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Abstract. In this paper, a mathematical model with four different routes of transmission, namely, asymptomatic,

pre-symptomatic, symptomatic and environmental transmissions, has been proposed and analyzed to investigate

the role of pre-symptomatic individuals in the transmission dynamics of COVID-19 outbreak. Using the next

generation matrix method, the basic reproduction number R0 has been derived and then sensitivity analysis of

the proposed model is presented. Existence and stability analysis of disease free and endemic equilibrium points

have been discussed. Numerical simulations to demonstrate the effect of some model parameters related to pre-

symptomatic transmission on the disease transmission dynamics have been carried out.
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1. INTRODUCTION

COVID-19 outbreak has spread rapidly and has infected more than 21 millions and caused

more than 700 thousands death cases worldwide by August 17, 2020. Due to the widespread
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transmission, scientists and medical experts accelerate their work to develop an effective vaccine

for such highly contagious infection. Recently, a number of countries have reported develop-

ment in COVID-19 vaccine trials and some vaccines entered the clinical trials [13]. However,

even if approved vaccination is available, it might be expensive and hence it might not be avail-

able to all countries.

The transmission, symptoms, diagnosis and mathematical models will provide important ref-

erences for the researchers toward the ongoing development of vaccines and also controlling

the spread of this disease [13]. Moreover, understanding the virus transmission and its clinical

characteristics are very important and would be helpful in building an appropriate mathematical

model.

Furthermore, the time when the person become infectious played a crucial role in the fast spread

of the virus globally. According to the WHO report, there are evidences on transmission from

asymptomatic (infectious but never show symptoms) and pre-symptomatic individuals (infec-

tious but shows symptoms later), see [7, 10, 23, 25], this implies that if the person have the virus

but did not show any symptoms he could infect others before symptom onset and in some cases

will not develop any symptoms later. When the incubation period is longer than latency period

this may lead to the occurrence of pre-symptomatic transmission, see [9, 10, 12, 15, 22] and

some empirical studies have indicted that the peak of infectious period occurred before symp-

tom onset during pre-symptomatic period [9, 22, 25].

The silent infections due to pre-symptomatic and asymptomatic transmissions have critical con-

tribution to the quick spread of the disease and this will further reduce the effectiveness of

control measures which focus on symptomatic people such isolation and using face masks for

symptomatic people. Therefore, the control strategies should be extended to pre-symptomatic

and asymptomatic individuals. A rapid, systematic testing and contact tracing are needed to de-

tect these cases and more restrictions should be implemented to minimize the risk of the silent

transmissions.

Epidemiological models provide useful guidelines to inform policy making and outbreak

management and also powerful for exploring different scenarios [21]. Several epidemic mod-

els have been considered to study the spread of COVID19 and investigate the transmission of
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asymptomatic, symptomatic and also environmental transmissions, see for example [1, 5, 14,

16, 18, 24]. But, few studies take into account the effect of pre-symptomatic transmission, see

for example [8], which has an important role in the spread of the disease as mentioned above.

Here, we assume four routes of transmissions: pre-symptomatic, asymptomatic, symptomatic

and environmental and investigate the role of pre-symptomatic transmission. The rest of the pa-

per is organized as follows. In the next section, we present the proposed mathematical model.

The mathematical analysis of the proposed model will be carried out in Section 3. The analysis

includes invariant region, the calculations of the basic reproduction number, sensitivity analy-

sis and stability analysis. In Section 4, numerical simulations are carried out to illustrate the

effect of some model parameters related to the pre-symptomatic transmission. Finally, a brief

conclusion is presented in Section 5.

2. MATHEMATICAL MODEL FORMULATION

Here, we give a description of the proposed model. It is observed that COVID19 can be trans-

mitted directly via droplets and close contact with infected people and indirectly via contami-

nated surfaces. The human population is divided into six classes; susceptible class S̃(t), exposed

class Ẽ(t), asymptomatic class Ã(t), pre-symptomatic class P̃(t), symptomatic class Ĩ(t), and

recovered class R̃(t), so that Ñ(t) = S̃(t)+ Ẽ(t)+ Ã(t)+ P̃(t)+ Ĩ(t)+ R̃(t). The asymptomatic

and pre-symptomatic individuals can transmit the virus even though they don’t show symptoms.

The difference between these two classes is that pre-symptomatic will later develop symptoms

and enter the symptomatic class, whereas asymptomatic individuals will never show symptoms

till they recover. Thus, we assume that the exposed class (latently infected but still not infec-

tious) enter contagious classes at different rates; asymptomatic at a rate λ1, pre-symptomatic at

a rate λ2 and symptomatic at a rate λ3 depending on symptoms and contagiousness. Here, we

assume that some infected individuals become infectious before developing symptoms and the

rest will only be infectious after developing symptoms [23].

For indirect transmission, we assume βeB̃
k+B̃ to be the force of infection related to contaminated

environment, where B̃ represents the concentration of the virus in the environment and βe is the

contact rate with the contaminated environment. The expression B̃
k+B̃ represents the probability

of catching the disease and the constant k represents the minimum concentration of virus at
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environment capable of ensuring 50% chance of contracting the disease. The model diagram is

illustrated in Figure 1.
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FIGURE 1. Transmission diagram of the model

In [9], it was shown that the peak of infectiousness occurs at 0-2 days before symptoms onset.

So, we assume that the pre-symptomatic individuals are more contagious and their shedding rate

αp is higher than the shedding rates of symptomatic αi and asymptomatic αa. All parameters are

defined in table 1. The proposed mathematical model is given by the following set of equations:

S̃′ = Λ−β1Ã
S̃
Ñ
−β2P̃

S̃
Ñ
−β3Ĩ

S̃
Ñ
− βeB̃S̃

k+ B̃
−µ S̃

Ẽ ′ = β1Ã
S̃
Ñ
+β2P̃

S̃
Ñ
+β3Ĩ

S̃
Ñ
+

βeB̃S̃
k+ B̃

− (µ +λ1 +λ2 +λ3)Ẽ

Ã′ = λ1Ẽ− (µ + γ1)Ã

P̃′ = λ2Ẽ− (µ +σ)P̃(1)

Ĩ′ = λ3Ẽ +σ P̃− (µ + γ2 +δ )Ĩ

R̃′ = γ1Ã+ γ2Ĩ−µR̃

B̃′ = αaÃ+αpP̃+αiĨ−µeB̃.
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Here Ñ′(t) = Λ−µÑ−δ Ĩ.

TABLE 1. Parameters used in model (1)

Parameter Symbol Value [ref.]

Natural death/birth rate µ 0.000033 assumed

Disease related death rate of humans δ 0.04 [8]

Recruitment Rate Λ

Contact rate with contaminated environment βe 0.0414 [14]

Shedding rate from asymptomatic to environment αa 0.05 [14]

Shedding rate from pre-symptomatic to environment αp 0.1 assumed

Shedding rate from symptomatic to environment αi 0.07 assumed

Life time of the virus in the environment 1/µe 5.8 [14]

Transmission rate of the disease from asymptomatic β1 0.125 [8]

Transmission rate of the disease from pre-symptomatic β2 3.7875 [8]

Transmission rate of the disease from symptomatic β3 0.12875 [8]

Rate at which exposed become asymptomatic λ1 0.3128[11],[8]

Rate at which exposed become pre-symptomatic λ2 0.0898 [11],[8]

Rate at which exposed become symptomatic λ3 0.0553 [11],[8]

Rate at which pre-symptomatic become symptomatic σ 0.5 [9]

Recovery rate of asymptomatic individuals γ1 0.1397 [8]

Recovery rate of symptomatic individuals γ2 0.0698 [8]

The parameters λ1, λ2, and λ3 can be written in general as follows

λ1 =
1

3.2
ε1, λ2 =

1
3.2

ε2(1− ε1), λ3 =
1

5.2
∗ (1− ε1)(1− ε2),

where, the incubation period and infectious period before symptom onset are taken to be 5.2 and

2 days, respectively, as in [9]. Here, ε1 represents the proportion of asymptomatic infections

and according to [11] the confirmed asymptomatic infections represents 42.5% of the total

infections, so the remaining will eventually develop symptoms. In table 1, it is taken ε1 = 0.425.
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Moreover, ε2 represents the proportion of pre-symptomatic individuals, which is taken to be

ε2 = 0.5.

3. MATHEMATICAL ANALYSIS OF THE MODEL

3.1. Normalized Model. Let us define the following

N =
Ñ
N

, S =
S̃

N
, E =

Ẽ
N

, A =
Ã
N

,

P =
P̃
N

I =
Ĩ

N
, R =

R̃
N

, B =
B̃
B

,

where N = Λ/µ and B = (αpΛ)/(µeµ). Then, model (1) can be written in normalized form

as follows:

S′ = µ−β1A
S
N
−β2P

S
N
−β3I

S
N
− βeBS

K +B
−µS

E ′ = β1A
S
N
+β2P

S
N
+β3I

S
N
+

βeBS
K +B

− (µ +λ1 +λ2 +λ3)E

A′ = λ1E− (µ + γ1)A

P′ = λ2E− (µ +σ)P(2)

I′ = λ3E +σP− (µ + γ2 +δ )I

R′ = γ1A+ γ2I−µR

B′ = α1µeA+µeP+α2µeI−µeB

where α1 =
αa

αp
, α2 =

αi

αp
and K =

k
(αpΛ)/(µeµ)

.

3.2. Invariant region. Model (2) will be analyzed in a bounded feasible-biological region.

We first, note that the total population N(t) satisfies

N′(t) = µ−µN−δ I(t)≤ µ−µN.

Then, it can be shown that

N(t)≤ (N(0)−1)e−µt +1.

which implies that N(t)≤ 1. Similarly, for B we have

B′ = α1µeA+µeP+α2µeI−µeB≤ µeN−µeB≤ µe−µeB.
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Thus, B satisfies the following inequality

B≤ (B(0)−1)e−µet +1,

which implies B(t)≤ 1. Hence, we have the following bounded positive invariant set

Ω =
{
(S,E,A,P, I,R,B) ∈ R7

+ : 0 < S+E +A+P+ I +R≤ 1,0 < B≤ 1
}
.

3.3. The basic reproduction number. The disease free equilibrium (DFE) of the model is

given by E0 = (1,0,0,0,0,0,0). Then, using the next generation method, we calculate R0 as

follows:

the matrix of new infection is

F =



β1A S
N +β2P S

N +β3I S
N + βeBS

K+B

0

0

0

0


and the matrix of transition terms is

V =



ξ E

−λ1E +(µ + γ1)A

−λ2E +(µ +σ)P

−λ3E−σP+ηI

−α1µeA−µeP−α2µeI +µeB


,

where ξ = (µ +λ1+λ2+λ3) and η = (µ + γ2+δ ). Then, the Jacobian of F at E0 denoted by

F is given by

(3) F =



0 β1 β2 β3
βe

K
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
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and the Jacobian of V at E0 denoted by V is given by

(4) V =



ξ 0 0 0 0

−λ1 µ + γ1 0 0 0

−λ2 0 µ +σ 0 0

−λ3 0 −σ η 0

0 −α1µe −µe −α2µe µe


.

Hence, the next generation matrix is

FV−1 =



Rhh +Rhe
β1

µ + γ1
+

βeα1

K(µ + γ1)

β2

(µ +σ)
+

β3σ

(µ +σ)η
+

βe(η +α2σ)

Kη(µ +σ)

β3

η
+

βeα2

Kη

βe

Kµe

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


,

where Rhh can be written as

Rhh = Ra +Rp +Ri,

with

Ra =
β1λ1

ξ (µ + γ1)
, Rp =

β2λ2

ξ (µ +σ)
, Ri =

β3(λ2σ +λ3(µ +σ))

ξ η(µ +σ)
.

Similarly, Rhe can be written as

Rhe = Rae +Rpe +Rie,

where

Rae =
βeλ1α1

Kξ (µ + γ1)
, Rpe =

βeλ2

Kξ (µ +σ)
, Rie =

βeα2(λ2σ +λ3(µ +σ))

Kξ η(µ +σ)
.

Thus, the basic reproduction number is the spectral radius of the next generation matrix FV−1

and it is given by

R0 = Rhh +Rhe.

It is clear that Rhh gives the contribution from human to human transmission and Rhe gives

the contribution from environment to human transmission. Moreover, each expression includes

three parts, which correspond to asymptomatic, pre-symptomatic and symptomatic transmis-

sions, respectively. The basic reproduction number is the sum of all these contributions. If any



THE HIDDEN ROLE OF THE PRE-SYMPTOMATIC INDIVIDUALS 9

of them is greater than one, then the basic reproduction number R0 > 1. This emphasizes the

fact that to reduce the spread of COVID19, all transmission routes must be controlled.

Note that in the above calculations, the term α1µeA + µeP + α2µe was not considered as a

new infection term. If it is considered to be so, then following the same procedure above, the

expression of the basic reproduction number will be given by

R̂0 =
1
2

(
Rhh +

√
R2

hh +4Rhe

)
.

However, it can be derived that the two expressions of the basic reproduction number have the

same threshold as above, i.e., R0 > 1 whenever Rhh +Rhe > 1, which again confirm the impor-

tance of controlling all transmission routes. However, based on the values of the corresponding

parameters, we will be able to determine the most significant transmission route. This will be

shown in the following table, taking K = 0.5:

TABLE 2. Estimated values of the basic reproduction number

Transmission Route Asymptomatic Pre-symptomatic Symptomatic Total

Rhh 0.427 2.447 0.612 3.486

Rhe 0.142 0.054 0.275 0.471

R0 0.569 2.501 0.887 3.957

R̂0 0.646 2.469 0.914 3.617

Clearly, the major contribution to the basic reproduction number comes from the direct pre-

symptomatic transmission. Although the symptomatic individuals transmit large quantities of

virus, for example via coughing but it is reasonable to think that the symptoms may urge the

person to stay at home, wearing mask, limiting the number of contacts and hence this will reduce

the transmission potential. On the other hand, individuals without symptoms are unaware of

their infection risk to others and so they are likely to have more social interactions with others

than those who have symptoms. Also, because of the delays in contact tracing and the nature

of detection that focus on testing symptomatic persons, these findings could explain the greater

proportion of pre-symptomatic transmission, see [6, 2, 7, 12, 17, 22].
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3.4. Sensitivity Analysis. Here, we perform the normalized forward sensitivity index, also

known as elasticity index, to explore the significant impact of the parameters of the model that

are related to the basic reproduction number. It is defined as the relative change of R0 to the

relative change in the parameter φ , i.e,

ϒ
R0
φ

=
∂R0

∂φ

φ

R0
.

Using the obtained explicit expressions of the basic reproduction number R0, one can easily

calculate the elasticity index with respect to each model parameter. The estimated values of the

elasticity indices are obtained using the parameter values listed in Table 1. The obtained results

are listed in Table 3.

TABLE 3. Sensitivity analysis of model (2)

Parameter (φ) ϒ
R0
φ

ϒ
R̂0
φ

β1 0.10801 0.11408

β2 0.61844 0.65315

β3 0.15464 0.16332

ε1 -0.58102 -0.58568

ε2 0.56110 0.58090

µ -0.00027 -0.00025

δ -0.08167 -0.06688

σ -0.63190 -0.65713

γ1 -0.14375 -0.12449

γ2 -0.14252 -0.11671

K -0.11891 -0.03472

α1 0.03577 0.01045

α2 0.06962 0.02033

βe 0.11891 0.03472

In the above table, the sign of the elasticity index determines whether R0 increases (positive

sign) or decreases (negative sign) with the parameter and the magnitude measures the relative
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significant of the parameter. Clearly, the transmission rate of pre-symptomatic β2 has high pos-

itive index, while the reciprocal of infectious period before symptom onset σ has high negative

index with R0. From the obtained sensitivity results, pre-symptomatic plays a significant role in

the spread of disease and can continue the outbreaks of COVID19 even though all symptomatic

cases are isolated. Furthermore, the effectiveness of the control measures and prevention which

focus on symptomatic transmission should be extended to pre-symptomatic and asymptomatic

individuals. This can be achieved through social distancing, wearing face masks, maintain-

ing personal hygiene, contact tracing to identify possible pre-symptomatic individuals and also

isolation for pre-symptomatic individuals once identified in addition to symptomatic cases [12].

3.5. Local and Global stability of DFE. The local stability of the DFE can be established

using Theorem 2 in [20] and hence, we have the following result:

Lemma 3.5.1. The DFE of model 2, given by E0, is locally asymptotically stable if R0 < 1 and

unstable if R0 > 1.

The global stability of the DFE can be established using Lyapunov function described in [19].

This result is given in the following theorem:

Theorem 3.1. If R0 ≤ 1, then the DFE of model (2) is globally asymptotically stable.

Proof. First, consider the matrices F and V as given by (3) and (4), respectively. Then, V−1 is

given by

V−1 =



1
ξ

0 0 0 0

λ1

ξ (µ + γ1)

1
µ + γ1

0 0 0

λ2

ξ (µ +σ)
0

1
µ +σ

0 0

λ2σ +λ3(µ +σ)

ξ η(µ +σ)
0

σ

η(µ +σ)

1
η

0

α1λ1

ξ (µ + γ1)
+

λ2

ξ (µ +σ)
+

α2(λ2σ +λ3(µ +σ))

ξ η(µ +σ)

α1

µ + γ1

η +σα2

η(µ +σ)

α2

η

1
µe


.

We clearly note that F ≥ 0 and V−1 ≥ 0. Now, let xT = (E,A,P, I,B) and yT = (S,R), then

the disease compartments can be written as

x′ = (F−V )x− f (x,y),
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where f (x,y) is given by

f (x,y) = (F−V )x−F (x,y)+V (x,y)

=



β1A(1− S
N
)+β2P(1− S

N
)+β3I(1− S

N
)+

βeB
K(K +B)

(K(1−S)+B)

0

0

0

0


Clearly, f (x,y) ≥ 0 since S ≤ N ≤ 1. Now, we construct Lyapunov function as described in

Theorem 2.1 in [19] as follows

Q(t) = ω
TV−1x(t),

where ω is the left eigenvector of the non-negative matrix V−1F corresponding to the eigenvalue

R0 = ρ(V−1F) = ρ(FV−1). Computing ω , we get

ω
T =

[
0

β1K
βe

β2K
βe

β3K
βe

1
]
.

Now, differentiating Q gives

Q′ = ωTV−1x′

= ωTV−1(F−V )x−ωTV−1 f (x,y)

≤ ωT (V−1F− I5)x

= (R0−1)ωT x

where I5 is the identity matrix. Clearly, Q′ ≤ 0 if R0 < 1. Note that Q′ = 0 implies x = 0 since

f (0,y) = 0. When R0 = 1, Q′ = 0 implies f (x,y) = 0. In this case, f (x,y) = 0 if and only if

x = 0.

Hence, E0 is the largest invariant set in Ω0 = {(S,E,A,P, I,R,B)∈Ω,Q′= 0}. Using LaSalles’s

invariance principle, E0 is an attractive point which leads to conclude that E0 is globally asymp-

totically stable provided that R0 ≤ 1.
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3.6. Existence of Endemic Equilibrium. In this section, we show the existence of endemic

equilibrium (EE). Let the EE of model (2) be given by

E1 = (S∗,E∗,A∗,P∗, I∗,R∗,B∗) ,

and denote:

(5) Φ =
β1A∗

N∗
+

β2P∗

N∗
+

β3I∗

N∗
+

βeB∗

K +B∗
,

where N∗ =
1
µ
(µ−δ I∗) . Now, rewriting the components of the EE in terms of Φ, we get

S∗ =
µ

Φ+µ
, E∗ =

ΦS∗

ξ
,

A∗ =
λ1

µ + γ1
E∗, P∗ =

λ2

µ +σ
E∗,

I∗ = C1E∗, B∗ =C2E∗, R∗ =
γ1A∗+ γ2I∗

µ
,

where, C1 =
λ3(µ +σ)+σλ2

η(µ +σ)
and C2 =

λ1α1

µ + γ1
+

λ2

µ +σ
+

α2λ3(µ +σ)+σλ2)

η(µ +σ)
.

Substituting the above expressions into equation (5), we have the following equation for Φ:

a1Φ
2 +a2Φ+a3 = 0

where

a1 = (Kξ +µC2)(ξ −δC1),

a2 = µKξ 2(1−Rhh−Rhe)+µ2ξC2(1−Rhh)+ξ µK(ξ −δC1)+δβeC1C2µ,

a3 = Kµ2ξ 2(1−Rhh−Rhe).

Obviously, the existence of EE follows immediately from the existence of positive solution of

the above equation which can be determined using Descartes’ rule of signs. Clearly, a1 is always

positive since one can easily verify that ξ −δC1 > 0. Hence, we consider the following cases:

• If R0 ≤ 1, then all coefficients are non-negative and so there is no positive solution.

• If R0 > 1, then a3 < 0 which implies that a unique positive solution exists.

According to the above discussion, we conclude that EE of model (2) exists if R0 > 1.
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3.7. Local stability of EE. This section is devoted for local stability of EE. The result is

stated in the following theorem:

Theorem 3.2. The EE of model (2) is locally asymptotically stable if R0 > 1.

Proof. We use the results of Theorem 4.1 in [3] which is based on center manifold theory. We

choose β2 to be a bifurcation parameter with a bifurcation value given by:

β ∗2 =
1

Kλ2η(µ + γ1)
(Kξ η(µ +σ)(µ + γ1)−ηλ1(µ +σ)(β1K +βeα1)

−βeηλ2(µ + γ1)− (µ + γ1)(λ2σ +λ3(µ +σ)(β3K +βeα2))

which corresponds to R0 = 1. Now, one can check that the Jacobian of model (2) at the DFE

given by

JE0,β
∗
2
=



−µ 0 −β1 −β ∗2 −β3 0 −βe

K
0 −ξ β1 β ∗2 β3 0

βe

K
0 λ1 −µ− γ1 0 0 0 0

0 λ2 0 −µ−σ 0 0 0

0 λ3 0 σ −η 0 0

0 0 γ1 0 γ2 −µ 0

0 0 α1µe µe α2µe 0 −µe



has a simple zero eigenvalue. Then, computing the left eigenvector, v = [v1 v2 · · · v7],

associated with zero eigenvalue, we obtain
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v1 = v6 = 0

v2 =
Kµe

βe
v7

v3 =
α1µev7 +β1v2

µ + γ1

v4 =
µev7 +β ∗2 v2 +σv5

µ +σ

v5 =
α2µev7 +β3v2

η

v7 = v7 > 0.

and the right eigenvector, w = [w1 w2 · · · w7]
T , associated with zero eigenvalue is

w1 =−
β1w3 +β ∗2 w4 +β3w5 +βew7/K

µ

w2 = w2 > 0

w3 =
λ1w2

µ + γ1

w4 =
λ2w2

µ +σ

w5 =
λ3w2 +σw4

η

w6 =
γ1w3 + γ2w5

µ

w7 = α1w3 +w4 +α2w5
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Let x = (S,E,A,P, I,R,B) and fi (i = 1,2, · · ·7) be the right hand side of the model (2). Then,

calculating the values of a and b as defined in the above mentioned theorem, we get

a =
1
2

7

∑
i, j,k=1

viw jwk
∂ 2 fi(E0,β

∗
2 )

∂x j∂xk

=
v2

K

(
w1(β1w3 +β ∗2 w4 +β3w5 +βew7)−

w2
7βe

K

)
< 0,

since w1 < 0 and

b =
7

∑
i, j=1

viw j
∂ 2 fi(E0,β

∗
2 )

∂x j∂β2
=

Kµeλ1

βe(µ + γ1)
w2v7 > 0.

Hence, according to [3, 20], the EE is locally asymptotically stable if R0 > 1 and the system

(2) undergoes forward bifurcation when β2 passes through bifurcation parameter β ∗2 . The bi-

furcation diagram is given in Figure 2. MATCONT program is used to sketch this diagram

[4].
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FIGURE 2. Bifurcation diagram with a bifurcation parameter β2.

4. NUMERICAL SIMULATION

In this section, we present some numerical simulations to illustrate the effect of the model

parameters related to the pre-symptomatic transmission on the disease dynamics. The values of

parameters are chosen as in Table 1. We begin with effect of pre-symptomatic transmission rate

β2 and fixing other parameters as shown in Figure 3. Clearly, reducing the pre-symptomatic

transmission rate β2 will decrease the peak number of symptomatic infected and also will delay

the time to reach the peak. Hence, reducing the pre-symptomatic transmission will slow the
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spread of COVID-19 and lead to flatten the curve of infected which prevents health care systems

from being overrun and reduces the mortality due to the disease.

Figure 4 shows the effect of changing the portion of the symptomatic individuals who were

pre-symptomatic ε2 before developing symptoms. It can be seen that increasing the fraction ε2

will lead to an increase in the peak number of symptomatic infected. Moreover, for large por-

tion, there is a quick increase and also decline in the number of symptomatic infected as shown

in the Figure. Figure 5 presents the effect of infectious period before symptom onset. We ob-

serve that increasing σ (reciprocal of infectious period) will decrease the maximum number of

infected. In other words, for short period of infectiousness before symptom onset, the maxi-

mum number of symptomatic infected is less and the time to reach this maximum is delayed.

All these results show the importance of identifying pre-symptomatic individuals in order to

minimize their contribution to the disease transmission.
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FIGURE 3. Effect of pre-symptomatic transmission rate β2 with β1 =

0.125,β3 = 0.12875.
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FIGURE 4. Effect of the portion of symptomatic individuals who started as pre-

symptomatic ε2.
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FIGURE 5. Effect of infectious period before symptom onset.
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5. CONCLUSION

A mathematical model has been proposed to investigate the hidden role of pre-symptomatic

transmission in COVID-19 dynamics. The model includes the three main routes of transmis-

sion, namely, asymptomatic, pre-symptomatic and symptomatic transmissions in the forms of

direct (human to human) and indirect (environment to human) transmissions. The model has

been first normalized using a set of normalized variables and the normalized model has been

then fully analyzed both qualitatively and quantitatively. The analysis started by defining a

bounded invariant region where the model has a biological sense. The basic reproduction num-

ber was then calculated using the next generation method. The obtained expressions include

contributions from direct and indirect asymptomatic, pre-symptomatic and symptomatic trans-

missions. The estimated values of the basic reproduction number show that the major con-

tribution is coming from direct pre-symptomatic transmission. Sensitivity analysis has been

then carried out to identify the parameters with high impact on the basic reproduction num-

ber and hence on the disease transmission. It has been found that two parameters related

to pre-symptomatic transmission have the highest impact on the basic reproduction number,

namely, the pre-symptomatic transmission rate with positive impact and the rate at which pre-

symptomatic individuals become symptomatic with negative impact. The later implies that the

longer infectious individuals stay as pre-symptomatic the higher they contribute to the disease

transmission. Stability of equilibrium points has been also addressed. It has been shown that

the disease free equilibrium is globally asymptotically stable whenever the basic reproduction

number is less than unity and the endemic equilibrium point is locally asymptotically stable

whenever the basic reproduction number is greater than unity. Finally, the obtained theoreti-

cal results have been demonstrated numerically. In particular, numerical simulations have been

carried out to illustrate the effect of some model parameters related to pre-symptomatic trans-

mission on COVID-19 transmission dynamics, namely, the pre-symptomatic transmission rate,

the portion of symptomatic individuals who started as pre-symptomatic and the rate at which

the pre-symptomatic individuals become symptomatic. The obtained results were demonstrated
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graphically and showed that all these parameters have the effect of reducing the maximum num-

ber of symptomatic individuals and delaying the time it takes to reach the maximum. In con-

clusion, it is very important to adopt strategies to identify the pre-symptomatic individuals as

early as possible, such as contact tracing, in order to minimize their contribution to the disease

transmission.
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