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Abstract. A mathematical model of meningococcal meningitis with incidence dependent self-protection measure

and vaccination is formulated and analysed. The vaccination considered is assumed to be given to everyone and

is information dependent. It is shown that the disease free equilibrium is globally asymptotically stable, which

implies that if the disease reproduction number R0 can be reduced to a value less than unity then it is possible

to eradicate the meningococcal meningitis. In addition, the behaviour modification parameters are found to have

significant impact on the dynamics of the disease. Moreover, an optimal control theory is applied to propose the

optimal combination of efforts in controlling the disease. It is shown that the optimal use of controls, such as

preventive education, vaccination and treatment reduces the incidence of the disease. It is also indicated that,

incidence dependent self-protection measure and vaccination are important in controlling meningitis, and the cost-

effectiveness analysis reveals that combining education with vaccination is the most cost-effective strategy in the

setting of the model.
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1. INTRODUCTION

Meningitis is an inflammation of the meninges, the membranes that cover the central nervous

system which is composed of the brain and spinal cord [5]. It is most often caused by infection

(bacterial, viral, or fungal), but can also be produced by chemical irritation, subarachnoid haem-

orrhage, cancer and other conditions. Bacterial meningitis is rare but serious and most cases are

usually caused by the bacteria Haemophilus influenzae, Neisseria meningitidis, and Streptococ-

cus pneumoniae. Bacterial meningitis caused by Neisseria meningitidis is a very serious form

of meningococcal meningitis and it has different types. There are 13 distinct serogroups of

Neisseria meningitidis, those mostly causing disease being A, B, C, W-135, X and Y[9]. The

serogroup A is the most commonly isolated pathogen in the African meningitis belt [40, 43].

Although the highest burden of disease is currently in Africa, epidemics can occur in any part

of the world [30, 31, 34, 35, 38, 39]. The most common serogroup responsible for the disease

in many of the industrialized countries is serogroup B, followed by C [41]. The meningococcal

meningitis is a preventable disease if the population can effectively participate in using protec-

tive mechanisms. The best ways to prevent the disease are usually personal practices such as

wearing a face mask, wash frequently, keep the environment clean, get vaccinated [9].

Mathematical modelling and numerical simulations give promising ways to understand the

dynamics of the disease and have a significant effect on how to identify the effective preventive

and control strategies. There are a number of mathematical models of meningococcal disease,

with many of them investigating the bacterial level of the infection process and some of them

modelling the spread and control of the infection [2, 4, 7, 12, 21, 35, 40, 44].

When an individual is infected by meningococcal meningitis the individual becomes asymp-

tomatically infectious. This stage is called the carrier stage of the diseases. The carrier indi-

viduals are infected and infectious but show no signs of the disease. This makes the disease

hard to monitor in the population, and yet these individuals play a large part in the spread of

the infection. Tuckewell et al [41] did not include a separate carriage state in their model, but

assumed that at steady states the carriers and non-carriers are at equilibrium. However, in dy-

namic models of the evolution of a disease in a population it is often important to distinguish

between carriers and non carriers [10].
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Based on the susceptible-carrier-infectious-removed (SCIR) structure, Simpson & Roberts

[35] proposed a framework for a mathematical model and showed how the model could be used

to calculate the predicted yearly incidence of infection in the absence of vaccination. Blyuss [4]

used a mathematical model to identify crucial factors that determine the meningitis dynamics.

The same paper further suggested that temporary population immunity plays a very important

role and has to be taken into account during disease monitoring and when measuring the effi-

ciency of vaccines being deployed. Asamoah et al [2] presented a mathematical framework of

vaccination and treatment on SCIRS bacterial meningitis model. They applied optimal control

to determine optimal (best) way of controlling the transmission of meningitis in the sub-Sahara

African settings. They also concluded that it is advisable to encourage susceptible individuals

to be vaccinated against meningitis and work on early detection and immediate treatment to

better control the epidemic. Tartof et al [36] developed an age-structured mathematical model

of serogroup A Neisseria meningitidis transmission, colonization, and disease in the African

meningitis belt, and used this model to explore the impact of various vaccination strategies. But

they did not report for the use of optimal control tools to find the best strategy. Recently, Agusto

& Leite [1] formulated and analysed a mathematical model for meningitis with vaccination and

applied optimal control analysis to propose the best strategy for the use of vaccination and wear-

ing a face mask as control mechanisms. However, none of the studies in the above described

references incorporate the effect of behaviour change in the host population. They all intrinsi-

cally assumed that people remain passive during the outbreak of the disease and vaccination is

administered at a constant rate.

It is widely understood among the public health experts that an outbreak of meningococcal

meningitis can be controlled more quickly if the public understands the available preventive

mechanisms and respond in an appropriate way for the actions requested by the public health

authorities. Health education is crucial to ensure the participation of the community. Informing

the public is an integral and important part of meningococcal meningitis control strategies: the

population must be informed of the outbreak and of the measures to be taken, including the

importance of early case identification.
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To the knowledge of the authors, all the mathematical models formulated to study the dynam-

ics of meningococcal meningitis ignored the effect of preventive education and the participation

of the population in reducing their risky behaviour. Usually people do not adopt the preventive

mechanisms unless they perceived risk of acquiring the disease. Therefore, participation of

the public in preventive actions depends on the information and the behaviour of individuals

[6, 8, 17]. Thus, it appears to be necessary to include in the meningitis model the effect of be-

haviour change to participate in self protective actions and in getting vaccinated to understand

the actual dynamics of the disease.

The effect of changing behaviour of individuals is important in epidemic outcomes, and now

such effects are being included increasingly in mathematical models [22]. For example, the

models considered in Manfredi and D’Onofrio [29] study the change in behaviour of the human

population corresponding to the response to vaccination. Moreover, change of behaviour in

a human population in adopting any preventive actions is studied by Kassa and Ouhinou [24]

using the diffusion of innovation within a society. But these modeling schemes were used for

disease types that are different from meningitis.

Human spontaneous behavioural responses, the changes in human behavioural patterns that

involve personal decisions based on the available information about the disease or on indi-

vidual’s beliefs and attitudes, to an epidemic can significantly affect the spread of infectious

diseases [32]. While behavioural responses to the spread of a disease have been accepted to

play a key role, it has not been used in any of the studies for the dynamics of the meningococcal

meningitis so far. We believe that introducing such behavioural change attributes in the model

and analysing its effects in the dynamics can significantly improve the control strategies.

In this paper, we introduce the behaviour change function into the meningitis model and

mathematically analyse it. The formulated model contains one more compartment Se, which

represents individuals who decide to change their behaviour due to an effect of a successful

awareness campaign and the perceived threat to acquire the disease by the population. In ad-

dition, we develop an optimal control model taking the combination of different intervention

mechanisms: awareness creation (which will be simply called ‘education’ in this manuscript),

vaccination and treatment as control measures and study the mathematical control analysis of



OPTIMAL CONTROL OF THE SPREAD OF MENINGITIS 5

the model to propose an optimal control strategy for public health planning. Here, unlike to

the usual way of defining the cost function as in most of the epidemiological models (either all

quadratic or all linear forms), we apply a mixed control mechanism that combines both linear

and nonlinear cost functions corresponding to different structure of the controls. However, this

requires a careful analysis of the optimality condition at singularity points, which we managed

to get the required conditions and formulations.

The paper is organized as follows: Section 2 gives the description and mathematical analysis

of the model. In Section 3, the control problem for the model is formulated and the mathemat-

ical control analysis is applied to find the necessary conditions for the optimal controls. Some

numerical simulations are performed in Section 4 to illustrate the trajectory of the sub popula-

tion in the dynamics when various combination of controls are applied. Section 5 contains the

cost-effectiveness analysis of different strategies taken. The paper is concluded with conclusive

remarks in Section 6.

2. MATHEMATICAL MODEL AND ITS ANALYSIS

2.1. Model Description. The mathematical model of meningococcal meningitis is studied

by different researchers. We consider a basic mathematical model as formulated in literature

[2, 4, 21, 44] to study the dynamics of this disease. Extending these models, we divide the over-

all population into five distinct compartments: the susceptible individuals who are separated

into two parts: individuals who are fully susceptible to the infection (S), and individuals who

are aware the risk (educated) as well as possible self protective measures and became less sus-

ceptible due to their action to change their behaviour, (Se). The remaining population is further

divided into carriers (C) who are carrying the infection and are infectious, but show no signs of

the invasive disease, infected (I) who show the symptoms of the invasive disease and are still

infectious and recovered (R) individuals, so that the total population is N = S+Se +C+ I +R.

We assume that individuals are recruited into the population at a constant rate of Λ. The

susceptible individuals S and ‘educated’ susceptible individuals Se are vaccinated at constant

vaccination rates of φ1ν and φ2ν , respectively, where 0 < φ1 ≤ φ2 < 1 and ν is the information

dependent vaccination ratio as in d’Onofrio et al [14]. The susceptible group, S progress to

susceptible ‘educated’ group Se at a rate of αe, where 0 < α < 1 and e is the behavioural
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change function as in Kassa & Ouhinou [25]. The individuals in the Se group, as it is mentioned

earlier, are susceptible individuals who are aware of the risk of meningitis and are involved

in self protective action against the infection by applying any of the existing self protective

mechanisms. However, in practice when the disease is endemic for longer period of time in the

population, some individuals may become negligent and go back to practising some of the risky

behaviour attributes. In the current model, we assume that the proportion of risk ignorant and

negligent population from among the class Se move back to the S class at a constant rate of m.

Moreover, it is clear that individuals in the ‘educated’ class are exposed to the infection with a

rate smaller than other susceptible individuals.

The susceptible and ‘educated’-susceptible populations are also decreased due to the infec-

tion of the disease and transfer to the carriers C and infected groups I. We assume that the level

of infectiousness of individuals in C is grater, say by a factor ε > 1 than the individuals in the

I class. This could be attributed to the fact that carriers are asymptomatic and can freely mix

with the community while those in the I class can possibly be sick and their possibility to mix

with the public is limited.

The force of infection for each group is represented by the functional parameter λ = cβ
εC+ I

N
where c and β represent the contact and transmission rates, respectively. That is, c is the con-

tact rate of individuals (which measures the frequency of contact by individuals and how many

person per unit of time the infected person can possibly contact) and β represents the biological

transmission probability per each contact. A portion κ of the newly infected individuals from

the S class, κλS go to the carriers group C, while the remaining (1−κ)λS progress directly

to the infectious and symptomatic group I. A portion ι of the new infections that come from

the Se class, ιγλSe, join the C class and the remaining (1− ι)γλSe join to the I group, where γ

(0 < γ < 1) is the overall average rate of non-effectiveness (failure) of existing self-preventive

measures.

Carriers develop an invasive disease at a rate σ and recover at a rate δ without passing the I

class, and individuals with invasive disease recover at a rate ρ . The model takes into account

both the natural death rate µ and disease-induced mortality d. Recovery from the disease is not

permanent. Due to the waning effect of vaccines and the behaviour of the disease, some portion
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will join back to the susceptible group S, and the remaining to the susceptible ‘educated’ group

Se, at a rate of, say ηωR, and (1−η)ωR, respectively, where 0 < η < 1. Here ω is the rate

of losing immunity and hence 1
ω

represents the average time that individuals remain in the

recovered group R before they become susceptible.

In the model we include two types of information dependent values. The first one is the

inclusion of ‘educated’ compartment, Se of the behaviour dependent model as in Kassa et al [25]

and the second one is behaviour change for the adoption of vaccination as models in d’Onofrio

et al [14] for information-related vaccinating behaviour.

One of the methods used to model the change in human behaviour during the outbreak of

an epidemic is with the use of the mechanistic procedure in the “Diffusion of innovation” from

marketing. This approach assumes the introduction of a protective mechanism from an infec-

tious disease as an ‘innovation’ that is to be adopted by the population [3, 24, 25, 26]. In models

of this approach so far, the level of prevalence of the disease is assumed to be the perceived

treat for the population. However, for high fatality and short-lived diseases, like meningitis, the

prevalence dependent awareness function may not reflect the reality. Therefore, we assumed in

this study that awareness is driven by the magnitude of the incidence for meningitis.

The human learning behaviour does not keep on increasing for ever. After a sharp increase,

the rate of increase in the awareness function e slows down and settles to some value asymp-

totically. Therefore, we define the awareness function e(i) by the Hill-type function in terms of

the incidence of the infection

e(i) =
in

in∗+ in
,(1)

where i is the incidence of the disease, which is given by

i(t) = λ (t)S(t) = cβS(t)
εC(t)+ I(t)

N(t)
,

and i∗ is the value of the incidence corresponding to the threshold infectivity in which half of

the maximum behavioural change value is achieved.

Equivalently, using the force of infection λ , e can be given by

e =
Snλ n

in∗+Snλ n =
Sn(εC+ I)n

in0Nn +Sn(εC+ I)n ,
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where i0 =
i∗
cβ

.

Since n = 2 produces a slow increase in the function of e and resembles the graph described

by Green & McAlister [19], we assumed n = 2 in the formula for e, and hence it is simplified

as:

(2) e(t) =
S(t)2λ (t)2

i2∗+S(t)2λ (t)2 =
S(t)2[εC(t)+ I(t)]2

i20N2(t)+S2[εC(t)+ I(t)]2
.

We introduce this in the model as αeS in such a way that this portion of the individuals from

the S class transfer to the Se group. Here, α is the mean constant rate at which keen susceptible

individuals get recruited into the educated class per unit of time, and αe will give the actual re-

cruitment rate to the cohort of ‘educated’ from the susceptible class. That is, αe is the behaviour

change function for self-protective actions.

Because of its application, enforcement mechanism and cost, the use of vaccination can be

considered differently as compared to the self-protective mechanisms described earlier. Even

though public health authorities try to convince the population in the community to increase

the uptake of vaccination at the time when the outbreak of the disease is detected, the response

depends on various information the population is receiving. That means, the vaccine uptake

function ν is information dependent and is assumed to be a function of information variable M

as in d’Onofrio et al [14] and is defined as:

ν(M) = ν0 +ν1(M),0 < ν0 < 1.

The fixed or baseline value ν0 models the fraction of individuals that are vaccinated indepen-

dently on the available current and historical information irrespective of the incidence level of

the disease in the population, whereas ν1(M) models the fraction of individuals that are vacci-

nated depending on the social alarm caused by the disease. It is usually given by either

ν1(M) =
a1M

1+b1M
−− Michaelis-Menten function, or

ν1(M) =
a2M2

1+b2M2 −− Holling type II function,

where a1,b1,a2,b2 are some suitable positive constants. The variable M is an information vari-

able governing the signal available to individuals as a function of prevalence or incidence of
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infection. It is the information variable which summarizes information about the current state

of the disease (i.e M depends only on current values of the state variables) or M summarizes in-

formation about past values of state variables as indicated by d’Onofrio et al [13]. The possible

ways describing M as indicated in d’Onofrio et al [13] are:

1. M = αcβ
S(εC+ I)

N
: Information governing vaccinating behaviour depends on the cur-

rent incidence (i.e. M is the currently reported absolute incidence), where α > 0 is a

reporting rate.

2. M = k
I
N

: Information governing vaccinating behaviour depends on the current preva-

lence (i.e M is a function of the current prevalence of the disease), where k > 0 is a

parameter subsuming aspects such as pathogenicity.

3. M =
αcβ (εC+ I)

µ +αβ (εC+ I)
: Information governing vaccinating behaviour is a saturating

function of current incidence (i.e. M is a non-linear increasing function of standard-

ized incidence which can be taken as a measure of the perceived risk of infection).

4. M =
∫ t
−∞

g(S(τ),C(τ), I(τ))k(t− τ)dτ : where M depends on past states with k repre-

senting memory decay function.

In our case we assume that M depends on the currently reported absolute incidence of the

disease and is given by

M = αcβS
(εC+ I)

N
= αSλ .(3)

Taking Holling type II form for vaccine coverage function:

ν1(M) =
a2M2

1+b2M2(4)

we have,

ν(t) = ν0 +
a2M2

1+b2M2 = ν0 +
a2(αcβ )2S2(εC+ I)2

N2 +b2(αcβ )2S2(εC+ I)2 .(5)

For simplicity and mathematical tractability we assume that

ν0 = 0,a2 = b2,

and we get

(6) ν(t) =
S(t)2λ (t)2

i2∗+S(t)2λ (t)2 =
S(t)2[εC(t)+ I(t)]2

i20N2(t)+S2[εC(t)+ I(t)]2
.
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representing the information driven vaccination, where

i20 =
1

a2(αcβ )2 ,

which has exactly similar structure as that of e(t).

In addition, if we assume for mathematical simplicity that vaccine is perfect and the acquired

immunity wanes at a rate equal to ω (which is the same as the rate of loosing immunity after

recovery) the vaccinated group can be merged with the recovered group. Therefore, the system

dynamics of the model becomes:

Ṡ = Λ−αeS+mSe−φ1νS+ηωR−λS−µS,(7a)

Ṡe = αeS−mSe−φ2νSe +(1−η)ωR− γλSe−µSe,(7b)

Ċ = κλS+ ιγλSe− (σ +δ +µ)C,(7c)

İ = (1−κ)λS+(1− ι)γλSe +σC− (ρ +d +µ)I,(7d)

Ṙ = φ1νS+φ2νSe +δC+ρI− (ω +µ)R,(7e)

where the upper dots denote the time derivatives and the total population N at any time t is given

by

N(t) = S(t)+Se(t)+C(t)+ I(t)+R(t).

In addition, we also assume the following nonnegative initial conditions hold for the system (7),

S(0) = S0 ≥ 0, Se(0) = Se0 ≥ 0, C(0) =C0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0.

The coefficient terms λ ,e,ν are functions of the state variables and the other coefficients are

assumed to be constant parameters and are summarized in Table 2.

Var. Coefficients Description

λ Force of infection.

e Behaviour change function as in Kassa [24]

ν Information dependent vaccination coverage function as in d’Onofrio [13]

TABLE 1. Description of variable parameters used in the model (7).
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Remark 2.1.

(1) By taking ν0 = 0, we are assuming effectively that the vaccine uptake function ν(t) is

fully incidence driven and hence it becomes zero when there is no disease incidence.

Particularly, at the disease free equilibrium, both e(t) and ν(t) become zero.

(2) The parameters in Table 1 are functions of the states and can be explained as follows.

• force of infection:

(8) λ (t) = cβ
εC(t)+ I(t)

N(t)
.

• behaviour change functions:

(9) e(t) =
S2(t)[εC(t)+ I(t)]2

i20N2(t)+S2(t)[εC(t)+ I(t)]2
= ν(t),

where the constant i0 represents the incidence producing half of the maximum be-

havioural change value.

2.2. Positivity and Boundedness of solutions. Since model (7) represents human popula-

tions, all parameters in the model are non-negative and one can show that the solutions of the

system are non-negative, given non-negative initial values. The model system (7) will be anal-

ysed in a biologically feasible region, Ω⊂ R5
+ with

(10) Ω =

{
(S,Se,C, I,R) ∈ R5

+ : S+Se +C+ I +R <
Λ

µ

}
.

Now we need to show the boundedness of the solutions, that is the positive invariance of Ω

(solutions in Ω remain in Ω for all t > 0 ). Adding all the five equations in the model system,

we have the rate at which total population changes, which is given by

(11) Ṅ = Λ−µN−dI.

Since dI(t)≥ 0,

Ṅ(t)≤ Λ−µN(t) f or t ≥ 0.

Solving this differential equation we get

N(t)≤ Λ

µ
+ ce−µt
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where c = N(0)− Λ

µ
. Thus,

(12) N(t)≤ Λ

µ
+(N(0)− Λ

µ
)e−µt .

For large t values, the limiting value of N is

N(t)≤ Λ

µ
,

which implies that the trajectories of the model system are bounded.

In particular N(0) ≤ Λ

µ
. Thus, the biologically feasible region Ω is positively invariant and

attractive. Hence, the following theorem holds.

Theorem 2.2. The region Ω ⊂ R5
+ is positively-invariant for the model system (7) with non-

negative initial conditions in R5
+.

2.3. The Disease Free Equilibrium (DFE) and its stability. In the absence of infection (i.e

C = 0, I = 0), the system of equations (7) has a disease free equilibrium E0, given by

(13) E0 =

(
Λ

µ
,0,0,0,0

)
,

provided vaccination is given after the incidence of the disease.

At the disease free equilibrium E0, the Jacobian matrix of the model system (7) will be JE0 ,

where

(14) JE0 =



−µ m −cβε −cβ ηω

0 −m−µ 0 0 (1−η)ω

0 0 κcβε− (σ +δ +µ)) κcβ 0

0 0 (1−κ)cβε +σ (1−κ)cβ − (ρ +µ +d) 0

0 0 δ ρ −(ω +µ)
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Letting x1(t) = S(t)−S0,x2(t) = Se(t)−Se0,x3(t) =C(t)−C0,x4(t) = I(t)− I0,x5(t) = R(t)−

R0, and linearising the system at E0, we have the system

(15)



x′1(t)

x′2(t)

x′3(t)

x′4(t)

x′5(t)


= Jε0



x1(t)

x2(t)

x3(t)

x4(t)

x5(t)


Hence, the characteristic polynomial will be

P(χ) = |χI− JE0|

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χ +µ −m cβε cβ −ηω

0 χ +m+µ 0 0 −(1−η)ω

0 0 χ−κcβε +(σ +δ +µ)) −κcβ 0

0 0 −(1−κ)cβε−σ χ− (1−κ)cβ +(ρ +µ +d) 0

0 0 −δ −ρ χ +(ω +µ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (χ +µ)(χ +m+µ)(χ +(ω + r+µ)){[χ2− [κcβε− (σ +δ +µ)+(1−κ)cβ

− (ρ +µ +d)]χ−κcβε(ρ +µ +d)− (1−κ)cβ (σ +δ +µ)−κcβσ ]}

which is a polynomial of degree five. The eigenvalues of the matrix JE0 are the zeros of P(χ),

which are

χ1 =−µ, χ2 =−(m+µ), χ3 =−(ω +µ),

and χ4,χ5 are roots of the quadratic equation

(16) aχ
2 +bχ + c = 0,

where

a = 1,

b =−κcβε +(σ +δ +µ)− (1−κ)cβ +(ρ +µ +d)

c =−κcβε(ρ +µ +d)− (1−κ)cβ (σ +δ +µ)−κcβσ +(σ +δ +µ)(ρ +µ +d).
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The three eigenvalues, χ1,χ2 and χ3 are already found to be negative real numbers. However,

for local stability of the disease free equilibrium, we must have all the eigenvalues to be with

negative real parts. Now to show that χ4 and χ5 also have negative real parts, we first define the

basic reproduction number, R0 (which can also be obtained through the next generation matrix

method as in van den Driessche & Watmough [42]) for the model system (7) to be

(17) R0 =
κcβε

(σ +δ +µ)
+

(1−κ)cβ

(ρ +µ +d)
+

κcβσ

[(σ +δ +µ)+(ρ +µ +d)]
.

Then we have,

b =−κcβε +(σ +δ +µ)− (1−κ)cβ +(ρ +µ +d)

=[(σ +δ +µ)+(ρ +µ +d)][1− κcβε

[(σ +δ +µ)+(ρ +µ +d)]
− (1−κ)cβ

[(σ +δ +µ)+(ρ +µ +d)]
]

>[(σ +δ +µ)+(ρ +µ +d)][1− κcβε

(σ +δ +µ)
− (1−κ)cβ

(ρ +µ +d)
]

>[(σ +δ +µ)+(ρ +µ +d)][1− κcβε

(σ +δ +µ)
− (1−κ)cβ

(ρ +µ +d)
− κcβσ

[(σ +δ +µ)+(ρ +µ +d)]
]

=[(σ +δ +µ)+(ρ +µ +d)][1−R0].

Similarly,

c =−κcβε(ρ +µ +d)− (1−κ)cβ (σ +δ +µ)−κcβσ +(σ +δ +µ)(ρ +µ +d)

=[(σ +δ +µ)(ρ +µ +d)][1− κcβε

(σ +δ +µ)
− (1−κ)cβ

(ρ +µ +d)
− κcβσ

[(σ +δ +µ)+(ρ +µ +d)]
]

=[(σ +δ +µ)+(ρ +µ +d)][1−R0].

Thus, if R0 < 1, we have a = 1,b > 0,c > 0 and hence, by the Routh-Hurwitz Criterion for

polynomials both the roots of the quadratic equation (16) have negative real parts. That means,

all the five eigenvalues of the Jacobian matrix at E0 have negative real parts for R0 < 1.

The linear stability of the disease free equilibrium E0 is governed by the basic reproduction

number R0. Hence the following theorem follows.

Theorem 2.3. The system always has a unique disease free equilibrium E0. If R0 < 1, then E0

is locally asymptotically stable, and unstable otherwise.
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In epidemiological terms, Theorem 2.3 states that it is possible to control the epidemic if we

can reduce the value of Ro < 1 as long as the initial population is in the neighbourhood of the

DFE point E0. However, to ensure the independence of the possibility of elimination of the

disease on the initial size of the population, we need to prove that the DFE point E0 is globally

asymptotically stable (GAS) for R0 < 1 as given in the following theorem.

Theorem 2.4. If R0 < 1, then the disease free equilibrium E0 is globally asymptotically stable

in Ω.

Proof. To prove this theorem, we use the settings of the Stability Theorem given by Kamgang-

Sallet [23] (which we shall refer it hereafter as Kamgang-Sallet Theorem). Let x1 = (S,Se)∈R2

and x2 = (C, I,R) ∈ R3. Then the system (7) can be written as:

ẋ1 = A1(x)(x1− x∗1)+A12(x)x2,(18)

ẋ2 = A2(x)x2,(19)

where x = (x1,x2) ∈ R2×R3, x∗1 =
(

Λ

ν0+µ
, ν0Λ

µ(ν0+µ)

)
,

A1(x) =

 −µ m

0 −(m+µ)

 , A12(x, t) =

 −cβεS
N −cβS

N ηω

− γcβεSe
N − γcβSe

N (1−η)ω

 ,

and

A2(x) =


cβε(κS+ιγSe)

N − (σ +δ +µ) cβ (κS+ιγSe)
N 0

cβε((1−κ)S+(1−ι)γSe)
N +σ

cβ ((1−κ)S+(1−ι)γSe)
N − (ρ +µ +d) 0

δ ρ −(ω +µ)

 .

The five sufficient conditions of Kamgang-Sallet Theorem for GAS of the DFE can be checked

to be satisfied as follows.

i. System (7) is a dynamical system on Ω as it is indicated in equation (10).

ii. The subsystem ẋ1 = A1(x)(x1− x∗1) is globally asymptotically stable at the equilibrium

x∗1. Here the coefficient matrix A1(x) is a constant matrix having negative eigenvalues.

Therefore, the system is globally asymptotically stable at the point x∗1. More precisely,

it means that the solution of the subsystem converges to x∗1 for any initial condition.
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iii. The matrix A2(x) is Metzler (i.e., all the off-diagonal elements are non-negative) and

irreducible for any given x ∈Ω, as can be seen from its expression.

iv. There exists an upper-bound matrix Ā2 for the set

M = {A2(x) : x ∈Ω} .

For instance,

Ā2 = A2(x) =


cβε(κ + ιγ)− (σ +δ +µ) cβ (κ + ιγ) 0

cβε((1−κ)+(1− ι)γ)+σ A22 0

δ ρ −(ω +µ)

 .

is an upper-bound of M , where A22 = cβ ((1−κ)+(1− ι)γ)− (ρ +µ +d).

v. For R0 ≤ 1 in (17)

α(Ā2) = max
{

Re(χ) : χ eigenvalue of Ā2
}
≤ 0.

Hence, by the Kamgang-Sallet Theorem [23], the disease-free equilibrium is globally asymp-

totically stable for R0 < 1. �

3. FORMULATION OF THE CONTROL PROBLEM

In this section we try to incorporate different intervention mechanisms as control variables

in the model system (7) and develop an optimal control problem. At the end of the section we

will see the effects of the interventions on the spreading of the disease and the effect of these

interventions on the incidence of the disease.

3.1. Model with Controls. The diseases like hepatitis, tuberculosis, meningitis, etc. are gen-

erally treated by both vaccination as well as treatment. In our system we use the following three

possible interventions for control strategy of the meningitis disease:

• preventive education,

• vaccination of susceptible and educated-susceptible individuals, and

• treating carriers and infected individuals.

Hence, these interventions will serve as control parameters in the dynamics of the epidemic

model. Further application of control may be either time independent (supplied at a constant
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value) or dependent (supplied according to the demand of the time). In our case we assume the

controls are time dependant.

(a) Educating the population: Increase the rate of self-initiated protective measures by the

susceptible individuals to reduce the risk of contracting the disease. Precautions should

be taken to avoid transfer of the meningococcal bacteria from the infected person to

others, which is primarily by coughing and sneezing. Replace the term α in the system

(7) by

α0 +u1(t),

for some α0 > 0 with the control function u1(t), which measures the rate at which

additional susceptible individuals are convinced to take part in behaviour modification.

Because of practicality and economical limitations on the maximum rate of convincing

individuals for behaviour modification, we assume that αmax > 0 to be the maximum

rate. That is,

0≤ u1 ≤ αmax−α0.

(b) Vaccination: Increase the rate of vaccination. The most effective way to protect bac-

terial meningitis is to get vaccinated. Vaccines for meningococcal disease are available

but they are not free for most people. However, they may be funded by local district

health boards during a disease outbreak. Currently available vaccines do not provide

protection against all types of meningococcal disease, rather they are prepared only for

strains A, C, Y, and W-135.

Let the current rate of vaccinations be 1> φ10 > 0 and 1> φ20 > 0 and u2(t) measures

the rate at which additional susceptible are vaccinated. We will consider vaccination

u2(t) as a continuous control and introduce it in the system dynamics as

(φ10 +u2(t))νS(t), (φ20 +u2(t))νSe(t) with 0≤ u2(t)≤ φmax,

where, φmax = min{1−φ10,1−φ20}.

(c) Treatment: Increase the rate of recruitment for infected classes so that they receive

treatment effectively and transfer to the recovered class. Once the bacteria that are

causing the illness are identified, the person can be treated with the correct antibiotics.
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The antibiotic will most likely be given directly into the blood stream through a drip

(intravenously). Very high antibiotic doses may be required to fight the disease. Addi-

tional antibiotics may be required to prevent and/or combat secondary infections. The

control functions u3(t) and u4(t) measure the rate at which additional infectious (both

carriers, Infected-symptomatic) individuals transform to the “Recovered” class at any

time t, where the current rate is at δ0 and ρ0 respectively. These controls will be seen

in the dynamics as (δ0 + u3(t))C(t) and (ρ0 + u4(t))I(t) by replacing δC(t) and ρI(t)

in the system respectively. Letting the constants δmax > 0,ρmax > 0 to represent the

maximum rates, we have

0≤ u3 ≤ δmax−δ0 and 0≤ u4 ≤ ρmax−ρ0.

Now, using the above control parameters, the system of the disease dynamics (7) can be

rewritten as:

Ṡ = Λ− (α0 +u1)eS+mSe− (φ10 +u2)νS+ηωR−λS−µS,(20a)

Ṡe = (α0 +u1)eS− (φ20 +u2)νSe−mSe +(1−η)ωR− γλSe−µSe,(20b)

Ċ = κλS+ ιγλSe− ((δ0 +u3)+σ +µ)C,(20c)

İ = (1−κ)λS+(1− ι)γλSe +σC− ((ρ0 +u4)+d +µ)I,(20d)

Ṙ = (φ10 +u2)νS+(φ20 +u2)νSe +(δ0 +u3)C+(ρ0 +u4)I− (ω +µ)R,(20e)

with given initial conditions on the sates,

(21) S(0),Se(0),C(0), I(0),R(0),

and bounded controls as indicated above.

3.2. Objective Function of the Optimal Control Problem. Having developed the system

dynamics with controls, now we try to formulate the objective function to be minimized so that

the optimal interventions can be obtained.

The main goal here is to minimize the total number of new infections (carriers and symp-

tomatically infectious groups) in the planning period, while also minimizing the total cost of

controlling the disease dynamics. That means, by constructing optimal values of Lebesgue
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integrable, bounded control functions ui(t), i = 1,2,3,4, we seek the best strategy that can con-

trol the dynamics of the epidemics modelled in (20). For controls which are implemented

at individual level, such as giving treatment, etc., it is better to take the cost as linear as

B3u3(t)C(t),B4u4(t)I(t), where Bi, i = 3,4, represent a unit cost and u3C,u4I represent the total

number of the C and I classes who are treated at time t. If the control is applied at a community

level (mass campaign), the control for preventive education and vaccination can be considered

as quadratic u2
1,u

2
2 in the objective function. Since implementation of any community level pub-

lic health intervention has increasing costs with reaching higher fraction of the population, we

usually take a non-linear cost function, like the quadratic, to represent such costs. That is, we

minimize the objective functional:

(22) J =
∫ t f

0

[
(A1 +B3u3(t))C(t)+(A2 +B4u4(t))I(t)+

B1

2
u2

1(t)+
B2

2
u2

2(t)
]

dt,

where u1,u2,u3,u4 are Lebesgue measurable bounded functions on [0, t f ].

The constants A1,A2,B1 and B2 could be considered as values that will balance the units of

measurement and also may indicate the importance of one type of intervention over the other,

at implementation level to the general public.

So, we seek to find optimal controls u∗1,u
∗
2,u
∗
3,u
∗
4 such that

(23) J(u∗1,u
∗
2,u
∗
3,u
∗
4) = min

u1,u2,u3,u4
J(u1,u2,u3,u4)

where

(24) u = (u1,u2,u3,u4)

is the vector of Lebesgue integrable functions, which are all bounded controls.

Considering the objective function in (22), with system dynamics in (20) with initial condi-

tions on the states and controls we have the optimal control problem:

min
u1,u2,u3,u4

J =
∫ t f

0

[
(A1 +B3u3(t))C(t)+(A2 +B4u4(t))I(t)+

B1

2
u2

1(t)+
B2

2
u2

2(t)
]

dt
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(25)

Subject to

Ṡ = Λ− (α0 +u1)eS+mSe− (φ10 +u2)νS+ηωR−λS−µS,

Ṡe = (α0 +u1)eS− (φ20 +u2)νSe−mSe +(1−η)ωR− γλSe−µSe,

Ċ = κλS+ ιγλSe− ((δ0 +u3)+σ +µ)C,

İ = (1−κ)λS+(1− ι)γλSe +σC− ((ρ0 +u4)+d +µ)I,

Ṙ = (φ10 +u2)νS+(φ20 +u2)νSe +(δ0 +u3)C+(ρ0 +u4)I− (ω +µ)R,

with given initial conditions on the sates,

(26) S(0),Se(0),C(0), I(0),R(0).

The controls are bounded as

u1(t) ∈ [0,αmax−α0],u2(t) ∈ [0,φmax],u3(t) ∈ [0,δmax−δ0],u4(t) ∈ [0,ρmax−ρ0]

for all t ∈ [0, t f ].(27)

3.3. Existence of Optimal Control Solutions. The following theorem shows the existence

of the optimal control solution to the above optimal control problem [16].

Theorem 3.1. There exists an optimal control quadruple u∗ = (u∗1,u
∗
2,u
∗
3,u
∗
4), and correspond-

ing solution vector x∗ = (S∗,S∗e ,C
∗, I∗,R∗) to the state initial value problem (25) that minimizes

the objective functional J(u) of (22) over the set of admissible controls f.

Proof. Let the marginal cost function L, the state function f and the admissible control f be

L(x,u, t) = (A1 +B3u3(t))C(t)+(A2 +B4u4(t))I(t)+
B1

2
u2

1(t)+
B2

2
u2

2(t),

f (x,u, t) =
dx
dt

, where
dx
dt

represents system (20), and

f= {(u1(t),u2(t),u3(t),u4(t)) ∈ L1(0, t f )|0≤ u1(t)≤ αmax−α0,0≤ u2(t)≤ φmax,

0≤ u3(t)≤ δmax−δ0,0≤ u4(t)≤ ρmax−ρ0,∀t ∈ [0, t f ]}.

Since all the involved functions in the model are continuously differentiable, we need to verify

the following four conditions given in Filippov-Cesari Theorem (cf. Theorem 3.1 in Hartl et al.

[20]).

1. There exists an admissible solution pair (x,u).
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2. Roxin’s condition holds, i.e,

Γ(x, t) = {(L(x,u, t)+ξ , f (x,u, t)) : ξ ≤ 0,u ∈ f} ⊂ R5

for all (x, t) ∈ R5× [0, t f ].

3. There exist δ > 0 such that ‖x‖< δ for all admissible {x,u} and t.

4. There exist δ1 > 0 such that ‖u‖< δ1 for all u ∈ f(x, t) with ‖x‖< δ .

With regard to the first condition, the bound established for the non-controlled system (7) has

the same form if we also incorporate the control function parameters, as they eventually add up

to zero. Hence, for any u ∈ f and the state variables, we have

(28) 0≤ N(t)≤ Λ

µ
.

Moreover, the state system is continuous and bounded for any admissible control u ∈f. There-

fore, the state system (20) has a unique solution corresponding to every admissible control

u ∈ f. [see Theorem I.3.1 in Coddington & Levinson [11], Theorem 9.2.1 in Lukes [28].] The

second condition (Roxin’s condition) is satisfied as the state system (20) is linear with respect to

the control variables and f is compact. Conditions 3. and 4. follow from (28) and the definition

of the control set f. Therefore, by Filippov-Cesari Theorem, there exists an optimal control

pair {x∗,u∗} with u∗ measurable, that solves the optimal control problem (25). �

3.4. Characterization of Optimal Control Solution. To formulate the necessary conditions

for optimality, we need to define the Hamiltonian function of the optimal control problem (25).

The Hamiltonian equation with marginal cost function, state variables and adjoint variables is

given by:

(29)

H(x,u,ξ , t) = [(A1 +B3u3(t))C(t)+(A2 +B4u4(t))I(t)+
B1

2
u2

1(t)+
B2

2
u2

2(t)]

+ξ1[Λ− (α0 +u1)eS+mSe− (φ10 +u2)νS+ηωR−λS−µS]

+ξ2[(α0 +u1)eS− (φ20 +u2)νSe−mSe +(1−η)ωR− γλSe−µSe]

+ξ3[κλS+ ιγλSe− ((δ0 +u3)+σ +µ)C]

+ξ4[(1−κ)λS+(1− ι)γλSe +σC− ((ρ0 +u4)+d +µ)I]

+ξ5[(φ10 +u2)νS+(φ20 +u2)νSe +(δ0 +u3)C+(ρ0 +u4)I− (ω +µ)R],
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where x = (S,Se,C, I,R), u = (u1,u2,u3,u4), ξ = (ξ1,ξ2,ξ3,ξ4,ξ5), with

e(t) =
S2[εC(t)+ I(t)]2

i20N2(t)+S2[εC(t)+ I(t)]2
= ν(t), and λ (t) = cβ

εI(t)+ I(t)
N(t)

.

By using Pontryagin’s Maximum Principle [27, 33], we derive necessary conditions for the

optimal controls and corresponding states. That is, it is now possible to determine the optimal

control variables, (u∗1,u
∗
2,u
∗
3,u
∗
4) from the necessary conditions.

Now, the necessary conditions are given as follows.

1. The adjoint equations:

(30)

ξ ′1(t) =−∂H
∂S

(t)

= (α0 +u1)(εC+ I)2 3S2[i20N2 +S2(εC+ I)2]−S3[2i20N +2S(εC+ I)2]

i20N2(t)+S2[εC(t)+ I(t)]2
(ξ1−ξ2)

+(φ10 +u2)(εC(t)+ I(t))2 3S2[i20N2 +S2(εC+ I)2]−S3[2i20N +2S(εC+ I)2]

i20N2(t)+S2[εC(t)+ I(t)]2
(ξ1−ξ5)

+(φ20 +u2)(εC+ I)Se
2S[i20N2 +S2(εC+ I)2]−S2[2i20N +2S(εC+ I)2]

i20N2(t)+S2[εC(t)+ I(t)]2
(ξ2−ξ5)

+cβ (εC+ I)
(N−S)

N2 (ξ1−κξ3− (1−κ)ξ4)

−γcβ (εC+ I)
Se

N2 (ξ2− ιξ3− (1− ι)ξ4)

+µξ1

(31)

ξ ′2(t) = −∂H
∂Se

(t)

=−(α0 +u1)(εC+ I)2S3 2i20N
[i20N2(t)+S2[εC(t)+ I(t)]2]2

(ξ1−ξ2)

−(φ10 +u2)(εC(t)+ I(t))2S3 2i20N
[i20N2(t)+S2[εC(t)+ I(t)]2]2

(ξ1−ξ5)

+(φ20 +u2)(εC+ I)2S2 [i
2
0N2 +S2(εC+ I)2]−Se[2i20N]

[i20N2(t)+S2[εC(t)+ I(t)]2]2
(ξ2−ξ5)

−cβ (εC+ I)
S

N2 (ξ1−κξ3− (1−κ)ξ4)

+γcβ (εC+ I)
(N−Se)

N2 (ξ2− ιξ3− (1− ι)ξ4)

−m(ξ1−ξ2)

+µξ2
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(32)

ξ ′3(t) =−∂H
∂C

(t)

=−(A1 +B3u3)

+(α0 +u1)S3 2ε(εC+ I)[i20N2(t)]− [2i20N[εC(t)+ I(t)]2

[i20N2(t)+S2[εC(t)+ I(t)]2]2
(ξ1−ξ2)

+(φ10 +u2)S3 2ε(εC+ I)[i20N2(t)]− [2i20N[εC(t)+ I(t)]2

[i20N2(t)+S2[εC(t)+ I(t)]2]2
(ξ1−ξ5)

+(φ20 +u2)S2Se
2ε(εC+ I)[i20N2(t)]− [2i20N[εC(t)+ I(t)]2

[i20N2(t)+S2[εC(t)+ I(t)]2]2
(ξ2−ξ5)

+cβS
εN− (εC+ I)

N2 (ξ1−κξ3− (1−κ)ξ4)

+cβγSe
εN− (εC+ I)

N2 (ξ2− ιξ3− (1− ι)ξ4)

+(δ0 +u3)(ξ3−ξ5)

+σ(ξ3−ξ4)

+µξ3

(33)

ξ ′4(t) =−∂H
∂ I

(t)

=−(A2 +B4u4)

+(α0 +u1)S3 2ε(εC+ I)[i20N2(t)]− [2i20N[εC(t)+ I(t)]2

[i20N2(t)+S2[εC(t)+ I(t)]2]2
(ξ1−ξ2)

+(φ10 +u2)S3 2ε(εC+ I)[i20N2(t)]− [2i20N[εC(t)+ I(t)]2

[i20N2(t)+S2[εC(t)+ I(t)]2]2
(ξ1−ξ5)

+(φ20 +u2)S2Se
2ε(εC+ I)[i20N2(t)]− [2i20N[εC(t)+ I(t)]2

[i20N2(t)+S2[εC(t)+ I(t)]2]2
(ξ2−ξ5)

+cβS
N− (εC+ I)

N2 (ξ1−κξ3− (1−κ)ξ4)

+cβγSe
N− (εC+ I)

N2 (ξ2− ιξ3− (1− ι)ξ4)

+(ρ0 +u4)(ξ4−ξ5)

+(d +µ)ξ4
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(34)

ξ ′5(t) =−∂H
∂R

(t)

=−(α0 +u1)S3(εC+ I)2 (2i20N)

[i20N2(t)+S2[εC(t)+ I(t)]2]2
(ξ1−ξ2)

−(φ10 +u2)S3(εC+ I)2 (2i20N)

[i20N2(t)+S2[εC(t)+ I(t)]2]2
(ξ1−ξ5)

−(φ20 +u2)S2Se(εC+ I)2 (2i20N)

[i20N2(t)+S2[εC(t)+ I(t)]2]2
(ξ2−ξ5)

−cβS
(εC+ I)

N2 (ξ1−κξ3− (1−κ)ξ4)

−cβγSe
(εC+ I)

N2 (ξ2− ιξ3− (1− ι)ξ4)

−ω(ηξ1 +(1−η)ξ2−ξ5)

+µξ5

2. The transversality conditions

(35) ξ1(t f ) = ξ2(t f ) = ξ3(t f ) = ξ4(t f ) = ξ5(t f ) = 0

3. The Minimum Conditions:

When the minimum occurs in the interior of the control region

(36)
∂H
∂ui

= 0, i = 1,2,3,4.

Thus,

(37)

B1u1−
S3[εC(t)+ I(t)]2

i20N2(t)+S2[εC(t)+ I(t)]2
(ξ1−ξ2) = 0

B2u2−
S3[εC(t)+ I(t)]2

i20N2(t)+S2[εC(t)+ I(t)]2
(ξ1−ξ5)−

S2Se[εC(t)+ I(t)]2

i20N2(t)+S2[εC(t)+ I(t)]2
(ξ2−ξ5) = 0,

B3C−C(ξ3−ξ5) = 0,

B4I− I(ξ4−ξ5) = 0

Since the first two equations of (37) involve controls u1 and u2 we have

(38)
u1(t) =

1
B1

S3(t)[εC(t)+ I(t)]2

i20N2(t)+S2(t)[εC(t)+ I(t)]2
(ξ1(t)−ξ2(t))

u2(t) =
1

B2

S2(t)[εC(t)+ I(t)]2

i20N2(t)+S2(t)[εC(t)+ I(t)]2
[(ξ1(t)−ξ5(t))S(t)+(ξ2(t)−ξ5(t))Se(t)].
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As these controls ,u′is, i = 1,2 are bounded, we arrive at

u∗1 = min{αmax−α0,max{0, 1
B1

[εC(t)+ I(t)]2

i20N2(t)+S2(t)[εC(t)+ I(t)]2
S3(t)(ξ1−ξ2)}}

(39a)

u∗2 = min{φmax,max{10,
1

B2

S2(t)[εC(t)+ I(t)]2

i20N2(t)+S2(t)[εC(t)+ I(t)]2
[(ξ1−ξ5)S(t)+(ξ2−ξ5)Se(t)]}}

(39b)

The Hamiltonian with respect to the controls u3 and u4 are linear. Taking partial deriva-

tives of the Hamiltonian with respect to these controls, we get

∂H
∂u3

= B3C−C(ξ3−ξ5),(40a)

∂H
∂u4

= B4I− I(ξ4−ξ5).(40b)

In these expressions, we have no information about the controls that minimize the sys-

tem. So we have either Bang-Bang controls or singular controls. Now define the switch-

ing functions

ψ3(t) = B3C(t)−C(t)(ξ3(t)−ξ5(t)), and(41a)

ψ4(t) = B4I(t)− I(t)(ξ4(t)−ξ5(t)).(41b)

In this case the characterization of ui, i = 3,4 is given

(42) u∗i (t) =


0 if ψi(t)> 0,

? if ψi(t) = 0,

δmax−δ0,ρmax−ρ0 if ψi(t)< 0,

for i = 3,4.

a. If ψi(t) = 0 cannot be sustained over an interval of time, but occurs only at finitely

many points, then the control u∗i , i = 3,4 is referred as bang-bang.

b. If ψi(t) = 0 for some interval of time, we say control u∗i , i = 3,4 is singular on that

interval.
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Differentiating (41a) with respect to t twice and substituting values of C,ξ3,ξ5, and

their corresponding derivatives gives an expression involving u3. Solving for u3 we have

(43) u3(t) =
f1(t)

f2(t)+ f3(t)
,

where f1, f2 and f3 are functions of states and adjoint functions as given in Appendix

A.

Differentiating the fourth equation of (41b) with respect to t twice and substituting

values of I,ξ4,ξ5, and their corresponding derivatives gives an expression involving u4.

Solving for u4 we have

(44) u4(t) =
g1(t)

g2(t)+g3(t)
,

where g1,g2 and g3 are functions of states and adjoint functions as given in Appendix

B.

Now let

temp3 = u3 and temp4 = u4

from equations (43) and (44). Then, the characterizations of the two controls u3 and u4

are given by

(45a) u∗3(t) =


0 if ψ3(t)> 0,

temp3 if ψ3(t) = 0,

δmax−δ0 if ψ3(t)< 0,

(45b) u∗4(t) =


0 if ψ4(t)> 0,

temp4 if ψ4(t) = 0,

ρmax−ρ0 if ψ4(t)< 0,

Since the model functions are convex with respect to the control variables, and due to a priori

boundedness of the state and adjoint (or co-state) functions the optimal solution so obtained is

unique for small time t f (cf. Fister et al. 1998 [15]; Gaff and Schaefer 2009[18]).
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4. NUMERICAL RESULTS AND SIMULATIONS

In this section, first we want to see the effects of some of the parameters without applying any

control interventions. Then we see the effect of the control functions on the disease dynamics

by performing numerical simulations. For the first case we solve the model system (7) with

initial population using the Runge-Kutta method of fourth-order. For the second case we solve

the optimality system which is the state and adjoint systems coupled with the optimal control

characterization numerically using the forward-backward sweep method [27]. Using the initial

values of the population and the set of parameter values described in Table 2, we integrated

the model system (20) numerically applying the classical Runge-Kutta method of fourth-order.

Starting with an initial guess for the control, the state system is solved forward in time. Using

those new state values, the adjoint system is solved backward in time. The control is updated

using a convex combination of the old control values and the new control values from the

characterization. The linear controls are determined whether they are bang-bang or singular

controls. The iterative method is repeated until convergence. All our numerical simulations are

performed using the MATLAB software.

We use the parameter values given in Table 2.

For numerical simulations we use as initial conditions S(0)= 800,Se(0)= 300,C(0)= 50, I(0)=

40, and R(0) = 10 and the associated costs A1 = 3,A2 = 2,B1 = 500,B2 = 4,B3 = 80,B4 = 40.

In addition, the maximum proportion of the population to be convinced to take part in perma-

nent self protective actions against the disease is taken to be αmax = 95% (of the susceptible

population), the maximum rate of vaccine coverage is assumed to be φmax = 95% (of both the

susceptible and susceptible educated individuals) and the maximum rate of recovery of the car-

riers δmax = 80% while the maximum rate of recovery of the infected groups is assumed to be

ρmax = 95%.

4.1. Effect of parameters without controls. To see how the change in a parameter affects

the system dynamics it is possible to take two different values and simulate it. For example, we

want to see the effect of the contact rate, c, which is involved in the expression of R0. Taking

two different values of c, the smaller the contact rate gives the smaller expansion of the disease

as given in Figure 1. In Figure 1a with contact rate c = 1.5 gives R0 = 0.9079 < 1, and is
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Parameter Description Values Sources

Λ The inflow rate of susceptible individuals 100 [2]

α0 Current rate of dissemination of information about the disease 0.18 [25]

m Rate of negligence or memory decay 0.3 Assumed

φ10 Current rate of vaccine for susceptible 0.3 [1, 2]

φ20 Current rate of vaccine for educated susceptible 0.4 [1, 2]

ω Rate of immunity loss 0.63178 [12]

η Proportion of recovered group to become susceptible. 0.4 Assumed

κ Proportion of infected susceptibles to become carriers 0.5 Assumed

ι Proportion of infected educated susceptibles to become carriers 0.6 Assumed

c Average number of contacts per person per unit time 3.5 Assumed

β Transmission rate (or rate of infection) 0.12 Assumed

σ Rate of progressing from carrier to symptomatic class 0.37384 [12]

γ Average rate of failure of existing self-preventive measures 0.3 Assumed

δ0 Current recovery rate of carriers 0.29966 [12]

ρ0 Current rate of recovery of the symptomatic individuals 0.0010959 [12]

µ Per-capita natural mortality rate for all classes 0.027397 [12]

d Additional death rate due to the disease 0.1 [2]

ε Rate of infectiousness of a carrier individual 1.3 Assumed

TABLE 2. Description of constant parameters used in the model (20).

expected to lead to a possible eradication of the disease. Figure 1b is for states with contact rate

c = 4.5 and gives R0 = 2.7238 > 1 and the disease becomes endemic.

Figure 2 shows the prevalence, I/N and incidence, λS of the disease with two different values

of the contact rates c = 1.5 and c = 4.5. This shows for a smaller value of c a better reduction

of the prevalence and the incidence of the disease.

Figure 3 shows the prevalence and incidence with two different values of the vaccination

rates φ10 = 0.1,φ20 = 0.1 and φ10 = 0.5,φ20 = 0.7. This indicates that increasing the rate of

vaccination reduces the prevalence and the incidence of the disease, as expected.
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(A) states with small contact rate c=1.5 (B) states with big contact rate c=4.5

FIGURE 1. Time profile of the individuals as predicted by model system (7)

with small and big contact rates, c, and the remaining parameter values are as

given in Table 2. Figure 1a is for states with contact rate c = 1.5 and gives

R0 = 0.9079 < 1. Figure 1b is for states with contact rate c = 4.5 and gives

R0 = 2.7238 > 1.

(A) Prevalence with big and small contacts (B) Incidence with big and small contacts

FIGURE 2. The graphs of prevalence and incidence with big and small contact

rates, c, and other parameter values are as given in Table 2. Figure 2a is for the

prevalence with contact rates c = 1.5 and c = 4.5 Figure 2b is for the incidence

with contact rates c = 1.5 and c = 4.5

At last we want to see the effect of treating infectious individuals both carriers and sympto-

matic groups. In addition to helping these groups recover from meningitis, treatment reduces

their mean infectiousness period. It can be seen from Figure 4 that increasing the rate of treat-

ment to a higher proportion of the infectious individuals decreases the prevalence of meningitis.
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(A) Prevalence with big and small vaccination rates (B) Incidence with big and small vaccination rates

FIGURE 3. The graph of prevalence and incidence with big and small vac-

cination rates, where the remaining parameter values are as given in Table

2. Figure 3a is for the prevalence with vaccination rates φ10 = 0.1,φ20 = 0.1

and φ10 = 0.5,φ20 = 0.7 Figure 3b is for the incidence with vaccination rates

φ10 = 0.1,φ20 = 0.1 and φ10 = 0.5,φ20 = 0.7

FIGURE 4. The graph of the prevalence of the the disease with different treat-

ment rates. The remaining parameter values are as given in Table 2.

4.2. Effect of controls on the disease transmission. For a better control of the disease and to

reduce its prevalence we have already introduced the intervention mechanisms called controls.
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To see the influence of these intervention mechanisms on the system dynamics we simulate

using the parameter values in Table 2 and initial conditions for states and the adjustment co-

efficients. We first used all controls (u1,u2,u3,u4) simultaneously to optimize the objective

function J, second, we set all controls to zero and to optimize J. As it is given in Figure 5 one

can see how much the infectious groups decrease with addition of controls.
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FIGURE 5. The graphs of prevalence (5a) and incidence (5b) with all controls

(solid lines) and without controls (dashed lines) in various cases of the controls.

The parameter values are as given in Table 2.

Next, we want to see the effects of the different combination of control mechanisms indepen-

dently. In addition to the all and no addition of control, we set the controls u2,u3,u4 to zero and

optimize the objective function J over the control u1, we set the controls u1,u3,u4 to zero and

optimize the objective function J over the control u2 and taking treatment controls u3,u4 setting

u1,u2 to zero and optimize the objective function J over the control u3,u4. We also estimate the

cost of managing the disease with these different cases. This will help us to compare the benefit

of applying the control measures in terms of reducing both the disease and economic burden on

the population because of the epidemic.

Figure 6 shows the effects of the controls Education (u1), Vaccination (u2) and treatments

(u3,u4) applying independently on the prevalence 6a, incidence 6b of the diseases and the corre-

sponding cost 6c. We can observe that the prevalence and incidence of the disease increases and

stays very high if there is no additional control measure employed. In addition, if the strategy
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(A) The Prevalence (B) Incidence

(C) Marginal cost

FIGURE 6. The variation of the prevalence of the disease, the incidence and the

graph of the marginal cost of the interventions (per day) in various cases of the

controls with parameter values as given in Table 2.

focusses only on prevention education with no additional effort is made to treat more infec-

tious people, the result is better than the no-control strategy but has slightly less effect on the

prevalence than the vaccination strategy. We can also see that treatment is the best preventive

control of meningitis as compared to vaccination and education. The corresponding values of

the marginal costs are drawn in Figure 6c.

When all the control efforts are put together, the resulting optimal control values and the

corresponding states are shown in Figure 7. Figure 7a gives the graphs of optimal controls

and Figure 7b is the variation of sizes of the five classes of the population when all controls

are employed simultaneously. When we apply all interventions simultaneously and optimally,
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(A) Optimal Controls (B) States with all controls

FIGURE 7. The graphs of optimal control values and the variation of sizes of

the states when all controls are employed simultaneously with parameter values

as given in Table 2.

the count for carriers and infected individuals falls rapidly with an increase of the susceptible

groups as shown in Figure 7b. For example, addition of all controls gives around 98% decrease

in the cumulative carrier groups within 119 days as seen in Figure 5a. In this case the optimal

controls suggest that educating people and convincing them to participate in self protective

schemes and apply treatment controls starting with their maximal possible values will result in

best health and economic benefit to the community. However, the time profile for vaccination

control starts with minimum intensity and rises and at last comes to its minimum value. There

is around a 40% decrease in disease management cost using all optimal controls than applying

no control within 30 days.

5. COST-EFFECTIVENESS ANALYSIS

In this section, we want to identify a strategy which is cost-effective compared to other strate-

gies in applying the different controls. Since different combinations of the controls results in

different outcome in the disease dynamics, as can be seen in Figure 8, we need to investigate the

cost-effectiveness of each combination. To this effect, we use the incremental cost-effectiveness

ratio (ICER) as given in [37], which is done by dividing the difference of costs between two

strategies to the difference of the total number of their infections averted. The total cost of each

strategy can be taken as the corresponding total cost, J values and to estimate the total number of
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the infections averted we take the corresponding total of carriers C and infected (symptomatic)

groups I. That is, as it is indicated in [1, 37], we consider the formula

ICER =
Difference in costs between strategies

Difference in health effects between strategies
,

which helps to rank the suggested strategies in terms of their cost and health benefits.
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FIGURE 8. The graphs of carriers (8a) and infected groups (8b) for different

strategies. The parameter values are as given in Table 2 with A1 = 3;A2 = 2;B1=

50;B2 = 1;B3 = 80;B4 = 60.

The following are the proposed strategies.

• Strategy (a): Treating both carriers (C) and infected (symptomatic) (I) groups.

• Strategy (b): Vaccination and treating only the infected (symptomatic) (I) groups.

• Strategy (c): Education and vaccination.

• Strategy (d): Education, vaccination and treating both carriers (C) and infected (symp-

tomatic) (I) groups.

Table 3 gives the number of infections averted and total costs of each strategy.

To determine the cost effective strategy according to the ICER, we first perform pairwise

comparison and order them according to their decreasing ICER values. To this end, first we

compare the cost-effectiveness of strategies (a) and (b):

ICER(a) =
7789700
3476600

= 2.24060864062589,

ICER(b) =
7789700−1.7725
3476600−0.7912

= 2.24060864070.
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Strategy Description Total infections

averted Total cost

(a) Treating both carriers (C) and infected (I) groups. 3476600 7789700

(b) Vaccination and treating only the infected (I) 0.7912 1.7725

groups.

(c) Education and vaccination. 91.7007 193.9752

(d) Education,vaccination and treating all. 3667300 8218500

TABLE 3. Number of infections averted and total costs of each strategy.

This shows that strategy (b) is slightly cheaper than strategy (a) by saving 2.24060864070.

Which means strategy (b) is better than strategy (a). Excluding strategy (a) and comparing

strategies (b) and (c), we have the following.

ICER(b) =
1.7725
0.7912

= 2.240267947421638,

ICER(c) =
1.7725−193.9752
0.7912−91.7007

= 2.1142201860.

This gives strategy (c) is better than strategy (b). Excluding strategy (b) and comparing strate-

gies (c) and (d), we have the following.

ICER(c) =
193.9752
91.7007

= 2.11530773483735,

ICER(d) =
193.9752−8218500
91.7007−3667300

= 2.241025148849.

Which means that strategy (c) is still cheaper than strategy (d).

Therefore, from the pairwise comparisons we can conclude that strategy (c), education and

vaccination is the most cost-effective strategy from all the four strategies suggested.

6. CONCLUDING REMARKS

In this paper, we formulated and presented behaviour dependent mathematical model of

meningococcal meningitis. The self protection action is considered to be incident dependent

and vaccination is also considered as information driven. We have seen that decreasing the
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contact rate, treating the infectious groups and increasing the rate of vaccination reduces the

prevalence of the disease.

Moreover, we applied optimal control method to the mathematical model of meningitis tak-

ing education, vaccination and treatment as control factors. This is used in making decisions

about optimally allocating efforts to slow down the epidemic with an information educational

campaign, vaccination and treatment. We found that taking all controls better reduces the preva-

lence and incidence of the disease than without controls. Education campaigns, vaccination and

treatment are important options for the disease management. Our simulations indicate that

treatment is the best strategy to decrease the transmission of the disease than vaccination and

education. In general, we recommend to the health policy makers

i. to teach people to take vaccination of meningitis and to decrease the contact rate with

those who are infectious as it decreases the prevalence of the disease.

ii. to consider and use all the intervention mechanisms optimally to decrease the prevalence

and incidence of meningitis.

iii. in an area with limited resources, it is advisable to give emphasis on the treatment con-

trol method for a short gain in public health.

iv. to educate and vaccinate the population as it is the best cost-effective strategy to control

and prevent meningitis.

ACKNOWLEDGEMENTS

The authors would like to thank the two anonymous referees of this journal from whom we

received valuable comments and suggestions to improve the earlier version of the manuscript.

Yetwale Hailu Workineh acknowledges with thanks the support he received during the prepa-

ration of this manuscript from the International Science Program (ISP) of Sweden, through the

project at the Department of Mathematics, Addis Ababa University, Ethiopia.



OPTIMAL CONTROL OF THE SPREAD OF MENINGITIS 37

APPENDIX A. BANG-BANG CONTROL u3

(46) u3(t) =
f1(t)

f2(t)+ f3(t)
,

where

f1 =(ξ5 +B3)[κcβε
CS
N

+ ιγcβ
CSe

N
]−B3(δ0 +σ +µ)C

+[(ξ3−ξ5)−B3][κcβ
εIS
N

+ ιγcβ
εISe

N
]+ (ξ4−ξ5)σC

+A1C

−{ 2ε(εC+ I)i2N2

[i2N2 +S2(εC+ I)2]2
C}

[(α0 +u1)S3(ξ1−ξ2)+(φ10 +u2)S3(ξ1−ξ5)+(φ20 +u2)S2Se(ξ2−ξ5)]

−{2ε2i2N2[i2N2−3S2(εC+ I)2]

[i2N2 +S2(εC+ I)2]3
}

[(α0 +u1)S3C2(ξ1−ξ2)+(φ10 +u2)S3C2(ξ1−ξ5)+(φ20 +u2)S2SeC2(ξ2−ξ5)]

− [cβε
S
N
(ξ1− (1−κ)ξ4)+ γcβε

Se

N
(ξ2− (1− ι)ξ4)+ω(ηξ1 +(1−η)ξ2−ξ5)]C,

f2 = [(B3 +ξ5)κcβε
S
N [κcβ

(εC+I)S
N + ιγcβ

(εC+I)Se
N − (δ0 +σ +µ)C]

+(B3 +ξ5)κcβ
(I′S+(εC+I)S′)N−(εC+I)S(Λ−µN−dI)

N2

[(B3 +ξ5)ιγcβε
Se
N [κcβ

(εC+I)S
N + ιγcβ

(εC+I)Se
N − (δ0 +σ +µ)C]

+(B3 +ξ5)ιγcβ
(I′Se+(εC+I)S′e)N−(εC+I)Se(Λ−µN−dI)

N2

−B3(δ0 +σ +µ)[κcβ
(εC+I)S

N + ιγcβ
(εC+I)Se

N − (δ0 +σ +µ)C]

−[κcβ
IS
N + ιγcβ

ISe
N ]

{

−A1 +[
2ε(εC+ I)i20N2−2i20N[εC+ I]2

[i20N2 +S2[εC+ I]2]2
]

[(α0 +u1)S3(ξ1−ξ2)+(φ10 +u2)S3(ξ1−ξ5)+(φ20 +u2)S2Se(ξ2−ξ5)]

+[cβS εN−(εC+I)
N2 ][ξ1−κξ3− (1−κ)ξ4]

+[cβγSe
εN−(εC+I)

N2 ][ξ2− ιξ3− (1− ι)ξ4]

+δ0(ξ3−ξ5)+σ(ξ3−ξ4)+µξ3}
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f3 =−ξ3[κcβ
(I′S+IS′)N−IS(Λ−µN−dI))

N2 + ιγcβ
(I′Se+IS′e)N−ISe(Λ−µN−dI))

N2 ]

+ξ ′5[κcβ
εC+I

N S+ ιγcβ
εC+I

N Se−σC]

+(ξ4−ξ5)σ [κcβ
(εC+I)S

N + ιγcβ
(εC+I)Se

N − (δ0 +σ +µ)C]

+[κcβ
(εC+I)S

N + ιγcβ
(εC+I)Se

N − (δ0 +σ +µ)C]

{ A1− 2ε(εC+I)i2N2C
[i2N2+S2(εC+I)2]2

[(α0 +u1)S3(ξ1−ξ2)+(φ10 +u2)S3(ξ1−ξ5)+(φ20 +u2)S2Se(ξ2−ξ5)] }

− 2ε(εC+I)i2N2C
[i2N2+S2(εC+I)2]2

{ (α0 +u1)[3S2(ξ1−ξ2)S′+S3(ξ ′1−ξ ′2)]

+(φ10 +u2)[3S2(ξ1−ξ5)S′+S3(ξ ′1−ξ ′5)]

+(φ20 +u2)[2SSe(ξ2−ξ5)S′+S2S′e(ξ2−ξ5)+S2Se(ξ
′
2−ξ ′5)]}

−[(α0 +u1)S3C(ξ1−ξ2)+(φ10 +u2)S3C(ξ1−ξ5)+(φ20 +u2)S2SeC(ξ2−ξ5)]
[2εi2N2I′+4ε(εC+ I)i2N(Λ−µN−dI)[i2N2 +S2(εC+ I)2]
− [2i2N(Λ−µN−dI)+2SS′(εC+ I)2 +2S2(εC+ I)I′]4ε(εC+ I)i2N2][

i2N2 +S2(εC+ I)2]3


−[(α0 +u1)S3C(ξ1−ξ2)+(φ10 +u2)S3C(ξ1−ξ5)+(φ20 +u2)S2SeC(ξ2−ξ5)]

{2ε2i2N2[i2N2+S2(εC+I)2]−8ε2i2N2S2(εC+I)2

[i2N2+S2(εC+I)2]3
]}[κcβ

(εC+I)S
N + ιγcβ

(εC+I)Se
N

−(δ0 +σ +µ)C]

−cβε
S′CN−SC(Λ−µN−dI)

N2 [ξ1− (1−κ)ξ4]

−cβε
SC
N [ξ ′1− (1−κ)ξ ′4]

−cβγε
S′eCN−SeC(Λ−µN−dI)

N2 [ξ2− (1− ι)ξ4]

−cβγε
SeC
N [ξ ′2− (1− ι)ξ ′4]

+σξ ′4C

−ω(ηξ ′1 +(1−η)ξ ′2−ξ ′5)C

−{cβε
S
N [ξ1− (1−κ)ξ4]+ cβγε

Se
N [ξ2− (1− ι)ξ4)+ω(ηξ1 +(1−η)ξ2−ξ5)}

{κcβ
(εC+I)S

N + ιγcβ
(εC+I)Se

N − (δ0 +σ +µ)C}.
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APPENDIX B. BANG-BANG CONTROL u4

(47) u4(t) =
g1(t)

g2(t)+g3(t)
,

where

g1 =(ξ5 +B4)[(1−κ)cβ
IS
N

+(1− ι)γcβ
ISe

N
]−B4(ρ0 +d +µ)I

+[(ξ4−ξ5)−B4][(1−κ)cβ
εCS
N

+(1− ι)γcβ
εCSe

N
+σC]

+A2I

−{ [2(εC+ I)i2N2

[i2N2 +S2(εC+ I)2]2
}

[(α0 +u1)S3I(ξ1−ξ2)+(φ10 +u2)S3I(ξ1−ξ5)+(φ20 +u2)S3I(ξ2−ξ5)]

−{2i2N2(i2N2−3S2(εC+ I)2)I
[i2N2 +S2(εC+ I)2]3

}

[(α0 +u1)S3I(ξ1−ξ2)+(φ10 +u2)S3I(ξ1−ξ5)+(φ20 +u2)S3I(ξ2−ξ5)]

− [cβ
S
N
(ξ1−κξ3)+ γcβ

Se

N
(ξ2− ιξ3)+ω(ηξ1 +(1−η)ξ2−ξ5]I,

g2 = (B4 +ξ5)(1−κ)cβ
S
N [(1−κ)cβ

(εC+I)S
N +(1− ι)γcβ

(εC+I)Se
N +σC− (ρ0 +d +µ)I]

+(B4 +ξ5)(1−κ)cβ
(εC′S+(εC+I)S′)N−(εC+I)S(Λ−µN−dI)

N2

+(B4 +ξ5)(1− ι)γcβ
Se
N [(1−κ)cβ

(εC+I)S
N +(1− ι)γcβ

(εC+I)Se
N +σC− (ρ0 +d +µ)I]

+(B4 +ξ5)(1− ι)γcβ
(εC′Se+(εC+I)S′e)N−(εC+I)Se(Λ−µN−dI)

N2

+(B4 +ξ5)σC′

−B4(ρ0 +d +µ)[(1−κ)cβ
(εC+I)S

N +(1− ι)γcβ
(εC+I)Se

N +σC− (ρ0 +d +µ)I]

−[(1−κ)cβε
CS
N +(1− ι)γcβε

CSe
N +σC]

{

−A2 +[
2(εC+ I)i20N2−2i20N[εC+ I]2

[i20N2 +S2[εC+ I]2]2
]

[(α0 +u1)S3(ξ1−ξ2)+(φ10 +u2)S3(ξ1−ξ5)+(φ20 +u2)S2Se(ξ2−ξ5)]

+[cβ
N−(εC+I)

N2 ][ξ1S−κξ3S− (1−κ)ξ4S+ γξ2Se− ιγξ3Se− (1− ι)γξ4Se]

+ρ0(ξ4−ξ5)+(d +µ)ξ4}
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g3 =

−ξ4[(1−κ)cβε
(C′S+CS′)N−CS(Λ−µN−dI))

N2 +(1− ι)γcβ
(C′Se+CS′e)N−CSe(Λ−µN−dI))

N2 +σC′]

+ξ ′5[(1−κ)cβ
εC+I

N S+(1− ι)γcβ
εC+I

N Se +σC]

+[(1−κ)cβ
(εC+I)S

N +(1− ι)γcβ
(εC+I)Se

N +σC− (ρ0 +d +µ)I]

{ A2− 2(εC+I)i2N2

[i2N2+S2(εC+I)2]2

[(α0 +u1)S3(ξ1−ξ2)+(φ10 +u2)S3(ξ1−ξ5)+(φ20 +u2)S2Se(ξ2−ξ5)] }

− 2(εC+I)i2N2

[i2N2+S2(εC+I)2]2

{ (α0 +u1)[3S2(ξ1−ξ2)IS′+S3I(ξ ′1−ξ ′2)]

+(φ10 +u2)[3S2(ξ1−ξ5)IS′+S3I(ξ ′1−ξ ′5)]

+(φ20 +u2)[2SSe(ξ2−ξ5)IS′+S2S′eI(ξ2−ξ5)+S2SeI(ξ ′2−ξ ′5)]}

−[(α0 +u1)S3I(ξ1−ξ2)+(φ10 +u2)S3I(ξ1−ξ5)+(φ20 +u2)S2SeI(ξ2−ξ5)]
[2εi2N2C′+4(εC+ I)i2N(Λ−µN−dI)][i2N2 +S2(εC+ I)2]−8(εC+ I)i2N2i2N

(Λ−µN−dI)−8(εC+ I)3i2N2SS′−8(εC+ I)2i2N2S2(εC′)[
i2N2 +S2(εC+ I)2]3


−[(α0 +u1)S3I(ξ1−ξ2)+(φ10 +u2)S3I(ξ1−ξ5)+(φ20 +u2)S2SeI(ξ2−ξ5)]

[2i2N2(i2N2−3S2(εC+I)2)
[i2N2+S2(εC+I)2]3

][(1−κ)cβ
(εC+I)S

N +(1− ι)γcβ
(εC+I)Se

N +σC− (ρ0 +d +µ)I]

−cβ
S′IN−SI(Λ−µN−dI)

N2 [ξ1−κξ3]

−cβ
SI
N [ξ ′1−κξ ′3]

−cβγ
S′eIN−SeI(Λ−µN−dI)

N2 [ξ2− ιξ3]

−cβγ
SeI
N [ξ ′2− ιξ ′3]

−ω(ηξ ′1 +(1−η)ξ ′2−ξ ′5)I

−{cβ
S
N [ξ1−κξ3]+ cβγ

Se
N [ξ2− ιξ3)+ω(ηξ1 +(1−η)ξ2−ξ5}

{(1−κ)cβ
(εC+I)S

N +(1− ι)γcβ
(εC+I)Se

N +σC− (ρ0 +d +µ)I}.
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