regions.
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FIGURE 16. Temporal evolution of infected populations with only the travel-

restriction control where I T
min = 100.
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Figures 16 and 17 show the evolution of the numbers of infected in all regions of the provinces

of Casablanca-Settat by applying the travel-restriction strategy in all regions, from the appearance

of infection in a region and choose blocking trips between regions. In this case, all the regions

did not experience any infection throughout the period except the city of Casablanca C4 which

experienced 100 infected at the initial time and this number increased to reach at the moment

i = 200, 1200 infected. For regions C5, C6,C7 and C2 only experienced an infection at the

time i = 100 and from that moment the number of infections increased to reach the maximum

number more than 700 cases at the end of the period. So the infected are only limited in the

regions close to C4, on the other hand without control the infected progress exponentially from

the instant i = 100 and reach values between 104 and 105 infected.

Like the numbers of infected with travel-restriction strategy from zero infected, all regions

display less than 4 recovered throughout the period, except region C4 which experienced 8 cases

of recovered towards the end of the period, as it can be seen from Fig.18 and Fig.19. Since in this

strategy the numbers of infected individuals are less important than with the strategy without

control.

4.6. Scenario 3: Travel-restriction and vaccination controls where I T
min = 1000 and

I V
min = 200. Figures 20 and 21 show the evolution of susceptible people in the different

regions of the provinces of Casablanca-Settat with the application of a vaccination strategy

from 200 infected and travel-restriction from 1000 infected. We notice that the susceptible

individuals of regions C1, C2,C4 ,C5, C6 and C7 that are closest to Casablanca begins to decrease
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FIGURE 17. Geographical spread of infected individuals with only the travel-

restriction control where I T
min = 100.
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FIGURE 18. Temporal evolution of recovered populations with only the travel-

restriction control where I T
min = 100.

0 50 100 150 200

0

1

2

3

4

5

6

7

8

(a)

0 50 100 150 200

0

0.5

1

1.5

2

2.5

3

3.5

(b)

very quickly and reach towards 0 from the moment i = 80, then the susceptible of regions C3

which converges to 0 from the moment i = 100 and after those the regions C8 from i = 125 and

finally the extreme regions C9 from the moment i = 150. So for this strategy, the numbers of

susceptible individuals tend towards 0

Figures 22 and 23 represent the evolution of the infected in the 9 regions by applying the

strategy which combines vaccination as soon as the 200 infected appear and travel-restriction

from 1000 infected in a region. It is noted that the infected from regions C1, C2, C5, C7 and C7
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FIGURE 19. Geographical spread of recovered individuals with only the travel-

restriction control where I T
min = 100.
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FIGURE 20. Temporal evolution of susceptible populations with the the travel-

restriction and vaccination controls where I T
min = 1000 and I V

min = 200.
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which surround the region of Casablanca, that experienced the appearance of 100 cases infected

in the initial state, experienced an increase from the start of the strategy, then the regions C3,

C6, C7 which started to grow from the time i = 25, . All infected from the 9 regions reach the

maximum value of about 250 cases infected at the instant between i = 75 and i = 100, and

remain stagnant until the end of the period. With this strategy, the travel-restriction application
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FIGURE 21. Geographical spread of susceptible individuals with the the travel-

restriction and vaccination controls where I T
min = 1000 and I V

min = 200.
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FIGURE 22. Temporal evolution of infected populations with the the travel-

restriction and vaccination controls where I T
min = 1000 and I V

min = 200.
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does not applied since the infected not exceed 260 cases. On the other hand, this strategy

gives good results compared to without control and also compared to the strategy with travel-

restriction at 1000 infected, but less effective than the strategy with travel-restriction at 100

infected.
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FIGURE 23. Geographical spread of infected individuals with the the travel-

restriction and vaccination controls where I T
min = 1000 and I V

min = 200.
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Figures 24 and 25 show the evolution of the recovered in the 9 regions by applying the

vaccination strategy from 200 infected and the travel-restriction from 1000 infected. It is noted

that the numbers of the recovered people of all the regions believe very quickly, starting from

the instants i = 50, i = 75, i = 100 and i = 150, with maximum values which vary between

1.5× 105 and 3.4× 106. The regions closest to Casablanca begin to grow at the start, then

the least close and then the farthest from Casablanca. This strategy gives better results for the

recovered than that without control, whose recovered does not exceed 200 cases, or with the

strategies with travel-restriction at 100 infected that do not exceed the 7 recovered.

4.7. Scenario 4: Travel-restriction and vaccination controls where I T
min = 100 and

I V
min = 200. Figures 26 and 27 represents the evolution of susceptible people in the different

regions of the provinces of Casablanca-Settat with the application of a vaccination strategy

from 200 infected and travel-restriction from 100 infected. The evolution of the susceptible is

almost the same as that of the strategy with vaccination at 200 infected and travel-restriction

at 1000 infected with a slight improvement in convergence time towards 0. We notice that the

susceptible of regions C1, C2, C5, C6 and C7 that are closest to Casablanca begins to decrease

very quickly and reach towards 0 from the moment i = 150, then the susceptible of regions C3,
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FIGURE 24. Temporal evolution of recovered populations with the the travel-

restriction and vaccination controls where I T
min = 1000 and I V

min = 200.
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FIGURE 25. Geographical spread of recovered individuals with the the travel-

restriction and vaccination controls where I T
min = 1000 and I V

min = 200.
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C8, which converges to 0 from the moment i= 175 and after those of the most distant regions C9

from Casablanca stayed constant until the end . So for this strategy, the numbers of susceptible

individuals tend towards 0 from a certain moment, on the other hand for the previous strategies

the numbers of susceptible population remain almost constant and decrease slightly from the

instant i = 150.
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FIGURE 26. Temporal evolution of susceptible populations with the the travel-

restriction and vaccination controls where I T
min = 100 and I V

min = 200.
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FIGURE 27. Geographical spread of susceptible individuals with the the travel-

restriction and vaccination controls where I T
min = 100 and I V

min = 200.
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Figures 28 and 29 represent the evolution of the infected in the 9 regions by applying the

strategy which combines treatment as soon as the 200 infected appear and travel-restriction

from 100 infected in a region. With this strategy, the numbers of infected also remain stagnant

from the moment i = 150 and do not exceed the value of 250 cases in almost all regions and

remain stagnant until the end of the period. We notice a slight improvement compared to the

vaccination strategy for 200 infected and travel-restriction for 1000 infected and we can say that

it gives almost the same values. It is noted that the infected from regions C1, C2, C5, C6 and C7
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FIGURE 28. Temporal evolution of infected populations with the the travel-

restriction and vaccination controls where I T
min = 100 and I V

min = 200.
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FIGURE 29. Geographical spread of infected individuals with the the travel-

restriction and vaccination controls where I T
min = 100 and I V

min = 200.
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which surround the city of Casablanca C4, that experienced the appearance of 100 cases infected

in the initial state, experienced an increase from the start of the strategy, then the regions C3, C8,

C9 which started to grow from the time i = 50, then the regions farthest from Casablanca which

started to grow at the time i = 75. On the other hand, this strategy gives good results compared

to without control and also compared to the strategy with travel-restriction at 1000 infected.

Figures 30 and 31 show the evolution of the recovered in the 9 regions by applying the

vaccination strategy from 200 infected and the travel-restriction from 100 infected. We notice a



28 HAMZA BOUTAYEB, SARA BIDAH, OMAR ZAKARY, MUSTAPHA LHOUS, MOSTAFA RACHIK

FIGURE 30. Temporal evolution of recovered populations with the the travel-

restriction and vaccination controls where I T
min = 100 and I V

min = 200.
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FIGURE 31. I T
min = 100 and I V

min = 200.
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slight improvement compared to the vaccination strategy for 200 infected and travel-restriction

for 1000 infected. It is noted that the numbers of the recovered people of all the regions believe

very quickly, starting from the instants i = 75, i = 125, i = 150 and i = 175, with maximum

values which vary between 3.105 and 3.106. The regions closest to Casablanca begin to grow

at the start, then the least close and then the farthest from Casablanca. This strategy gives better

results for the recovered than that without control, whose recovered does not exceed 200 cases,

or with the strategies with travel-restriction at 100 infected that do not exceed the 7 recovered.
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It can be concluded that without a control strategy, the infected explodes and reach extreme

values which exceed in almost all regions 104 infected. With the travel-restriction strategy from

1000 infected, the number of infected individuals increase in all regions and vary between 1500

and 12000 cases. So there is a decrease compared to cases when there are no controls. With

travel-restriction from 100 infected, the numbers of infected do not exceed 800 infected in all

regions except the regions C5 that had maximum values which about 1000 infected and 1200

cases in the region C4. So with this strategy, the infections are bounded and limited to the regions

which surround the metropolitan area C4. On the other hand, with the vaccination strategy from

200 infections and travel-restriction from 1000 infected individuals, the numbers of infections

remain constant with values that do not exceed 250 cases from the moment i = 100. With the

vaccination strategy from 200 infection and travel-restriction from 100 infection, the numbers

of infected individuals also remain stagnant from the moment i = 100 and do not exceed the

value of 250 cases in almost all regions.

5. CONCLUSION

In this paper, we devised a novel optimization approach that represents a general form of

optimal control approaches studied in multi-region framework. We applied this approach to

a multi-region discrete epidemic model which has been firstly proposed in [8]. We suggested

in this article, a new analysis of infection dynamics in M regions which we supposed to be

accessible for health authorities. By defining new importance functions to identify affected

areas that must be dealt with, we investigated the effectiveness of optimal vaccination and travel-

restriction control approaches, we introduced into the model, control functions associated with

appropriate control strategies followed in the targeted regions by mass vaccination campaigns

and restrictions and considering different scenarios to compare different strategies. Based on

our numerical simulations, we showed the geographical spread of the epidemic and the influence

of each region on another and then we deduced the effectiveness of each strategy followed. We

concluded that the last scenario of optimal control approach when I T
min = 100 and I V

min =

200 has given better results than the other cases regarding the maximization of the number of

recovered individuals and minimization of the spread of infection in all regions studied.
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