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Abstract: Dengue is an infectious disease that severe health problems even death. The number of infections has been 

increased significantly worldwide. Dengue disease is transmitted through Aedes Aegypti vectors. Identifying high-risk 

areas is vital to control disease transmission. Population density is a crucial risk factor that can accelerate dengue 

transmission. The cities in general have higher population density than districts. Therefore, the modeling dengue risk 

is critical to take into account the district and city levels information. It can be done by developing multilevel models 

as a representation of the hierarchical models. The models were estimated by means of integrated nested Laplace 

approximation (INLA). We found there is a high different regression coefficients between district and city levels. 

Population density has a high positive impact on the city level. 
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1. INTRODUCTION 

Dengue is an infectious disease that severe health problems even death [1-3]. The number of 

infections has been increased significantly worldwide [4, 5]. The South-East Asia and Western 

Pacific regions are the most seriously affected. Indonesia is one of the countries in South-East Asia 

with high dengue case every year [4]. The female Aedes Aegypti mosquitoes is a vector of dengue 

virus. The dengue virus is transmitted through the bites of infected female Aedes Aegypti. Aedes 

Aegypti feeds all days particularly are early in the morning and in the evening before sunset [6].  

Controlling dengue disease transmission is essential to minimize the health and socio-

economic impact of this disease. However, the schema of dengue disease transmission was very 

complicated [7]. It involves many factors, such as socio-economic, environmental, and weather 

factors. Those variables influence mosquitos' life cycle, the transmission of the dengue virus, and 

human immunity [7, 8].  

Population density, health behaviours and weather variables are the important risk factors for 

dengue diseases [3, 9, 10]. Population density has provided important insights into the 

epidemiology of dengue disease [10]. Areas with high population density facilitate disease 

transmission [2]. Weather variables, especially temperature and rainfall, significantly influence the 

breeding of the Aedes aegypti mosquitoes [2]. In this study, we focus on evaluating the effect of 

population density. We realized that considering a lot of number covariates in the model could be 

better in understanding the disease dengue disease transmission. However it could be lead  to 

multicollinearity problem and produce unreliable estimate [11].  

The complexity of the interactions between environmental factors, spatial dependency, and 

heterogeneity needs more attention to disease modeling to obtain more reliable risk prediction [1, 

12, 13]. The disease incidence and environmental factors may represent the third dimension of 

epidemiological experiment: person, time and space [14]. The last dimension is widely measured 

by the administrative boundary. A small regions may be classified by the district and city levels. 

Although well identified, quantifying the relative influence of each of these level in dengue 

transmission would raise serious methodological difficulties [14].  The origin of variation between 
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disease incidence could be explained by a complex combination of characterizing small areas (the 

individual level) or district and city levels (the group level). The policy a higher level will influence 

health outcomes in a given small area. So, relations between individual level and group level 

determinants are of particular interest, especially for investigating the reasons for variation 

between small areas: are the environmental factors, population density, healthy behaviours 

influenced by the policy at a higher level. It could be the small area in one group have similar 

characteristic and different from the other groups. For example, the small areas grouped at the city 

level may have higher population density and healthy behaviour compared to the small areas at 

the district level, with the spatial variation between small areas in one group that may still exist. 

Combining small areas and collective exposures necessitate analysis of several collective 

situations simultaneously, and in each one, several small areas. Gathered small areas in the same 

level (district or city levels), small areas in same level are more similar to each other than small 

areas from different levels. They are organized into groups of dependent data (also called clusters); 

small areas are said to be nested within geographical areas  [14].  A statistical approach based on 

multilevel modeling has been developed to handle the analysis incorporating different data levels.  

A variety of names have been used synonymously for ‘multilevel model’: ‘hierarchical model’, 

‘random effect model’, ‘variance component model’, or ‘mixed model’.  The models produce 

varying regression coefficients. Geographically weighted regression (GWR) is widely used to 

modeling covariates that allow the regression coefficients vary over space [15-17]. In this study, 

we develop a multilevel model by means Bayesian hierarchical model based on Poisson log-linear 

model. The model is developed by considering spatial dependency, heterogeneity, and population 

density across small areas and levels.   

We apply the model for identifying high-risk areas in West Java, Indonesia. West Java is the 

top rank in dengue disease incidence for every year. There are 18 districts and 9 cities in West Java 

with much different in population density.  

The paper is structured as follows section 2 describe the method, section 3 figure out the 

application and discussion, and section 4 focus on the conclusion and discuss about conclusion.  
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2. MATERIA AND METHOD 

Material  

The data were obtained from West Java health department [18]. We used three variables are 

number of dengue cases, population at risk and population density and used the district and city 

levels as a group. The data are presented in Table 1.  

 

Table 1. Statistics of number of cases, population, population density, and district-city group 

id Distric/Cityt Cases Population 
Population 

Density 
Group 

1 Bogor       741       5,965,410  2.201 District 

2 Sukabumi       233       2,466,272  0.595 District 

3 Cianjur       113       2,263,072  0.589 District 

4 Bandung    1,774       3,775,279  2.135 District 

5 Garut       331       2,622,425  0.853 District 

6 Tasikmalaya       196       1,754,128  0.688 District 

7 Ciamis        29       1,195,176  0.845 District 

8 Kuningan       352       1,080,804  0.973 District 

9 Cirebon       215       2,192,903  2.227 District 

10 Majalengka       108       1,205,034  1.001 District 

11 Sumedang       408       1,152,400  0.759 District 

12 Indramayu       911       1,728,469  0.847 District 

13 Subang       143       1,595,825  0.843 District 

14 Purwakarta       263          962,893  1.166 District 

15 Karawang        60       2,353,915  1.425 District 

16 Bekasi       181       3,763,886  3.073 District 

17 Bandung Barat       419       1,699,896  1.302 District 

18 Pangandaran        75          399,284  0.395 District 

19 Bogor       727       1,112,081  9.385 City 

20 Sukabumi       238          328,680  6.812 City 

21 Bandung    2,826       2,507,888  14.957 City 

22 Cirebon        24          319,312  8.547 City 

23 Bekasi       626       3,003,923  14.539 City 

24 Depok       891       2,406,826  12.017 City 

25 Cimahi       288          614,304  15.643 City 

26 Tasikmalaya       223          663,517  3.866 City 

27 Banjar        97          183,110  1.613 City 
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Table 2. Total cases and prevalence rate per group 

District Total cases Prevalence Rate ( 100,000) 

District 6,552 17.162 

City 5,940 53.323 

We considered district and city levels as different groups because we found that the prevalence 

rate of dengue cases much different between both levels. There were 19 districts and 8 cities in 

West Java, Indonesia. The prevalence rate in district level is 17.162/100.000 population at risk 

habitants and at city level is 53.323/100.000 population at risk.  

 

Figure 1. Spatial distribution of number of dengue cases for 18 districts and 9 cities in West Java 

 

Figure 2. Population density for 18 districts and 9 cities in West Java 
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Figure 3. Spatial distribution of the prevalence rate of dengue disease for 18 districts and 9 cities 

in West Java 

 

Figure 1 shows the spatial distribution of dengue fever cases in West Java. It can be seen that the 

red areas are dominated by city level. Figure 2 presents the population density. The areas with high 

population density are located at the city level. The prevalence distribution is presented in Figure 

3. It  supports that the prevalence rate at the city level is much higher than the district level. This 

condition validates the use of districts and cities as deep levels in multilevel modeling. 

Standardized incidence ratio (SIR) 

SIR is known as crude or unreliable risk estimate [19]. It is because SIR tends to be high for a 

small area and low for larger areas [1, 12, 13, 19]. The SMR is expressed as the ratio between 

number of cases (𝑦𝑖) on the expected count (𝐸𝑖) as follows [20]: 

𝑆𝐼𝑅𝑖 =
𝑦𝑖

𝐸𝑖
 (1) 

The expected number of cases 𝐸𝑖 in each area  is calculated as 𝐸𝑖 = 𝑁𝑖(∑ 𝑦𝑖
𝑛
𝑖=1 ∑ 𝑁𝑖

𝑛
𝑖=1⁄ ) where 𝑛 

denotes the number of areas and 𝑁𝑖 is population at risk in area 𝑖th.  The areas with a relative risk 

higher than one are indicated as a potentially high-risk area.   



7 

MULTILEVEL MODEL OF DENGUE DISEASE TRANSMISSION 

Poisson Loglinear model 

Relative risk based models have been proposed to overcome the unreliable estimates of SIR. Using 

the model approach, we can introduce a random-effects model that smooth the SIR estimate to 

provide a more reliable risk estimate. In this study we use the Poisson model is given by [1, 2, 19]: 

𝑦𝑖|𝐸𝑖, 𝜃𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐸𝑖𝜃𝑖);  𝑖 = 1, … , 𝑛 (2) 

The Poisson regression model fits for count data. Log-linear models are widely used to explain the 

effects of the K-risk factors on the mean function. The model for n spatial units is given by: 

log 𝔼(𝑦𝑖) = offset(log 𝐸𝑖) + 𝒙𝑖
′𝜷 + 𝜖𝑖;  𝑖 = 1, … , 𝑛 (3) 

where offset(. ) that represents the regression coefficient of log 𝐸𝑖 that is fixed to one, 𝒙𝑖 =

(1, 𝒙𝑖1, … , 𝒙𝑖𝐾)′is a (𝐾 + 1) × 1 is vector of area-level risk factors, 𝜷 = (𝛽0, 𝛽1, … , 𝛽𝐾)′ is (𝐾 +

1) × 1 is vector of regression parameters, and 𝜖𝑖 = 𝜔𝑖 + 𝑣𝑖 denotes the random effect components 

used to accommodate the spatial dependency (𝜔𝑖) and heterogeneity (𝑣𝑖). Here we use only single 

covariates so that 𝐾 = 1. In this study we consider population density as the covariate and  intrinsic 

conditional autoregressive (iCAR) and Gaussian (i.i.d) priors to account spatial dependency (𝜔) 

and heterogeneity (𝑣), respectively. iCAR model is defined follows Besag York and Molie model 

[21]: 

𝜔𝑖|𝝎−𝑖, 𝜏𝜔 , 𝐖~𝒩 (
∑ 𝑤𝑖𝑗𝜔𝑗

𝑛
𝑗=1

∑ 𝑤𝑖𝑗
𝑛
𝑖=1

,
𝜎𝜔

2

∑ 𝑤𝑖𝑗
𝑛
𝑖=1

) (4) 

where 𝐖 = (𝑤𝑖𝑗) is the ‘neighbourhood’ matrix with 𝑤𝑖𝑗 = 1 if 𝑖 and 𝑗 are neighbouring and 

𝑤𝑖𝑗 = 0 otherwise. The spatial heterogeneity (𝑣𝑖) is widely assigned by an Gaussian identically 

independent prior distribution, that is:  

𝜐𝑖|𝜎𝜐
2~𝒩 (0,

1

𝜎𝜐
2

) (5) 

where 𝜎𝜐
2 is the variance parameter of 𝑣𝑖. 

The area is defined as a hot-spot (high-risk region) if the estimated  exceedance probability 

is Pr̂(𝜃𝑖𝑡 > 1|𝐲) > 0.95. In a similar vein, district is defined as a cold-spot (low-risk region) if the 

estimated exceedance probability Pr̂(𝜃𝑖𝑡 > 0.95|𝐲) < 0.05.  



8 

I.G.N.M.  JAYA, B.N. RUCHJANA, A. SETIAWAN ABDULLAH, N. SUNENGSIH 

Multilevel model 

To evaluate the effect of the population density to the relative risk and get the reliable estimation 

of the relative risk we proposed five different model. In this model we consider the different district 

and city level particularly for M2-M5. The models are presented below:  

M1: 𝜂𝑖𝑗 = 𝛼 + 𝛽𝑥𝑖𝑗 ; 𝑖 = 1, . . ,27; 𝑗 = 1,2 (6) 

M2: 𝜂𝑖𝑗 = 𝛼𝑗 + 𝛽𝑥𝑖𝑗; 𝑖 = 1, . . ,27; 𝑗 = 1,2 (7) 

M3: 𝜂𝑖𝑗 = 𝛼𝑗 + 𝛽𝑗𝑥𝑖𝑗; 𝑖 = 1, . . ,27; 𝑗 = 1,2 (8) 

M4: 𝜂𝑖𝑗 = 𝛼𝑗 + 𝛽𝑗𝑥𝑖𝑗 + 𝑢𝑖~𝑖𝑖𝑑(0, 𝜎𝑢
2); 𝑖 = 1, . . ,27; 𝑗 = 1,2 (9) 

M5: 𝜂𝑖𝑗 = 𝛼𝑗 + 𝛽𝑗𝑥𝑖𝑗 + 𝑢𝑖~𝐵𝑒𝑠𝑎𝑔; 𝑖 = 1, . . ,27; 𝑗 = 1,2 (10) 

where sub index 𝑖 denote observation at the 𝑖-th area and 𝑗 indicates the group levels. Model (M1) 

denotes the non-hierarchical model which does not take into account the fact the for each areas 

can be classified in two groups district and city levels. This model is known as pooled model. 

Models (M2-M5) presents the hierarchical. M2 assumes the intercept varies by district and city 

levels. M3 takes into account the interaction between population density (𝑥) and the group levels. 

Model (M4-M5) consider the spatial heterogeneity and spatial dependency, respectively. The 

structured of hierarchical models can be seen in Figure 5 below: 

 

 

Figure 5 Multilevel structure 
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Models (1) to (5) can be estimated by mean Bayesian method via estimated by means of Integrated 

Nested Laplace Approximation (INLA) (see [1, 2] for detail). The best model is selected using  

deviance information criterion (DIC) and Watanabe-Akaike information criterion (WAIC) [22]. 

For parameter interest we use Gaussian distribution and for the hyperparameter we use inverse 

gamma distribution. The models were estimated using R-software  (the R-code available upon by 

request).  

 

3. RESULT AND DISCUSSION  

In the analysis we consider hierarchical level organization which included fixed and random 

effects, and cross-level interaction. Accurate estimation of the parameter estimates is the advantage 

of multilevel modeling [14].  

Data exploration  

Data exploration is the important part in building regression modeling. Using data exploration we 

can find the hidden structured in the data [23]. First step, we evaluate the relationship between 

log(SIR) and population density. We use log(SIR) as representation of the log-linear model. The 

relationship is presented in Figure 6.  

 

Figure 6. The relationship between population density and relative risk 
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Figure 6 shows the strong linear relationship between population density and log(SIR). However, 

it can be a misleading conclusion if we ignored the district and city levels. Figure 7 shows the 

relationship between population density and log(SIR) by considering the district and city level.  

 

Figure 7. The relationship between population density and relative risk by group   

Figure 7 shows a contradiction relationship between population density and log(SIR) for different 

levels. There is a positive relationship between population density and log(SIR) for the city-level 

and a negative association for the district level. 

Models comparison  

To select the best model for explaining the effect of the population density on West Java's relative 

risk, we present the model comparison based on DIC, WAIC, Pearson correlation between the 

predicted relative risk and observed relative risk in Table 3. 

  Table 3. Model comparison 

Model 
Model DIC WAIC 

Pearson 

Correlation 

M1 𝜂𝑖𝑗 = 𝛼 + 𝛽𝑥𝑖𝑗; 𝑖 = 1, . . ,27; 𝑗 = 1,2 7163.093 8392.916 0.527 

M2 𝜂𝑖𝑗 = 𝛼𝑗 + 𝛽𝑥𝑖𝑗 ; 𝑖 = 1, . . ,27; 𝑗 = 1,2 6960.615 8433.937 0.594 

M3 𝜂𝑖𝑗 = 𝛼𝑗 + 𝛽𝑗𝑥𝑖𝑗 ; 𝑖 = 1, . . ,27; 𝑗 = 1,2 6932.656 8392.140 0.592 

M4 𝜂𝑖𝑗 = 𝛼𝑗 + 𝛽𝑗𝑥𝑖𝑗 + 𝑢𝑖~𝑖𝑖𝑑(0, 𝜎𝑢
2); 𝑖 = 1, . . ,27; 𝑗 = 1,2 253.290 245.723 1.000 

M5 𝜂𝑖𝑗 = 𝛼𝑗 + 𝛽𝑗𝑥𝑖𝑗 + 𝑢𝑖~𝐵𝑒𝑠𝑎𝑔; 𝑖 = 1, . . ,27; 𝑗 = 1,2 253.563 246.356 1.000 
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Table 4 shows the comparison of fit and complexity of the models based on the DIC and WAIC 

sizes. The results of the analysis found that model (M1) has the highest DIC and WAIC  model 

(M4) is a model with the suitability and complexity of the model that best fits the data indicated 

by the lowest DIC and WAIC and the highest correlation value between prediction and observation 

(Pearson). In other words, the best model is model (M4). This result proves that the district and 

city groups in the data must be accommodated in the modeling of population density against 

relative risk.  

Models Interpretation  

The posterior means and posterior standard deviation are presented in Tables 4-5.  

Table 4. Posterior means of parameters interest for district and city levels  

Levels Intercept Slope 

District -0.422 -0.189 

City 0.189 0.024 

 

Table 4 shows the different intercept and slope regression for the city district and city level. The 

district-level has a negative intercept and slopes that support the relative risk at the district level 

lower than the city level. The coefficients are plotted in Figure 8.  

 

Figure 8. Intercept and slope of district and city areas  

Figure 8 shows the different intercept and slop coefficients between district and city levels.  

� � � �

a. Varying Intercepts b. Varying Slopes
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Table 5. Posterior standard deviation (SD) of intercept, slope, and heterogeneity 

Posterior SD Mean Relative Contribution 

Posterior standard deviation group for intercept 1.00 35.17 

Posterior standard deviation group for effect of population density 0.92 32.12 

Posterior standard deviation group for heterogeneity  0.93 32.71 

 

Table 5 shows the relative posterior standard deviation of each parameter model and its relative 

contribution to dengue risk variation in West Java. District and city groups give the most 

considerable contribution (35.17%). It indicates that district-city have different characteristics that 

cause the variability of dengue risk. Descriptive analysis shows that the risk in city areas higher 

than in district areas. It can be influenced by the population density and the other characteristics 

covered by heterogeneity random-effects components. Population density that interact with group 

give 32.12% contribution and the other components area 32.71% contribution.   

 

Figure 9. Posterior standard deviation of Group, Group × Population density, and heterogeneity 

Based on the model (M4) we estimate the relative risk of each area and also calculate the 

exceedance probability value to show areas where the relative risk is significantly different from 

one. 

SD for Group

SD for Group x Pop.Density 

SD for heterogeneity 

Posterior SD
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Figure 10. Relative risk for 27 districts and cities in West Java 

Figure 10 shows the relative risk in 27 urban districts in West Java, Indonesia, in 2019. The city 

level tends to have a higher relative risk than the district level. To evaluate the significant cold and 

hot-spot risks, we use the exceedance probability approach. The area is categorized as a hot-spot 

if it has an exceedance probability higher than 0.950. Conversely, it is classified as a cold-spot if 

the exceedance probability is lower than 0.05 [2].   

 

Figure 11. Exceedance Probability Ratio for 27 districts and cities in West Java 
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Figure 11 shows all city levels categorized as hotspots because of greatly influenced by population 

density and the high mobility of urban people. This condition accelerates the transmission of 

dengue fever from one person to another.  

 

4. CONCLUSION 

Identifying potential groups in modeling the effect of independent variables on response is very 

important. Ignoring potential groups may lead to misleading conclusions. Each group may have a 

different model and must be accommodated to obtain accurate and reliable results. Groups in the 

model can be treated as a higher-level concept in multilevel modeling or hierarchical modeling. 

The Bayesian method facilitates hierarchical modeling through the random effect model. Our 

analysis of modeling on the effect of population density on the relative risk of dengue fever in 

West Java found that the district and city clusters have different disease models. For city groups, 

population density is known to have a positive effect on increasing relative risk. On the other hand, 

in district areas, population density has a negative effect or in this case, it does not affect. This is 

because the district group relatively has a low population density. We also evaluate if we ignore 

these city and district groups. We found that at all levels, the effects of population density were 

positive. If we compare the quality of the model, we find that the model has a better quality of 

goodness. The model shows that group variation affects the impact of population density on the 

relative risk. 
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