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Abstract: Dengue is a severe health problem. In recent decades, the number of infections has increased significantly 

worldwide, and approximately 70% of cases were found in Asia. To predict local mosquito distribution and estimate 

the local risk, a combination of ecological factors has been widely used. However, it is not easy to control the dengue 

transmission because the transmission is influenced by several ecological factors that might have complex interactions 

among the factors. In addition, ecological information is commonly limited. The elevation is an important weather 

proxy for the Aedes Aegypti life cycle because it is correlated to a variety of vital ecological factors, especially 

temperature. This study evaluated the effect of the elevation and identified high-low dengue risk provinces in 

Indonesia using the clustering Bayesian spatial hierarchical model.  We found that the elevation's effect decreased for 

the provinces with an elevation higher than 289.44m. 
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1. INTRODUCTION 

Dengue is a mosquito-borne viral infection. In recent decades, the number of infections has 

increased significantly cause serious health problems. There were 390 million dengue virus 
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infections per year in 129 countries, with 70% of cases found in Asia [1, 2]. The South-East Asia 

and Western Pacific regions are the most seriously affected. Indonesia is one of the countries in 

South-East Asia, with high dengue cases every year [1]. 

The dengue virus is transmitted through the bites of infected female Aedes 

Aegypti mosquitoes. It is found in many urban areas and mostly in human-made containers. It feeds 

mainly early in the morning and in the evening before sunset [3].  

Dengue disease control is very difficult because there is no accurate information about the 

mosquito vector distribution [4, 5]. To predict local mosquito distribution and estimate the local 

risk, a combination of ecological factors have been used often. However, the life cycle of being 

influenced by the complex interaction between environmental factors and the weather variables' 

lack of information makes it challenging to develop a prediction model [5, 6]. 

The elevation is a vital weather proxy for the Aedes Aegypti life cycle because it is 

correlated to some crucial ecological factors, especially temperature [7]. Although elevation does 

not directly affect dengue virus transmission, it can be an essential proxy in assessing the 

environmental variable's effect with complex interactions in describing the Aedes 

Aegypti mosquito breeding [5]. Elevation has been used as a proxy for mosquito-borne Zika virus 

transmission in the Americas [5]. In this study, we use elevation as a proxy for mosquito-borne 

dengue virus transmission in Indonesia.  

Besides the complexity of environmental factors' interactions, spatial dependency, and 

heterogeneity need more attention to disease modeling to obtain more reliable risk prediction [8-

11]. In this study, we develop a clustering Bayesian hierarchical model based on Poisson log-linear 

model. The model is developed by considering spatial dependency, heterogeneity, and elevation 

variation across areas. The model is applied to model dengue incidences in Indonesia with 34 

provinces.  

The paper is structured as follows section 2 describes the method, section 3 figure out the 

application and discussion, and section 4 focuses on the conclusion and discusses the conclusion. 
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2. MATERIAL AND METHOD 

2.1. Global Moran’s I 

Global Moran’s I is widely used to provide information on the spatial dependency between 

neighboring areas [12]. Let we assume the regions consist of non-overlapping areas (e.g., 

provinces) with 𝑦𝑖 is the number of dengue cases and 𝑁𝑖 as the population at risk at spatial unit i 

for i=1,…,n. Moran’s I statistic measures the spatial autocorrelation globally  [12]: 

𝐼 =
1

𝑠𝑦
2

∑ ∑ 𝑤𝑖𝑗{𝑗:𝑖≠𝑗} (𝑦𝑖 − �̅�)(𝑦𝑗 − �̅�)𝑛
𝑖=1

∑ ∑ 𝑤𝑖𝑗{𝑗:𝑖≠𝑗}
𝑛
𝑖=1

 (1) 

where �̅� =
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 , 𝑠𝑦

2 =
1

𝑛
∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1 , 𝑖 and j were the region indexes and 𝑤𝑖𝑗 indicated the 

adjacency between district 𝑖 and district 𝑗.  

𝑤𝑖𝑗 = {
1   if 𝑖, 𝑗 are adjacent neighbors
0     otherwise                                

 

The adjacent neighbors in this study are defined by mean k-nearest neighbors.  Moran’s I has 

values between 0 – 1. If the Moran’s I close to zero, it is indicated there is no spatial 

autocorrelation. Conversely, if the value close to one, it shows strong spatial autocorrelation.    

2.2.  Standardized morbidity ratio (SMR) 

In spatial epidemiology, SMR is known as a crude risk because it is an unreliable estimate, 

especially for a small area. The areas with a small population are commonly categorized as high-

risk areas; even the number of cases is small [8-11]. The SMR is expressed as the ratio between 

the number of cases (𝑦𝑖) on the expected count (𝐸𝑖) as follows [13]: 

𝑆𝑀𝑅𝑖 =
𝑦𝑖

𝐸𝑖
 (2) 

The expected number of cases 𝐸𝑖 in each area is commonly calculated by considering the structure 

in population at risk. However, if the information was not provided, then 𝐸𝑖 =

𝑁𝑖(∑ 𝑦𝑖
𝑛
𝑖=1 ∑ 𝑁𝑖

𝑛
𝑖=1⁄ ) where 𝑛 denotes the number of areas and 𝑁𝑖 is population at risk in area 𝑖th. 

Although the SMR is not reliable for small areas, it helps understand the distribution patterns of 

various types of diseases. However, the inability of SMR to model covariates causes SMR to be 

fully applied in this study. 
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2.3. Poisson Loglinear model 

To overcome the unreliable SMR and the inability to include the covariate in the model. We 

propose to use Poisson log linear model. The Poisson model is given by: 

𝑦𝑖|𝐸𝑖, 𝜃𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐸𝑖𝜃𝑖);  𝑖 = 1, … , 𝑛 (3) 

Poisson regression model fits for count data. Log linear models are widely used to explain the 

effects of the K-risk factors on the mean function. The model for n spatial units is given by: 

log 𝔼(𝑦𝑖) = offset(log 𝐸𝑖) + 𝒙𝑖
′𝜷 + 𝜖𝑖;  𝑖 = 1, … , 𝑛 (4) 

where offset(. ) that describes the regression coefficient of log 𝐸𝑖 is fixed to one, 𝒙𝑖 =

(1, 𝒙𝑖1, … , 𝒙𝑖𝐾)′is a (𝐾 + 1) × 1 is vector of area-level risk factors, 𝜷 = (𝛽0, 𝛽1, … , 𝛽𝐾)′ is (𝐾 +

1) × 1 is vector of regression parameters, and 𝜖𝑖 = 𝜔𝑖 + 𝑣𝑖 denotes the random effect components 

used to accommodate the spatial dependency (𝜔𝑖) and heterogeneity (𝑣𝑖). In this study we consider 

elevation as the covariate and  intrinsic conditional autoregressive (iCAR) and exchangeable priors 

to account spatial dependency (𝜔) and heterogeneity (𝑣), respectively. iCAR model is defined 

follows Besag York and Molie model [14]: 

𝜔𝑖|𝝎−𝑖, 𝜏𝜔 , 𝐖~𝒩 (
∑ 𝑤𝑖𝑗𝜔𝑗

𝑛
𝑗=1

∑ 𝑤𝑖𝑗
𝑛
𝑖=1

,
𝜎𝜔

2

∑ 𝑤𝑖𝑗
𝑛
𝑖=1

) (5) 

where 𝐖 = (𝑤𝑖𝑗) is the ‘adjacency’ matrix with 𝑤𝑖𝑗 = 1 if 𝑖 and 𝑗 are adjacent (i.e. are first-order 

contiguous) and 𝑤𝑖𝑗 = 0 otherwise. The spatial heterogeneity (𝑣𝑖) is commonly assigned by an 

exchangeable prior, that is:  

𝜐𝑖|𝜎𝜐
2~𝒩 (0,

1

𝜎𝜐
2

) (6) 

where 𝜎𝜐
2 is the variance parameter of 𝑣𝑖. 

 2.3. Clustering loglinear model approach 

The ecological data are commonly high variation. Elevation data has high variation from 0m to 

2163.19m, and the outlier problems potentially occur in disease modeling. To deal with the group 

outlier, we develop a clustering log-linear model by means dummy variable approach. We divide 

the elevation data based on quantile statistics and use this information as clusters. There are five 

candidate model that we consider.   
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Table 1. Candidate models 

No Model Specification 

M1 Based line model 𝜂𝑖 = 𝛼 + 𝛽1𝑥𝑖 

M2 Fixed 1 

𝜂𝑖 = 𝛼 + 𝛽1𝑥𝑖 + ∑ 𝛾𝑗

𝐽−1

𝑗=1

𝐷𝑗𝑖 + ∑ 𝛽𝑗

𝐽−1

𝑗=1

𝑥𝑖𝐷𝑗𝑖  

M3 Fixed 2 

𝜂𝑖 = 𝛼 + 𝛽1𝑥𝑖 + 𝜔𝑖 + 𝑣𝑖 + ∑ 𝛾𝑗

𝐽−1

𝑗=1

𝐷𝑗𝑖 + ∑ 𝛿𝑗

𝐽−1

𝑗=1

𝑥𝑖𝐷𝑗𝑖  

M4 Random 1 𝜂𝑖 = 𝛼 + 𝛽1𝑥𝑖 + 𝛾𝑗 + 𝛿𝑗𝑥𝑖(𝑗) 

M5 Random 2 𝜂𝑖 = 𝛼 + 𝛽1𝑥𝑖 + 𝜔𝑖 + 𝑣𝑖 + 𝛾𝑗 + 𝛿𝑗𝑥𝑖(𝑗) 

To evaluate which model is better for our data, we use two different model selection criteria those 

are deviance information criterion (DIC) [15] and Watanabe Akaike information criterion (WAIC) 

[16].  The statistical model presented in Table 1  is fitted using the Integrated Nested Laplace 

Approximation (INLA). To identify the hotspot clusters, we apply Bayesian exceedance 

probability [11].  The models were estimated using R-INLA packages. 

 

3. RESULT 

Study area and data. Indonesia is located in southeast Asia. It has a total land area of 1,904,569 

km2 [17]. Indonesia country can be seen on the Figure 1. The provinces names are corresponding 

to the id in the map and Table 1.  

 

Figure 1. Indonesia country with 34 provinces. 
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Population projection by the Central Bureau of Statistics in 2019 puts Indonesia’s population at 

268,026,566 [18], which spread in 34 provinces. The dengue disease data used for this study 

recorded in 2019. Dengue disease Cases were accessed from https://www.kemkes.go.id/. The 

elevation data we extracted from https://www.worldclim.org/.  

Table 2. Raw data for the analysis 

id Province Population Cases Elevation (m) 

1 Bangka Beliting 1,488,792 1,012 38.37 

2 Gorontalo 1,202,631 1,221 155.05 

3 Riau 6,971,745 4,126 37.15 

4 DKI Jakarta 10,557,810 8,705 10.93 

5 Kepulauan Riau 2,189,653 1,865 38.76 

6 Sulawesi Selatan 8,851,240 3,265 502.28 

7 Sumater Selatan 8,470,683 2,799 13.40 

8 Kalimantan Barat 5,069,127 2,798 42.35 

9 Aceh 5,371,532 2,386 2,163.19 

10 Bengkulu 1,991,838 1,479 356.23 

11 Lampung 8,447,737 5,611 49.08 

12 Jawa Tengah 34,718,204 9,124 673.10 

13 Nusa Tenggara Barat 5,070,386 2,971 0 

14 Sumatera Utara 14,562,549 7,731 1,202.55 

15 Jambi 3,624,579 2,158 49.81 

16 Banten 12,927,316 2,915 61.61 

17 Jawa Timur 39,698,631 18,031 1,299.16 

18 Yogyakarta 3,842,932 3,301 268.03 

19 Kalimantan Selatan 4,244,096 2,381 310.84 

20 Sulawesi Utara 2,506,981 2,381 767.24 

21 Kalimantan Utara 724,245 1,774 488.58 

22 Sulawesi Barat 1,380,256 796 256.36 

23 Maluku Utara 1,255,771 1,195 662.94 

24 Kalimantan Tengah 2,714,859 1,616 75.36 

25 Nusa Tenggara Timur 5,456,203 4,059 490.66 

26 Papua Barat 959,617 354 22.68 

27 Jawa Barat 49,316,712 23,483 706.30 

28 Sulawesi Tenggara 2,704,737 1,479 541.10 

29 Sumater Barat 5,411,197 2,263 622.05 

30 Papua 3,379,302 597 619.36 

31 Kalimantan Timur 3,721,389 6,723 65.13 

32 Maluku 1,802,870 236 1,915.12 

33 Bali 4,336,923 4,979 1,201.87 

34 Sulawesi Tengah 3,054,023 1,947 0 

 

https://www.kemkes.go.id/
https://www.worldclim.org/
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Figure 3 shows the raster data from the worldclim database and Table 2 shows the statistics of the 

number of Cases, population size, population density, and the aggregated of elevation  (m).  

 

Figure 2. The raster of elevation data of 34 provinces in Indonesia 

Table 3.  The statistics of the number of Cases, population size, population density, and the 

aggregated of elevation 

Variable Minimum Q(0.25) Q(0.50) Q(0.75) Maximum 

Cases 236 1513 2384 4109 23483 

Population  724,245 2,268,985 4,043,514 8,078,739 49,316,712 

Elevation (m) 0 44.03 289.44 652.71 2163.19 

The statistics of each variable shows that the data have high variability and indicates an outlier. 

The spatial distribution of all variables is presented below.  

 

Figure 3. Spatial distribution of the number of dengue disease cases 
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Figure 3 shows the spatial distribution of dengue disease over 34 provinces in 2019. The high cases 

were found in most provinces in Java and Sumatera island and north of Kalimantan. High cases 

were related to high population areas, as presented in Figure 3.  The number of cases highly 

correlates to the population size with r-Pearson=0.864, and it has a similar spatial pattern. It 

indicates that the areas with a high number of cases do not describe the high-risk areas. The high 

cases were recorded caused by the high population. In this study, we focus on estimating the high-

risk areas as a function of elevation.  

 

Figure 4. Spatial distribution of population 

 

Figure 5. Spatial distribution of elevation (m)  

Elevation data were extracted from the worldclim database using a raster package in R. The 

elevations were extracted corresponding to the centroid coordinates for each area. The elevation 

data were high variation (see Table 3).  To model the dengue disease, we have to control the 

population size because it can be a confounding factor. Figure 6(a) shows there is a positive 

correlation between the number of cases with elevation. It is caused by the population at risk does 
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not consider in computing the correlation index. Figure 6(b) shows the correlation between the 

elevation with crude risk. It shows that there is a negative correlation between both variables. 

  

(a) Elevation versus Cases (b) Elevation versus crude risk (SMR) 

Figure 6 (a) Elevation versus dengue cases and (b) elevation versus crud risk  

As we mentioned above, the elevation has a high variation with some outliers. There are several 

solutions to overcome this high variation. First, we can use a nonlinear regression model, and 

second, we can develop clustering regression. Clustering regression can be extended by developing 

regression dummy variables. Here we focus on clustering regression. The clusters are constructed 

based on the quartile of elevation data. The exploration of the relationship between crude risk and 

elevation is shown in Figure 7.  

 

Figure 7. Elevation versus crude risk grouped quartile of elevation data  
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Figure 7 shows there are varying effects across the group of the elevation on crude risk. However, 

the variation of dengue risk is influenced by spatial dependency and heterogeneity. Hence, it is 

essential to consider the spatial dependence and heterogeneity in the model to obtain a more 

reliable disease risk prediction. To include the spatial dependency into the model, we have to 

define the spatial weight matrix that describes the dependencies between areas. We develop a 

spatial weight matrix using the k-nearest neighbor approach. We do not use spatial contiguity 

because some areas are not connected due to archipelago country. Using the number of cases, we 

found the optimal weight matrix is the matrix constructed by four (k=4) neighboring. See Figure 

8 for Moran’s I for 𝑘 = 1, . . . ,8 and Figure 9 for the connecting map. 

 

 

Figure 8. Moran’s I for 𝑘 = 1, … ,8 
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Figure 9 Connecting map 

 

 

 

Figure 10. Sparse spatial weight matrix  

Figure 10 shows the sparse spatial matrix W used to accommodate the spatial dependency into the 

spatial model.  

Connected (1)
Unconnected (0)
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Next, we compare five different models of dengue disease risk. We estimate the model using 

integrated nested Laplace approximation (INLA). Table 4 shows the model comparison based on 

deviance information criteria (DIC) and Watanabe Akaike information criteria (WAIC).  

Table 4. Models comparisons 

No Model DIC WAIC 

M1 Based line model 26829.24 18683.27 

M2 Fixed 1 24445.28 22814.46 

M3 Fixed 2 396.91 386.63 

M4 Random 1 24445.13 22801.12 

M5 Random 2 396.92 386.68 

 

Based on the DIC and WAIC criteria we chose the M3 as the best model to explain the dengue 

disease in Indonesia in 2018. The M3 is specified as: 

�̂�𝑖(1) = 0.1746 − 0.0003𝑥𝑖(1) + �̂�𝑖(1) 

�̂�𝑖(2) = 0.1201 + 0.0012𝑥𝑖(2) + �̂�𝑖(2) 

�̂�𝑖(3) = 0.5088 − 0.0010𝑥𝑖(3) + �̂�𝑖(3) 

�̂�𝑖(4) = 0.5357 − 0.0005𝑥𝑖(4) + �̂�𝑖(4) 

The detail parameters estimates of the intercept, slope, the relative risk are presented in Table 5.  

Table 5. Parameter estimates of M3 

Quartile 
Intercept 

(𝛼) 

Slope 

(𝛽1) 

Relative Risk 

Mean Min Max 

Q1 (very low) 0.175 -0.0003 1.173 0.643 1.657 

Q2 (low) 0.120 0.0012 1.542 0.439 3.514 

Q3 (high) 0.509 -0.0010 1.460 0.345 4.755 

Q4 (very high) 0.536 -0.0005 1.156 0.258 2.233 

   

Table 5 shows the very low, high and very high elevation areas have negative effect on the disease 

risk. It indicates that for very low, high and very high areas the risk of dengue disease tend to be 

low. See the Figure 11 for detail spatial distribution.  
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Figure 11. Elevation effects for all quartiles  

 

Figure 12. Spatial distribution of the relative risk 

Figure 12 shows the high-risk estimates of dengue disease across 34 provinces in Indonesia in 

2019. The spatial distribution of dengue disease risk seems to correspond to the elevation effects 

in Figure 11.  

 

Figure 13. High, insignificant, and low risk areas  
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Figure 13 shows the High, insignificant, and low-risk areas based on the exceedance probability. 

The areas are categorized as high-risk if the exceedance probabilities are higher than 0.950. Low 

risk if the exceedance probabilities are lower than 0.05 and insignificant for otherwise. Our 

clustering Bayesian hierarchical model found that the two provinces in Java island are categorized 

as a high-risk area.  The provinces are DKI Jakarta and Yogyakarta. In Sumatera island, we found 

more regions are categorized as high-risk areas. We also found that Bali, Maluku, Nusa Tenggara 

Timur provinces are also classified as high-risk areas. The result is much different from the plot 

of the number of cases in Figure 1. It indicates we have to be careful in modeling disease risk 

because some confounding variables might influence the disease risk variation, such as population 

at risk and elevation. 

 

4. CONCLUSION 

Our analysis described that elevation is a proxy for the dengue disease in Indonesia. We found that 

for quantiles Q3 (289.44 - 461.96) and quantile Q4 (> 461.96), the effect of the elevation on dengue 

risk disease decreased, respectively. We realized that a single risk factor such as elevation does 

not determine all spatial transmission processes of dengue disease. However, we believe it is a 

pragmatic proxy for the dengue disease range because it has correlation with ecological factors 

that is critical for mosquito development, such as weather variables. Our study has several 

limitations. In our model, we only considered the elevation variable, which is fixed over time. Our 

analysis does not account for seasonality variability in explaining dengue disease transmission. 

Indonesia has two seasons, rainy and dry seasons, that might be significantly contribute to 

mosquitoes development and disease transmission. 
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