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Abstract. In this study, we have presented a data-driven SEIR compartmental model for the 2019 coronavirus

infections in Ghana. Using the fminsearch optimization routine in Matlab, and the reported cumulative infected

cases of COVID-19 in Ghana from 13th March 2020 to 6th October 2020, we have estimated the basic reproduction

number, R0 ≈ 1.0413. We have further developed a controlled SEIR dynamical model for COVID-19 disease with

a personal protection control strategy. We have derived an optimality system from our proposed optimal control

problem. Using the fourth Runge-Kutta iterative scheme with the forward-backward method, we have performed

numerical simulations for the model problem. From the numerical results, we can argue that proper personal

protection practices can help reduce the disease transmission in the susceptible human population.

Keywords: SEIR COVID-19 model; optimal control; Runge-Kutta fourth iterative scheme.

2010 AMS Subject Classification: 93A30.

1. INTRODUCTION

The recent global outbreak of COVID-19 disease is causing a lot of fear and panic among

people in the world. This disease is highly infectious and has killed many people worldwide.
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The situation report of the World Health Organization (WHO) on the recent COVID-19 pan-

demic disease published on October 06, 2020, indicates that the global total cumulative infected

and death cases were 35,347,404 and 1,039,406 respectively. Personal protection protocols such

as regular washing of hands under running water with soap, social distancing, avoiding mass

gatherings, wearing a face mask, and the use of hand sanitizer has become some of the highly

recommended preventive measures against the spread of the 2019 coronavirus disease.

Epidemiological modeling has contributed immensely in understanding infectious diseases

spread dynamics and control strategies [1–4]. Ever since the outbreak of this highly conta-

gious disease, several authors have contributed to the literature of epidemiological modeling,

see, e.g., [5–31]. In [32], the authors proposed and studied a generalized data-driven SEIR

COVID-19 epidemic model. The authors in [33] developed and studied an SEIR COVID-19

transmission model that incorporates the lockdown effect and the transmission variability be-

tween symptomatic and asymptomatic individuals in India. In [34], projected figures regarding

COVID-19 infections were forecast for several cities in China using Boltzmann function re-

gression analysis. In [35], the authors constructed a new and novel age-structured COVID-19

dynamical model. Fang et al. [36], discussed a data-driven SEIR epidemic model to inves-

tigate the dynamical behavior of SARS-CoV-2. Based on the famous Karmack-McKendrick

epidemic modeling framework, the authors in [37], explored the effect of non-pharmaceutical

control strategies on the spreading dynamics of COVID-19. In the work of Li et al. [38], they

applied Gaussian distribution theory to design a prediction and propagation-based model for

COVID-19 disease. Chowell et al. [39] have developed and analyzed an SEIR-type COVID-19

compartmental model characterized by 11-nonlinear ordinary differential equations. In [40],

an SE1E2I1I2I3R epidemiological mathematical model was proposed to evaluate the risk of

COVID-19 pandemic beyond China. Their study shows that China’s epidemic had reached

its peak and therefore recommended that, the most effective control measure for nations with

low connectivity with China to curb the outbreak in their cities is to cause further decline in

their importation numbers by imposing travel restrictions and entry screening.
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A SEIQR COVID-19 dynamical model that captures isolation class is studied in [41]. The

authors performed numerical simulations for their mathematical model using Runge-Kutta

fourth-order and nonstandard finite difference iterative schemes. Higazy [42], proposed and

studied deterministic SIDARTHE Caputo fractional-order model and optimal control fractional

SIDARTHE COVID-19 epidemiological model. The spatial dynamics of the highly infectious

COVID-19 disease is investigated using Moran’s I spatial statistic [43]. Rong [44], introduced

and analyzed an SEIR-type mathematical modeling formulation to explore the spreading dy-

namics of COVID-19 infectious disease. Following the results of their simulations, the authors

argued that reducing the waiting time for diagnosis and improving the proportion of timely

diagnosis could significantly help in reducing the spread of the disease. The work done by

the authors in [45], deals with mathematical modeling of COVID-19 disease using SEIR com-

partmental framework with discrete stochastic dynamics. The authors in [46] introduced and

presented a data-driven compartmental model for COVID-19 disease. The work done by the au-

thors in [47], explored the transmission dynamics of COVID-19 using a mathematical epidemic

model with Monte Carlo simulations in Matlab. In [48], the authors presented and analyzed a

novel data-driven prediction based stochastic model for COVID-19 infection in India.

The application of optimal control theory in constructing and analyzing nonlinear dynamical

systems in infectious diseases modeling and control strategies is immense and has been ex-

plored by several authors see, e.g., [49–64]. Mallela [65], proposed a dynamical mathematical

model with a control strategy to investigate the recent COVID-19 infectious disease. In a recent

mathematical model proposed by Asamoah and co-workers [66], they used nonlinear dynamical

systems both in an autonomous and non-autonomous sense to study the COVID-19 pandemic in

Ghana. The work done by the authors in [67] deals with the application of Pontryagin’s maxi-

mum principle to study some SIR and SEIR Ebola infection models. A deterministic COVID-19

model is proposed and studied by the authors in [68] to explore the spreading dynamics and pos-

sible mitigation strategies. Cui et al. [69] constructed and studied a data-driven SEIR type deter-

ministic model for the 2019 coronavirus disease that captures quarantined individuals in suscep-

tible, exposed, and infected compartmental classes. The authors in [70], have considered and
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analyzed a co-infection controlled dynamic model for schistosomiasis and Cholera. Another co-

infection deterministic optimal control modeling approach is investigated by the authors in [71],

in a new novel epidemiological model for the Zika virus and dengue fever vector-borne infec-

tious diseases. The recent mathematical model introduced and analyzed by the authors in [72],

studied the dynamical behavior of COVID-19 using nonlinear differential equations with time-

dependent control functions. Their optimal control problem for the COVID-19 disease was

an extension of the non-optimal control deterministic COVID-19 model formulated and nu-

merically studied in [44]. A Susceptible-Exposed-Hospitalized infected-Quarantine-Recovered

compartmental framework is applied in [73] to investigate the transmission dynamics of the

2019 coronavirus disease using both autonomous and non-autonomous differential equations

models. A dynamical deterministic optimal control compartmental model for COVID-19 dis-

ease using quarantine as time-dependent control function is proposed and numerically studied

in [74].

This study is concerned with a data-driven SEIR compartmental model for the 2019 coron-

avirus infections in Ghana. Our first objective in this work is to formulate a deterministic SEIR

COVID-19 model and then perform data fitting to estimate the values of the model parameters

based on the reported cumulative COVID infected cases in Ghana from 13th March 2020 to 6th

October 2020. We will then compute the basic reproduction number, R0, for the SEIR epidemic

model based on the estimated model parameters. Our mathematical modeling formulation is

motivated by works in [3, 75, 76] and data-driven Ebola epidemic models studied by authors

in [77, 78]. Our second objective in this present study is inspired by the aforementioned lit-

erature on optimal control modeling of infectious diseases to construct a new optimal control

nonlinear dynamical problem for the 2019 coronavirus disease using personal protection as a

time-dependent control function.

The remainder of this research paper is outlined as follows. Section 2 is concerned with

formulating an SEIR mathematical model for COVID-19 dynamics and estimating model pa-

rameters values using the reported cumulative infected cases of COVID-19 in Ghana from 13th
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March 2020 to 6th October 2020 to compute the basic reproduction number, R0. Using personal

protection as a time-dependent control function, we will formulate and study a new determinis-

tic optimal control model for the deadly COVID-19 disease in section 3. We will also derive an

optimality system from our proposed mathematical model in the same section. In section 4, nu-

merical simulations are carried out for the derived optimality system. We will finally conclude

the work in section 5.

2. SEIR COVID-19 MATHEMATICAL MODEL

This section deals with constructing a nonlinear dynamical COVID-19 mathematical model

using the classical SEIR deterministic modeling framework. Following the epidemiological

compartmental modeling approach in [3, 75, 76], we partition the total population (N) into four

sub-populations namely Susceptible, Exposed, Infected and Recovered represented by Sc, Ec, Ic

and Rc respectively. With the assumption of constant population dynamics, the deterministic

model describing the COVID-19 infection is given by;

dSc(t)
dt

=−βSc(t)Ic(t)
N

Sc(0) = Sc0 ≥ 0,

dEc(t)
dt

=
βSc(t)Ic(t)

N
−dEc(t) Ec(0) = Ec0 ≥ 0,(1)

dIc(t)
dt

= dEc(t)− γIc(t) Ic(0) = Ic0 ≥ 0,

dRc(t)
dt

= γIc(t) Rc(0) = Rc0 ≥ 0.

with Sc(t)+Ec(t)+ Ic(t)+Rc(t) = N

where β , 1
γ

and 1
d represent disease transmission rate, average durations of infectiousness

and incubation respectively. The basic reproduction number for this type of epidemiological

model is given by R0 =
β

γ
.

Our main objective in this section is to perform data fitting to estimate the model parameters

β and γ using the the reported cumulative infected cases of COVID-19 in Ghana from 13th

March 2020 to 6th October 2020. We will then compute the basic reproduction number, R0,



6 ANKAMAH, OKYERE, APPIAH, NANA-KYERE

for the SEIR epidemic model based on the estimated model parameters. For this purpose, we

include another differential equation that captures the dynamics of cumulative infected cases of

this deadly disease in Ghana to the SEIR model (1). The modified SEIR COVID-19 model with

cumulative infected cases (C) is given by

dSc(t)
dt

=−βSc(t)Ic(t)
N

dEc(t)
dt

=
βSc(t)Ic(t)

N
−dEc(t)

dIc(t)
dt

= dEc(t)− γIc(t)(2)

dRc(t)
dt

= γIc(t)

dC(t)
dt

= dEc(t)

It is important to mention that the fifth differential equation in the COVID-19 model (2) has

been used to capture the dynamics of cumulative infected cases of the Ebola disease outbreak

by the authors in [77, 78].

For the data fitting we use the total population of N = 30955202 as projected by Ghana

Statistical Service [79] and assume initial conditions: Sc0 = 30954500,Ec0 = 700, Ic0 = 2,Rc0 =

0,C0 = 2. The incubation period, 1
d = 5.2 days as reported in the work by Tian et al. [64]

was used for the data fitting. Using the fminsearch optimization routine in Matlab and the

reported cumulative infected COVID-19 cases in Ghana (from March 13 to October 06, 2020)

as reported in ourworldindata.org [80], the estimated values for model parameters β and γ

are 1.8980 and 1.8228 respectively. It follows from the estimated model parameters that the

basic reproduction number, R0 ≈ 1.0413. The fminsearch Matlab routine which implements

the Nelder-Mead optimization algorithm has recently been applied in the works of the authors

in [81–86] to estimate their model parameters.
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FIGURE 1. Plot of cumulative COVID-19 infected cases in Ghana and the math-

ematical model (2)

.

It is clear from Figure 1 that the COVID-19 model 2 best fit the reported cumulative data of

Ghana.

In the next section, we will construct a new COVID-19 optimal control problem. As recently

presented in the works of the authors in [58, 59, 67], the optimal control problem that we will

formulate and analyze in the next section will be based on the scaled COVID-19 SEIR model

problem (3) given below.

By following the works of the authors in [3, 67] and ignoring the steps involved, the scaled

COVID-19 SEIR deterministic model is given below.

dsc(t)
dt

=−β sc(t)ic(t) sc(0) = sc0 ≥ 0,

dec(t)
dt

= β st(t)ic(t)−dec(t) ec(0) = ec0 ≥ 0,(3)

dic(t)
dt

= dec(t)− γic(t) ic(0) = ic0 ≥ 0,

drc(t)
dt

= γic(t) rc(0) = rc0 ≥ 0.
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with sc(t)+ ec(t)+ ic(t)+ rc(t) = 1,

where sc(t), ec(t), ic(t) and rc(t) represent new state variables in proportional sense.

3. OPTIMAL CONTROL SEIR COVID-19 MODEL

This section deals with using the scaled SEIR epidemiological model (3) formulated in the

previous section to construct a new COVID-19 optimal control problem using personal protec-

tion as a time-dependent control function (ϑ(t)). Our aim for constructing this new control

strategy for this deadly pandemic is that we seek to minimize the number of exposed and in-

fected individuals in the population and the cost of personal protection. For this purpose, we

minimize the new quadratic objective functional J (ϑ) given below

(4) J (ϑ) :=
∫ T

0

(
A1ec(t)+A2ic(t)+

1
2

Mϑ
2(t)

)
dt.

subject to

dsc(t)
dt

=−
(

1−ϑ(t)
)

β sc(t)ic(t) sc(0) = sc0 ≥ 0,

dec(t)
dt

=
(

1−ϑ(t)
)

β st(t)ic(t)−dec(t) ec(0) = ec0 ≥ 0,(5)

dic(t)
dt

= dec(t)− γic(t) ic(0) = ic0 ≥ 0,

drc(t)
dt

= γic(t) rc(0) = rc0 ≥ 0.

U := {ϑ : ϑ is Lebesgue measurable,0≤ ϑ(t)≤ 1, t ∈ [0,T ].}(6)

where A1 and A2 are weight constants related to exposed and infected individuals and M is re-

lated to the controlled function, ϑ(t).
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The Hamiltonian related to this optimal control problem is given by

H = A1ec(t)+A2ic(t)+
1
2

Mϑ
2(t)

+ζ1

[
−
(

1−ϑ(t)
)

β sc(t)ic(t)
]

+ζ2

[(
1−ϑ(t)

)
β sc(t)ic(t)−dec(t)

]
(7)

+ζ3

[
(dec(t)− γic(t)

]
+ζ4

[
γic(t)

]
By using the well-known Maximum Principle introduced and studied by Pontryagin et al.

[87], we can find an optimal solution for a given dynamical optimal control problem as follows

Given an optimal control problem with (ψ,ϑ) as its optimal solution, there exist a special

vector function ζ = (ζ1, ζ2, · · · ,ζn) consisting of adjoint variables which satisfies the system

below.

(8)



dψ

dt = ∂H(t, ψ, ϑ , ζ )
∂ζ

,

0 = ∂H(t, ψ, ϑ , ζ )
∂ϑ

,

dζ

dt =−∂H(t, ψ, ϑ , ζ )
∂ψ

.

Following the special equation (8) and the constructed Hamiltonian function (7) from the op-

timal control problem, the adjoint or co-state equations and the optimal control characterization

for the COVID-19 disease mathematical model are given below.

Theorem 1. Suppose that ϑ ∗ is an optimal control and (sc
∗,ec

∗, ic∗,rc
∗) as an optimal state

solution for the optimal control problem (4)-(5) that minimize J (ϑ) over U , then there exist

adjoint or co-state variables ζi, ζ2, ζ3, and ζ4 satisfying the equations below;
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dζ1

dt
= (ζ1−ζ2)(1−ϑ

∗(t))β i∗c(t)

dζ2

dt
=−A1 +(ζ2−ζ1)d

dζ3

dt
=−A2 +(ζ1−ζ2)(1−ϑ

∗(t))β s∗c(t)+(ζ3−ζ4)γ(9)

dζ4

dt
= 0

with transversality conditions

(10) ζk(T ) = 0, k = 1,2,3,4.

where ϑ ∗(t) satisfies the optimality condition given by equation (11)

ϑ
∗(t) = min

max

0,
(ζ2−ζ1)β s∗c(t)i

∗
c(t)

M

,1

(11)

Proof. To derive the adjoint or co-state system and its transversality conditions, we need to ap-

ply the well-known Pontryagin’s maximum principle [87] and then differentiate the constructed

Hamiltonian function (7) partially with respect to the state variables as follows:

(12)



dζ1
dt =−∂H

∂ sc
,

dζ2
dt =−∂H

∂ec
,

dζ3
dt =−∂H

∂ ic
,

dζ4
dt =−∂H

∂ rc
.
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with

(13) ζk(T ) = 0, k = 1,2,3,4.

Finally, knowing that on the interior of the control set U , we have

(14)
∂H

∂ϑ
= 0.

Solving equation (14) for ϑ ∗ yields the control characterization (11) �

4. NUMERICAL RESULTS AND DISCUSSION

This section of our study deals with computing numerical solutions for the constructed opti-

mality system from our newly proposed COVID-19 optimal control problem. We have therefore

in this study applied the widely used and reliable fourth Runge-Kutta iterative scheme with the

forward-backward method for solving optimality systems in nonlinear dynamical optimal con-

trol problems to generate our numerical results. The details of this useful numerical scheme

with some interesting applications in biology can be found in the optimal control modeling

textbook written by Lenhart and Workman [88]. Many authors who apply indirect methods for

their optimal control problems normally consider this efficient numerical scheme for solving

their optimality systems see, e.g., [54–56, 61, 64, 71]. The numerical simulation is conducted

by the use of the fitted parameter values given as β = 1.8980 and γ = 1.8228 with initial con-

ditions as: sc0 = 0.95,ec0 = 0.047, ic0 = 0.003,rc0 = 0. We also assume weight constant values

given as: A1 = 5,A2 = 5,M = 50. We adapt the incubation period, 1
d = 5.2 days as reported

in the study by Tian et al. [64]. In both figure 2 and figure 3, there is a substantial decrease in

the exposed and infected individuals, respectively in the control model than the mathematical

model without control. Figure 4 depicts the plot of the optimal control function, ϑ(t) over time.
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FIGURE 2. Solution trajectory for exposed individuals with and without control strategy
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5. CONCLUSION

In this paper, we considered a simple data-driven SEIR compartmental model for the 2019

coronavirus infections in Ghana. We obtained the estimated model parameters using the fmin-

search optimization routine in Matlab, and the reported cumulative infected cases of COVID-19

in Ghana from 13th March 2020 to 6th October 2020. We computed the basic reproduction

number based on the fitted estimated values of the model parameters. In this work, we have

also derived and analyzed a nonlinear dynamical optimal control SEIR COVID-19 model with

personal protection as a time-dependent control function. We applied the well-known Maxi-

mum Principle in optimal control modeling of dynamical processes to also derive an optimality

system for the model problem. We have further generated numerical results for the formulated

optimality system using an efficient numerical scheme for optimal control problems detailed

in [88]. From our numerical results, we can argue that proper personal protection practices can

help reduce the disease transmission in the susceptible human population.
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[51] S. Ullah, M.A. Khan, J.F. Gómez-Aguilar, Mathematical formulation of hepatitis B virus with optimal control

analysis, Optim. Control Appl. Meth. 40 (2019), 529–544.

[52] C. Ding, Y. Sun, Y. Zhu, A schistosomiasis compartment model with incubation and its optimal control,

Math. Meth. Appl. Sci. 40 (2017), 5079–5094..

[53] T. Hussain, M. Ozair, K. Oare Okosun, M. Ishfaq, A. Ullah Awan, A. Aslam, Dynamics of swine influenza

model with optimal control, Adv. Differ. Equ. 2019 (2019), 508.
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