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Abstract: From a psychiatric perspective, the detection of Autism Spectrum Disorders (ASD) can be seen from the 

differences in some parts of the brain. The availability of the four-dimensional resting-state Functional Magnetic 

Resonance Imaging (rs-fMRI) from Autism Brain Imaging Data Exchange I (ABIDE I) led us to reorganize it into 

two-dimensional data and extracted it further to create a pool of neuroimage dataset. This dataset was then augmented 

by shear transformation, brightness, and zoom adjustments. Resampling and normalization were also performed. 

Reflecting on prior studies, this classification accuracy of ASD using only 2D neuroimages should be improved. Hence, 

we proposed the use of transfer learning with the InceptionResNetV2 model on the augmented dataset. After freezing 

layer by layer, the best training, validation, and testing results were 70.22%, 57.75%, and 57.6%, respectively. We 
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proved that the transfer learning approach was successfully outperformed the convolutional neural network (CNN) 

model from the previous study by up to 2.6%. 

Keywords: psychiatric; rs-fMRI; autism spectrum disorder; transfer learning; classification; InceptionResNetV2. 

2010 AMS Subject Classification: 62M45, 78M32, 82C32, 92B20, 92C20, 68T05, 68T45. 

 

1. INTRODUCTION 

Autism Spectrum Disorder (ASD) is an increasingly prevalent but lifelong neuro-

developmental disorder (NDD) that cause individuals to experience difficulty in both verbal or 

nonverbal communication, lack of skill to establish a relationship [1], restricted interest, repetitive 

pattern of behavior, anxiety [2], irritability, aggressive, self-harming behaviors [3], sleep problems 

and somatic complaints [4], followed by the risk of health, of depression by 10-70%, and 

Attention-Deficit Hyperactivity Disorder (ADHD) by 28.2% [5]. All these symptoms emerge 

distinctly depending on the age, language, and cognitive capabilities of each individual [6].  Even 

some studies suggested that ASD was highly influenced by genetic or environmental factors, its 

exact cause is still unmeasurable [7]–[10]. Thus, routine screening proposed by the American 

Academy of Pediatrics and the “Learn the Sign. Act Early.” program proposed by the Centers for 

Disease Control and Prevention (CDC) are worth implementing as an early diagnosis and treatment 

of ASD [11], [12]. 

ASD individuals with lower Full-scale Intelligence Quotient (FIQ) score have a significant 

difference within their brain cortical thickness (CT) compared to those with higher FIQ, while 

Autism Diagnostic Observation Schedule (ADOS) assessment does not reflect the shift in the same 

CT, as Bedford et al. [13] stated. This reason was reconfirmed through a study conducted by Yassin 

et al. [14] that CT is the only feature that could differentiate ASD, TD, and even Schizophrenia. It 

can be concluded that there are some parts of the brain associated with the presence of ASD and 

therefore the usage of some brain scans (mined from Autism Brain Imaging Data 

Exchange/ABIDE) to classify ASD with normal/typically developing (TD) individuals is an 

intriguing task. 
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Figure 1. Brain Volume 

 

Functional Magnetic Resonance Imaging (fMRI), one of the various methods for visualizing 

the human brain, generates a 4D image, where its former, MRI only generates 3D. Even though, 

fMRI has poor resolution compared to MRI. For ABIDE I dataset, brains that are scanned at resting 

state (so it is called rs-fMRI) or a vegetative state or negative activity, have the same 3D resolution 

of (61 × 73 × 61) but various time repetition (TR). The sample of 3D brain volume is displayed in 

Figure 1. 

Since the use of Functional Connectivity Matrix as input is competitive in performance, our 

work is to figure out if the use of 2D neuroimage as input is sufficient to classify ASD and TD, by 

utilizing the InceptionResNetV2 model to the transfer learning purpose, which was once state-of-

the-art in the image classification experiments. The use of the deep learning model here is because 

it has been proven to significantly enhance the performances in many tasks in the Computer Vision 

field [15]–[17]. 

 

2. RELATED WORKS 

Since ABIDE consists of rs-fMRI neuroimage data, most researchers highly concern to utilize 

active brain region interconnectivity strength (connectome) as the main feature for this 

classification task. This connectome is extracted into what they called Functional Connectivity 



4 

DOMINIC, DANIEL, CENGGORO, BUDIARTO, PARDAMEAN 

Matrix or Connectivity Maps, in the form of Pearson Correlation Matrix which each cell represents 

the brain activation-level signal between two brain regions of interest (ROI) [18]. 

The result by utilizing this feature is highly competitive. For instance, the use of a Stacked 

Denoising Auto Encoder model yields up to 70% accuracy [19], [20]. However, other studies 

proved that with the same amount of data (505 ASD and 530 TD), accuracy can be achieved up to 

70.22% with the simple deep convolutional neural network (CNN) [21], up to 71.98% with the 

classical ridge regression [22], and even up to 75.27% only with a simple deep multi-layer 

perceptron model [23]. 

Of course, many things influence the result above, such as the kind of brain atlas parcellation 

used, its validation scheme, and total dataset. With CC200 atlas, a basic Auto Encoder can achieve 

70.3% of accuracy, while with AAL116 and TT97 atlas the accuracy decreases to 67.5% and 65.3% 

respectively [24]. 

Nevertheless, other aspects in rs-fMRI data include BOLD (Blood Oxygenated Level 

Dependent) signal and the 4D neuroimage itself, which is rarely explored as a major feature in 

ASD classification tasks. A study performed by Ke, Choi, Kang, Cheon, and Lee [25] reduced this 

4D neuroimage into 2D input and has not yielded significant accuracy. Even with the 2D CNN 

model + the class activation mapping (CAM) and the 3D CNN + the 2D spatial transformer 

network (STN), the classification accuracy is still below 50% for using both models. 

 

3. MATERIALS AND METHODS 

3.1. Python Packages 

Python v3.7.1 serves all processes in this research, from data fetching into model training, 

while pip v21.0.1 used to install related packages (run pip install [package_name]) as 

displayed in Table 1. Other dependencies include Numpy v1.15, Scipy v1.6.0, Scikit-learn v0.24.0, 

etc (run pip show [package_name]). 
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Table 1. Python packages used in this experiment. 

No. Package List Purpose 

1 Pandas v1.2.1 • Load ABIDE I phenotypic information 

• Insert available neuroimages path 

• Save training results into CSV file 

2 Matplotlib v3.3.4 • Figure settings (size, x label, y label, etc.) 

3 Nibabel v3.2.0 • Load NifTI files 

4 Nilearn v0.7.0 • Fetch dataset 

• Convert 4D into 3D images 

• Plot neuroimages 

5 Tensorflow-

Keras v2.4.0 

• Resample, augment, and normalize 

dataset 

• Define, compile, and train the model 

 

 

3.2. Dataset 

This classification task requires ABIDE (Autism Brain Image Data Exchange) I as the main 

dataset, fetched from Python’s library Nilearn 0.7.0, using Connectome Computation System 

(CCS) (run nilearn.datasets.fetch_abide_pcp()) as a preprocessing pipeline. 

Gathered from 17 different international sites (as shown in Table 2), ABIDE I consist of 1,112 

rows of phenotypic data and only 871 NifTI files, whose 403 data are labeled as ASD and 468 data 

are labeled as Normal/TD. 
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Table 2. Phenotypical information of ABIDE I grouped by international sites. 

Intl’ Site 

Age at 

Scan Range 

(in years) 

FIQ VIQ PIQ 
ADOS 

Total Score 

CALTECH 17 – 56.2 82.2 ± 99.24 93.77 ± 61.63 87.28 ± 73.02 15 ± 4.9 

CMU 19 – 33 112.63 ± 11.28 112.18 ± 11.8 110.18 ± 10.86 12.33 ± 2.88 

KKI 8.2 – 12.77 107 ± 16.03 N/A N/A 13.75 ± 3.91 

LEUVEN 15 – 24.5 112.43 ± 13.21 109.14 ± 16.31 105.86 ± 15.08 N/A 

MAX_MUN 7 – 58 93.69 ± 80.32 N/A N/A -286.63 ± 342.53 

NYU 6.47 – 39.1 110.78 ± 14.86 109.69 ± 14.61 109.63 ± 15.24 11.27 ± 4.05 

OSHU 8 – 15.23 94.99 ± 78.88 N/A N/A 9.25 ± 3.31 

OLIN 10 – 24 85.78 ± 103.21 N/A N/A 14.07 ± 4.16 

PITT 9.33 – 35.2 110.26 ± 11.99 107.36 ± 12.21 110.34 ± 11.64 -86.84 ± 226.8 

SBL 20 – 49 -216.34 ± 140.47 -39.43 ± 115.92 -70.02 ± 141.52 -286.96 ± 309.47 

SDSU 8.67 – 17.15 111.96 ± 12.9 109.85 ± 12.88 111.41 ± 13.2 11.38 ± 44.4 

STANFORD 7.53 – 12.93 113.96 ± 15.1 112.2 ± 17.8 112.76 ± 15.01 12.58 ± 3.2 

TRINITY 12 – 25.66 109.7 ± 14.09 108.34 ± 14.67 109.07 ± 13.57 10.73 ± 2.7 

UCLA 9.1 – 17.2 103.48 ± 12.9 104.7 ± 12.79 102.48 ± 13.43 N/A 

UM 10.5 – 24 100.87 ± 46.42 113.515 ± 15.3 99.56 ± 36.99 N/A 

USM 8.77 – 50.22 105.31 ±18.02 101.96 ± 20.3 107.16 ± 16.59 -34.91 ± 157 

YALE 7 – 17.75 98.34 ± 20.21 101.03 ± 22.04 95.51 ± 18.59 11 ± N/A 

 

FIQ stands for Full-scale Intelligence Quotient (max. value: 148), VIQ stands for Verbal 

Intelligence Quotient (max. value: 180), PIQ stands for Performance Intelligence Quotient (max. 

value: 155), and ADOS stands for Autism Diagnostic Observation Schedule. ADOS Total (max. 

value: 22) represents the total of Communication (max. value: 8) and Social (max. value: 14) sub-

score, according to the ABIDE I Dataset Legend. 

A hundred phenotypic details are available for each patient in additional ABIDE phenotypic 

inscribed within CSV file format, but for brevity, only the five items above are presented as an 

overview of the patient’s condition at each site. 



7 

TRANSFER LEARNING USING INCEPTION-RESNET-V2 MODEL 

To reduce variability from different sites, we eventually decided to select only 172 patients’ 

data from NYU (New York University) site. The final total neuroimage sample generated is 6,880, 

as later explained in section 3.3.1. 

3.3. Methodology 

The workflow of this research is divided into data preparation and preprocessing, continued 

by transfer learning using Inception-ResNetV2 and evaluate the results. 

3.3.1. Data Preparation and Preprocessing 

Data preparation started from downloading the ABIDE I dataset, that included NifTI files with 

separated CSV file of phenotypic information of the patients. There are only 871 neuroimages 

available out of 1,112, with a proportion of 403 ASD and 468 TD. The exploration step required 

Nibabel v3.2.0 library to load the NifTI files and Nilearn v0.7.0 library to plot them as Echo Planar 

Imaging/T2* scan (see Figure 2). 

Since each NifTI data has a 4D shape, where the first 3D is spatial data (x, y, z) and 1D is the 

time of repetition (TR) which is time-series data, we only extracted the 2D neuroimage from the 

x-direction, from the brain slice 1 until 40 (x=1, x=2, …, x=40). This dataset extension was also 

done so the size of datasets is sufficient to be fed into very complex models [26]–[28] such as 

InceptionResNetV2, since it has been proven to have a significant effect on deep neural network 

performance [29]. 

 

Figure 2. Echo Planar Imaging (EPI) brain scan sample,  

with cutting coordinates x, y, z = (-10, -5, 0, 5, 10) 
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To reduce computational time and variability [25], we decide to use only 172 neuroimages data 

from the NYU site, with a proportion of 74 ASD (×40 slices = 2,960) samples and 98 TD (×40 

slices = 3,920) samples. Due to this imbalance of data, rearrangement is needed to ensure that the 

total of both data is balanced in the 70% train, 15% validation, and 15% test split. The distribution 

is shown in Table 3. 

 

Table 3. Total samples in train, validation, and test split. 

Split ASD TD Total 

Train 2,072 (70%) 2,744 (70%) 4,816 

Validation 444 (15%) 588 (15%) 1,032 

Test 444 (15%) 588 (15%) 1,032 

Total 2,960 3,920 6,880 

 

 

 

Figure 3. 2D-Neuroimage Acquisition Process 
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Each image resampled to the size of (299 × 299 × 3) with the nearest interpolation technique 

(or the “pixels replication”), where 3 here denotes an RGB channel. This method is used for 

enlarging the image size by multiplying the pixel, where the pixel will be filled with the contents 

of the adjacent pixel to keep the colors information. Details for this 2D neuroimages acquisition 

stages are depicted in Figure 3. 

The dataset was split into 70% of training data, 15% of validation data, and 15% of test data. 

Both training and validation data were loaded, augmented, and normalized as BatchDataset object 

using Tensorflow v2.4.0 library, and finally fed into the InceptionResNetV2 model. 

3.3.2. Transfer Learning and Evaluation Scheme 

Before we dive further into the definition of transfer learning, let it be clear about some 

notations used as follows. 

• The source domain is denoted as 𝐷𝑆 = {(𝑥𝑆1, 𝑦𝑆1), (𝑥𝑆2, 𝑦𝑆2),  … , (𝑥𝑆𝑛, 𝑦𝑆𝑛)}. 

• The target domain is denoted as 𝑇𝑠 = {𝑦𝑠, 𝑓(∙)}. 

• The task domain is denoted as 𝐷𝑇 = {(𝑥𝑇1, 𝑦𝑇1), (𝑥𝑇2, 𝑦𝑇2),  … , (𝑥𝑇𝑛, 𝑦𝑇𝑛)}. 

• The task target is denoted as 𝑇𝑇 = {𝑦𝑇 , 𝑓(∙)}. 

Here, 𝑥 is an input data instance and 𝑦 is a target label, while 𝑓(∙) represents the objective 

predictive function. 

Mathematically, transfer learning is defined as an approach to improve the result in the target 

task 𝑇𝑇  given the base knowledge from the source domain 𝐷𝑠  and target domain 𝑇𝑠 , on the 

condition of 𝐷𝑠 ≠ 𝐷𝑇 or 𝑇𝑠 ≠ 𝑇𝑇  [30]. 

The augmentation part includes counter-clockwise/vertical shear transformation (with shear 

factor m = 30, see equation (1)), brightness shift (in constant range of c = 0.25 to c = 0.75, see 

equation (2)), and zoom adjustments in range 0.8 to 1.2. This does not mean we try to extend the 

number of samples or randomly generate new samples like the Gibbs Sampler algorithm [31], but 

we randomly varied the dataset for each batch in the training process. We also let all batches in 

each epoch be shuffled. 
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[
𝑥′
𝑦′

] = [
1 0
𝑚 1

] [
𝑥
𝑦] (1) 

  

𝑓(𝑢) = {
𝑢 + 𝑐,     𝑢 + 𝑐 ≤ 255

255,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

In equations (1) and (2), x and y represent axes point, m represents shear factor, c represents a 

brightness constant, and u represents a pixel. 

 

Figure 4. Neuroimages random augmentation examples 

After augmentation, normalization in range (-1, +1) was applied. Since we proposed a transfer 

learning approach, the ImageNet [27] weights were transferred to an InceptionResNetV2 so the 

model will learn effectively over a smaller dataset [32], i.e., ABIDE I. 

 

Figure 5. InceptionResNetV2 architecture 

The InceptionResNetV2 model is depicted in Figure 5, where the stem layer is the same as the 

InceptionV4 model, and the rest consists of (a) 35 × 35 grid InceptionResNet-A module, (b) 35 × 

35 to 17 × 17 Reduction-A module, (c) 17 × 17 grid InceptionResNet-B module, (d) 17 × 17 to 8 

× 8 Reduction-B module, and the last (e) 8 × 8 grid InceptionResNet-C module [33]. 

After this main architecture, Global Average Pooling was added rather than Flatten to natively 

prevent overfitting in the convolutional structure due to the absence of parameters to be optimized 
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and by reinforcing the link between the feature importance and label category [34]. This also makes 

Global Average Pooling more parameter-efficient compares to the Flatten method. Afterward, a 

Dropout layer with a fixed value of 0.8 was added, as performed by Szegedy, Ioffe, Vanhoucke, 

and Alemi [33]. 

𝜎 (𝑥)𝑖 =
𝑒𝑥𝑖

∑ 𝑒𝑦𝑗𝐾
𝑗=1

 (3) 

Lastly in the dense layer, Softmax activation function 𝜎 was applied, as shown in equation (3), 

where x and y point respectively to input and output, K points to the number of classes, and e itself 

points to the standard exponential function, i.e., e ≈ 2.718. 

𝑤′ = 𝑤 − 𝛼 ∗ ∇(𝑤; 𝑥(𝑖); 𝑦(𝑖)) (4) 

For optimization during backpropagation, the iterative Stochastic Gradient Descent (SGD) 

algorithm was utilized, formulated in equation (4),  where w denotes weight, 𝛼 denotes learning 

rate, and ∇(𝑤; 𝑥(𝑖); 𝑦(𝑖)) denotes the gradient to weight, input, and output/label, respectively [35]. 

The complete tunable hyperparameter settings are displayed in Table 4. Later these 

hyperparameters, i.e., decay and momentum, were fine-tuned to achieve better accuracy. 

Table 4. Default hyperparameter settings. 

Number of epoch(s) : 20 

Number of batch(s) : 32 

Train, val., test split : 70:15:15 

Learning rate : 1e-3 

Decay : 1e-6 

Momentum : 0.5 

Optimizer : SGD 

Activation : Softmax 
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3.4. Performance Evaluation 

Based on Confusion Matrix, in this study, (a.) True Positive/TP represents ASD correctly 

identified as ASD, (b.) False Positive/FP represents TD incorrectly identified as ASD, (c.) True 

Negative/TN represents TD correctly identified as TD, and (d.) False Negative/FN represents ASD 

incorrectly identified as TD. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5) 

  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦/𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 

  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (7) 

  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (8) 

  

𝐹𝛽 − 𝑠𝑐𝑜𝑟𝑒 =  
(1 + 𝛽2) × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

(9) 

 

By this, five evaluation metrics were utilized, namely accuracy (see equation (5)), 

recall/sensitivity (see equation (6)), specificity (see equation (7)), precision (see equation (8)), 𝐹𝛽-

score with 𝛽 = 1 in common (so it called “𝐹1-score”, see equation (9)), and Area Under Curve 

(AUC) of the Receiver Operating Characteristics (ROC) curve. 

 

4. RESULTS 

The result of the transfer learning approach is shown in Table 5, where the configurations are 

as follows: 

• in Scenario 1 (Sc1) all layers in the model were frozen, 
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• in Scenario 2 (Sc2) the InceptionResNetV2 model was frozen, and 

• in Scenario 3 (Sc3) only the last dense layer was frozen. 

The layer freezing was done to keep the learned features during the training stages. Global 

Average Pooling and Dropout layers were excluded since they have zero parameters. For all results, 

the best validation accuracy is highlighted in bold. 

 

Table 5. The result for the Transfer Learning approach. Acc. means accuracy, sen. means 

sensitivity, spec. means specificity, and prec. means precision. 

 Train Validation 

Acc. Sen. Spec. Prec. AUC Acc. Sen. Spec. Prec. AUC 

Sc1 0.7022 0.6862 0.8522 0.7077 0.7724 0.5775 0.5718 0.6128 0.5773 0.5547 

Sc2 0.6546 0.6349 0.7757 0.6582 0.7098 0.5756 0.5671 0.6327 0.5803 0.5561 

Sc3 0.6158 0.5966 0.7221 0.6237 0.6623 0.5728 0.5699 0.6213 0.5716 0.5652 

 

All training processes which take about 113 to 132 seconds per epoch were executed by using 

two Intel Xeon E5-2630 v4 Processor with 10-core running at 2.20 GHz and one NVIDIA Tesla 

P100 GPU with 3584 CUDA cores. 

By the default hyperparameters setting as stated in Table 5, the best validation accuracy was 

achieved if all layers are frozen (Sc1). However, the smallest gap between train and validation was 

4.3% in Sc3 where only the last dense layer was frozen, and thus yield the best test accuracy by 

56.98%. Then followed by Sc2 where only the base InceptionResNetV2 model was frozen, with a 

7.9% gap. 

The highest validation recall, which is the measure of a model’s ability to identify the actual 

ASD correctly, was obtained at 57.18% in Sc1. However, the highest specificity, which is a 

measure of a model’s ability to identify the actual TD correctly, and also the highest precision, 
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which is a measure of a model’s to precisely identify ASD against the total of True Positive and 

False Positive, was obtained at 63.27% and 58.03% respectively, both in Sc2. 

Through all these scenarios, precision was higher than recall (1.32% higher in Sc2, 0.55% 

higher in Sc1, and 0.17% higher in Sc3). This indicated that the classification result has a low False 

Positive (FP, or commonly called “the false alarm”) rate, since 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∝ 1/𝐹𝑃. Simply put, 

the model was succeeded to avoid misclassification of TD as ASD. After all, in the case of an 

imbalanced dataset, precision is preferred over recall [36].  

The 𝐹1 -score from the best validation accuracy was 57.45%. This value, which simply 

represents the balance between precision and recall, is also considered as a better measurement 

result when faced with an imbalanced dataset [37]. 

 

Table 6. The result using different learning momentums (m). Acc. means accuracy, sen. means 

sensitivity, spec. means specificity, and prec. means precision. 

 Train Validation 

Acc. Sen. Spec. Prec. AUC Acc. Sen. Spec. Prec. AUC 

m=.5 0.7317 0.7194 0.8918 0.7374 0.8086 0.5890 0.5861 0.6384 0.5894 0.5652 

m=.6 0.6629 0.6410 0.7936 0.6713 0.7216 0.5728 0.5499 0.6099 0.5734 0.5617 

m=.7 0.6221 0.5943 0.7184 0.6262 0.6652 0.5899 0.5671 0.6298 0.5925 0.5645 

m=.8 0.7217 0.7086 0.8676 0.7272 0.7903 0.5709 0.5699 0.6289 0.5705 0.5392 

m=.9 0.6756 0.6556 0.8199 0.6835 0.7451 0.5699 0.5699 0.6251 0.5699 0.5397 
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Table 7. The result using different learning decays (d). Acc. means accuracy, sen. means 

sensitivity, spec. means specificity, and prec. means precision. 

 Train Validation 

Acc. Sen. Spec. Prec. AUC Acc. Sen. Spec. Prec. AUC 

d= 

1e-5 
0.7897 0.7809 0.9431 0.7947 0.8718 0.5816 0.5794 0.6432 0.5861 0.5584 

d= 

lr/20 
0.7711 0.7634 0.9318 0.7749 0.8525 0.5871 0.5814 0.6593 0.5864 0.5752 

 

Since the ImageNet does not contain medical brain images, we tried to leave all parameters to 

be trainable, which means they will be updated during backpropagation as the model learned the 

features, to see if there is any improvement in validation accuracy. The fine-tuning was attempted 

for learning momentum and decay, while the rests were retained as default. 

As inscribed in Table 6, various learning momentums were utilized in the range .5 to .9. With 

m = .7, the smallest gap between training and validation accuracy was obtained, i.e., 3.22%, which 

was 1.03% lower than the best in the transfer learning approach. The validation accuracy also 

increased by 1.24% to 58.99%. Here, the 𝐹1-score was 59.12%. 

Now from the latest hyperparameter configurations (with m = .7), we tried two distinct learning 

decays, ie., 1e-5, and 5e-5 (derived from learning rate divided by the number of epoch). The results 

in Table 7 revealed that there is no more improvement in validation accuracy. It was instead 

decreased by 0.28% to 58.71%. Even when the second attempt seemed to have a higher validation 

accuracy result, it turns out that the better test accuracy was acquired from the first one, i.e., 57.56% 

(it means there is a 0.58% increase from the previous Sc3), while the second only yielded 55.33%. 
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5. DISCUSSION 

Compared to the prior study [25] which used a combination model of CNN, recurrent neural 

network (RNN), STN, or CAM, our approach with InceptionResNetV2 delivered an improvement 

toward all models except the 2D CNN + 2D STN and 3D CNN + 3D STN model, which still has 

the difference of -1.4% and -2.4%, respectively. Nevertheless, the amount of data (ours only used 

data from 172 patients), input dimension (ours only used 2D image), and the model used must also 

be taken into consideration in observing the comparison results in Table 8. 

 

Table 8. The comparison results with models in prior study. Acc. means testing accuracy. 

Ref. Source Dataset Data Split Neural Network Model Acc. 

[25] 

ABIDE I+II: 

1,992 patients 

(946 ASD and 

1,046 TD) 

80% train 

and 20% 

test 

2D Input + 2D CNN + 2D STN 59% 

2D Input + 3D CNN + 2D STN < 50% 

3D Input + 2D CNN + 3D STN 57% 

3D Input + 3D CNN + 3D STN 60% 

3D Input + 2D CNN + 3D STN + RNN 55% 

3D Input + 3D CNN + 3D STN + RNN 56% 

2D Input + 2D CNN + CAM < 50% 

3D Input + 3D CNN + CAM 56% 

Ours 

ABIDE I/NYU: 

172 patients (74 

ASD and 98 TD) 

70% train, 

15% val., 

and 15% 

test 

2D Input + InceptionResNetV2 57.6% 
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The base InceptionResNetV2 itself has 54,336,736 parameters in total, consists of many blocks 

of CNN [33] that make it a denser model compared to the prior research. Our result outperformed 

2D CNN + 3D STN by 0.6%, 3D CNN + 3D STN + RNN and 3D CNN + CAM by 1.6%, and 2D 

CNN + 3D STN + RNN by 2.6%, 3D CNN + 2D STN and 2D CNN + CAM by >7.6%. 

This improvement reconfirmed that the transfer learning approach is capable of delivering 

better performance, as stated in the introduction. 

 

6.  CONCLUSION 

Our simple method to acquire and augment the only 172 neuroimages of ABIDE I dataset (NYU 

site) yielded an improvement from the previous method where the data used were the 1,992 

neuroimages of ABIDE I and II [25]. With smaller dataset fed to the denser model such as 

InceptionResNetV2 can achieve up to 78.9% of training accuracy, up to 58.9% of validation 

accuracy, and up to 57.56% of testing accuracy. The best configurations that can be reported were 

by leaving the parameters untrained and by changing the momentum value from .5 to .7. 

The improvement suggested that there is still ample room to prove that ASD can be detected 

from simpler brain scans (ours using the T2* or EPI), compared to the Functional Connectivity 

Matrix of associations between brain regions. 

For future works, it is intriguing to expand the way of 2D/3D extraction from the origin 4D 

neuroimage. The development of a pre-trained model using the same base domain, i.e., brain 

scans/neuroimages instead of ImageNet can also be done since it has been proven to enhance 

performance and even lessen training time [32], [38]. Additionally, trying to construct a 

multimodal model where the patient phenotypic data are included may be worth further 

consideration. 
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