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Abstract. In this work, we propose a Susceptible-Exposed-Infected-Recovered (SEIR) spatiotemporal model

that characterizes the dynamics of tuberculosis disease by taking into consideration the spatial heterogeneity;

in order to provide a realistic description of this disease. Based on an existing model, we add the Laplacian

term in each class to describe the spatial mobility of its individuals, which led us to a SEIR reaction-diffusion

system. Then, controls with treatment and chemoprophylaxis are incorporated to reduce the latently infected

(exposed) and actively infected individual populations to fight against the spread of the disease. Theoretically

the existence, positivity and boundness of state systems have been proved, also the existence of controls has

been shown, and a characterization of the controls in terms of the state functions and the adjoint functions has

been provided. To illustrate the effectiveness of our theoretical results, we give numerical simulations for several

scenarios. Our results indicate that the control effect is effective if both control strategies controls on treatment and

chemoprophylaxis strategies are used simultaneously.
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1. INTRODUCTION

Tuberculosis (abbreviated TB) is a common infectious disease caused by Mycobacterium tu-

berculosis bacteria (Mtb). It mainly attacks the lungs (for pulmonary tuberculosis). Moreover,

tuberculosis could affect the central nervous system, the circulatory system, the urinary-genital

system, the bones, the joints, and even the skin. Tuberculosis could be spread through coughing,

sneezing, kissing, through spitting of people who have pulmonary tuberculosis, as well as the

use of non-sterilized utensils (plates, water glasses) of an infected person. In rare cases, a preg-

nant woman with active tuberculosis can infect the fetus ([22]). On the one hand, this disease

can only be spread through people who are infected with the active tuberculosis virus; on the

other hand, the ones with an inactive tuberculosis virus cannot infect others. The spread of the

virus from an infected person to another depending on the number of droplets contaminated and

expelled by the patient, the aeration of the environment, the exposure time to the contaminating

virus and the virulence of the Mycobacterium tuberculosis (Mtb) strain. Stopping the spreading

of this disease could be done by isolating (putting in quarantine) the infected patients and by

the effective commencement of the anti-tuberculosis treatment ([4, 11, 29, 22]). Lately, about

95% of 8 million new (TB) cases each year are recorded in the developing countries, in which

80 of the cases are recorded on people aged 19 to 59 years old ([22]).

As a matter of fact, mathematical models, especially compartmental models, have played an

essential role in fighting against infectious diseases since their birth by Kermack 1927. Several

infectious diseases have been modeled using compartmental mathematical models, particularly

tuberculosis ([5, 14, 15, 30, 6, 13, 8]), these works have modeled the dynamics of this disease in

several regions of the world. In the work ([1]) authors give a SEIR model based on some previ-

ous works, in their model they consider the aspects of exogenous reinfection, disease relapse as

well as primary active (TB) cases and natural recovery, and they incorporate chemoprophylaxis.

The results already mentioned neglected the spatial effect on the spread of the disease, statistics

in the world ([16, 27]) and particularly in Morocco ([25]) have shown that there are high-risk

and low-risk regions, from this remark and based on previous works ([32, 9, 17, 18, 26]), where

authors have introduced models that take into consideration the spatial effect on the spread of
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diseases using partial differential equations, we added to the model of ([3]) terms of spatial

diffusion in each equation in order to express the mobility of individuals in high-risk region.

Several types of interventions exist, vaccines and treatments, one treatment given to latent

people (chemoprophylaxis) and another concerns infectious individuals. In this work, we con-

sider (spatiotemporal) optimal control strategy associated with chemoprophylaxis and treatment

of latently and actively infected individuals with (TB). Also, many researches have focused on

this topic and other related topics [33, 34]. The theory of optimal control is a branch of mathe-

matics used to act and control the dynamical systems, in the literature several works applied this

theory to fight against tuberculosis using ODE models ([5, 12, 14, 19, 20, 15, 8]). In this work,

we will extend this method to a PDE’s model using the variational approach. Optimal con-

trol techniques are used to characterize a pair of optimal controls in terms of state and adjoint

functions. The optimality system is solved numerically based on a discrete iterative scheme that

converges following an appropriate test related to the forward-backward sweep method (FBSM)

([21]). Numerical simulations show that the control effect is effective if chemoprophylaxis and

treatment strategies are used simultaneously.

The structure of the present paper is as follows : Section 2 is devoted to the basic mathemat-

ical model and the associated optimal control problem. In Section 3, we prove the existence

of a strong global solution for our system. In Section 4, we prove the existence of an opti-

mal solution. Necessary optimality conditions are established in Section 5. As an application,

the numerical results associated with our control problem are given in section 6. Finally, we

conclude the paper in Section 7.

2. THE BASIC MATHEMATICAL MODEL

2.1. The model without controls. We shall consider the model of tuberculosis (TB) proposed

by C.P. Bhunu et al. ([3]), in this model the human population is divided into four compartments

: susceptible individuals ST , those exposed to (TB) ET (latently infected), those infected and

displaying symptoms of (TB) IT , and those who have recovered from sickness, RT . It is as-

sumed that susceptible humans are recruited into the population at per capita rate Λ. The total

variable population size at time t is given by, N(t) = ST (t)+ET (t)+ IT (t)+RT (t). Suscepti-

ble individuals acquire (TB) infection following contact with an active infectious individual at
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a rate λ =
βcIT

N
, β is the probability that one susceptible individual becomes infected by an

infectious individual, and c is the per capita contact rate. Susceptible individuals infected are

moved to latently infected class at a rate f λ , where f is the probability that an infected enters

the latent stage. The latently infected individuals move to active (TB) at rates k for endogenous

reactivation and δ1λ for exogenous re-infection respectively. Susceptible individuals infected

with (Mtb) progress to the infective class at a rate of (1− f )λ and represent the main active

cases (TB). When an individual is in the active stage of the disease, he may recover normally at

rate p and then moves in the recovered class RT (although they may contain certain live bacilli).

Individuals in RT are not fully immunized against (Mtb) infection and become infected at a rate

δ2λ and progress to ET , as primary infection provides certain immunity. Certain individuals

from RT become infected again at a rate of q. µ is the normal mortality rate in every class

supposed to be identical, there is a death because of disease, therefore individuals infected have

died at a rate d. Rates of treatment for individuals with latent infections and for the infectious

are supposed to be r1 and r2, respectively. The basic model of (TB) takes the following form:

(2.1)



∂ST

∂ t
= Λ −λST −µST ,

∂E
∂ t

= f λST −δ1λET − (µ + k+ r1)ET +δ2λRT ,

∂ IT

∂ t
= (1− f )λST +δ1λET + kET − (µ +d + p+ r2) IT +qRT , t ∈ [0,T ] ,

∂RT

∂ t
= r1ET +(p+ r2) IT − (µ +q)RT −δ2λRT .

As mentioned above in the introduction, statistics showed that in several regions in the world,

the spatial factor plays a major role in the transmission and the propagation of the disease, this

lead us to think to introduce in our model (2.1) terms that express the spatial effect. Based

on several previous works who have adopted this approach in several similar cases ([32, 9,

17, 18, 26]) using PDE’s, we choose to integrate the ordinary spatial diffusion term in each

compartments ST , ET , IT , RT , in order to describe the mobility of the population. Let Ω be a
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fixed and bounded domain in R2 with smooth boundary ∂Ω and η is the outward unit normal

vector on the boundary. The time belongs to a finite interval [0,T ], while x varies in a bounded

domain Ω, the system (2.1) becomes:

(2.2)

∂ST

∂ t
−α1∆ST = Λ −λST −µST ,

∂ET

∂ t
−α2∆ET = f λST −δ1λET − (µ + k+ r1)ET +δ2λRT ,

∂ IT

∂ t
−α3∆IT = (1− f )λST +δ1λET + kET − (µ +d + p+ r2) IT +qRT , (t,x) ∈ Q = [0,T ]×Ω,

∂RT

∂ t
−α4∆RT = r1ET +(p+ r2) IT − (µ +q)RT −δ2λRT .

The positive constants α1, α2, α3, and α4 denote the corresponding diffusion for the susceptible

population, exposed population, infected population and recovered population, respectively.

Initial conditions and no-flux boundary conditions are given by

(2.3)
∂ST

∂η
=

∂ET

∂η
=

∂ IT

∂η
=

∂RT

∂η
= 0 , (t,x) ∈ Σ = [0,T ]×∂Ω

(2.4) ST (0,x) = S0
T , ET (0,x) = E0

T , IT (0,x) = I0
T , and RT (0,x) = R0

T (t,x) , x ∈Ω

With the aim of demonstrating the impact of spatial factor, and mobility contribution to tuber-

culosis transmission, we present a simulation of our model over a 5-year period ([15, 10, 28]),

for further information on the values of the parameters and numerical approach see paragraph 6

named (Numerical results). Figures 1, 2, 3, and 4 present the numerical results for the numbers

of susceptible, exposed, infected, and recovered people, respectively. We consider two situa-

tions, in the first one the disease starts from the corner (1), and second one, the disease starts

from the middle (2). As can be seen, in both situations, individuals who are susceptible will be

exposed and after a period of incubation get infected, therefore spread the disease to reach the

whole population, however, the only difference between these two cases (1) and (2) is that the

disease spreads rapidly in the second case, which indicates the danger of the disease when it
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starts in the middle, which illustrates the significance of applying a spatial approach. Regarding

the class of recovered, there is a small number of recovered persons ( approximately 5 individ-

uals ).

The observations obtained in these simulations lead us to propose an adapted control strategy

taking these observations into account. The strategy proposed here is to introduce two controls,

the first being chemoprophylaxis to minimize the individual exposed (latently infected) and the

second being incorporated treatment to minimize the individual actively infected.

FIGURE 1. Susceptible behavior within Ω without control (Constant chemopro-

phylaxis and treatment). (1) Disease starts from the corner, (2) Disease starts

from the middle.

2.2. The model with controls. As mentioned in the last paragraph, the number of latently

infectious and infected people increases considerably, motivated by the work of ([1]), a strat-

egy of control is being introduced that involves two types of treatments, with the first ζ1(t,x)

representing the r1 chemoprophylaxis effort of individuals who are latently infected, in order to

minimize the number of individuals who are infected. Whereas the control ζ2(t,x) represents

the treatment effort r2 of individuals actively infected, to augment more recovered individuals.

Under these new hypotheses, we will obtain r1ζ1 individuals who will move from the class ET
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FIGURE 2. Exposed behavior within Ω without control (Constant chemopro-

phylaxis and treatment). (1) Disease starts from the corner, (2) Disease starts

from the middle.

FIGURE 3. Infected behavior within Ω without control (Constant chemoprophy-

laxis and treatment). (1) Disease starts from the corner, (2) Disease starts from

the middle.

(latently infected) to the recovered class RT , and r2ζ2 will move to the class RT from the class of

infected IT . Using the newly added changes, then our system with controls becomes as follows.
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FIGURE 4. Recovered behavior within Ω without control (Constant chemopro-

phylaxis and treatment). (1) Disease starts from the corner, (2) Disease starts

from the middle.

(2.5)

∂ST

∂ t
−α1∆ST = Λ −λST −µST ,

∂ET

∂ t
−α2∆ET = f λST −δ1λET − (µ + k+ r1ζ1 (t,x))ET +δ2λRT ,

∂ IT

∂ t
−α3∆IT = (1− f )λST +δ1λET + kET − (µ +d + p+ r2ζ2 (t,x)) IT +qRT , (t,x) ∈ Q,

∂RT

∂ t
−α4∆RT = r1ζ1 (t,x)ET +(p+ r2ζ2 (t,x)) IT − (µ +q)RT −δ2λRT .

Initial conditions and no-flux boundary conditions are given by

(2.6)
∂ST

∂η
=

∂ET

∂η
=

∂ IT

∂η
=

∂RT

∂η
= 0 (t,x) ∈ Σ

(2.7) ST (0,x) = S0
T , ET (0,x) = E0

T , IT (0,x) = I0
T , and RT (0,x) = R0

T , x ∈Ω
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The boundary conditions imply that the population does not diffuse across the boundary and we

define our objective functional as

(2.8)

J ((ST ,ET , IT ,RT ) ,(ζ1,ζ2))=
∫ T

0

∫
Ω

ρ1ET (t,x)+ρ2IT (t,x)dxdt+
η1

2
‖ζ1‖2

L2(Q)+
η2

2
‖ζ2‖2

L2(Q)

Subject to the state system given by (2.5-2.7). The objective of our work is to minimize the

infected population and the cost of implementing the control by using possible minimal control

variables ζi for i = 1,2. In the objective functional the quantity ρ1 and ρ2 represents the weight

constant of the latently infected population and actively infected population, respectively. η1

and η2 are weight constants for mechanisms on chemoprophylaxis control and treatment con-

trol, respectively. The terms
η1

2
‖ζ1‖2

L2(Q) and
η2

2
‖ζ2‖2

L2(Q) describe, the costs associated to the

mechanisms on chemoprophylaxis control and treatment control, respectively. The square of

the controls variables reflects the severity of the side effects of the mechanisms on chemopro-

phylaxis and treatment. Our objective is to find control functions such that

J((S∗T ,E
∗
T , I
∗
T ,R

∗
T );(ζ

∗
1 ,ζ

∗
2 )) = min{J ((ST ,ET , IT ,RT ) ,(ζ1,ζ2)) ,(ζ1,ζ2) ∈Uad}

Subject to system (2.5-2.7), where the control set is defined as

(2.9) Uad =
{
(ζ1,ζ2) ∈ (L∞ (Q))2 /0≤ ζ1 ≤ ζ

max
1 ≤ 1 and 0≤ ζ2 ≤ ζ

max
2 ≤ 1 a.e.(t,x) ∈ Q

}

For biological reasons, the following are assumed to hold:

ST (0,x) = S0
T > 0, ET (0,x) = E0

T ≥ 0, IT (0,x) = I0
T ≥ 0, and RT (0,x) = R0

T ≥ 0.

We put H (Ω) =
(
L2 (Ω)

)4, we denote by W 1,2 ([0,T ] ; H (Ω)) the space of all absolutely

continuous functions

y : [0,T ]→H (Ω) having the property that
∂y
∂ t
∈L2 (0,T ;H (Ω)), and L (T,Ω)=L2 (0,T ;H2(Ω)

)
∩

L∞
(
0,T ;H1 (Ω)

)
.
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3. EXISTENCE OF SOLUTION

As the model (2.5-2.7) describes the population for biological reasons, the population ST , ET ,

IT , and RT should remain non-negative and bounded. We study in this section the existence of a

global strong solution, positivity, and boundedness of solutions of problem for (2.5-2.7). Let y=

(y1,y2,y3,y4) = (ST ,ET , IT ,RT ) the solution of the system (2.5-2.7) with y0 =
(
y0

1,y
0
2,y

0
3,y

0
4
)
=(

S0
T ,E

0
T , I

0
T ,R

0
T
)
. A denotes the linear operator defined as follows

(3.1)
A : D(A)⊂ H (Ω)−→ H (Ω)

Ay = (α1∆y1,α2∆y2,α3∆y3,α4∆y4) ∈ D(A) ,∀y = (y1,y2,y3,y4) ∈ D(A)

With the domain of A is defined by

(3.2) D(A) =
{

y ∈
(
H2 (Ω)

)4
,
∂y1

∂η
=

∂y2

∂η
=

∂y3

∂η
=

∂y4

∂η
= 0, a.ex ∈ ∂Ω

}
Theorem 3.1. Let Ω be a bounded domain from T R2, with the boundary smooth enough, y0

i ≥

0 on Ω (for i = 1,2,3,4), the problem (2.5-2.7 ) has a unique (global) strong solution y ∈

W 1,2 ([0,T ] : H (Ω)) such that yi ∈L (T,Ω)∩L∞ (Q) for i= 1,2,3,4 . In addition y1, y2, y3 and

y4 are non-negative. Furthermore there exists C > 0 (independent of (ζ1,ζ2)) for all t ∈ [0,T ]

(3.3)
∥∥∥∥∂yi

∂ t

∥∥∥∥
L2(Q)

+‖yi‖L2(0,T ;H2(Ω)) +‖yi‖H1(Ω)+‖yi‖L∞(Q) ≤C, for i = 1,2,3,4

Proof. To prove the existence of a (global) strong solution for system (2.5-2.7), now we write

system (2.5-2.7) as shown in (((7.1)) see Appendix). Let

(3.4)



h1 (y(t)) = Λ − βcy3y1

N
−µy1

h2 (y(t)) = f
βcy3y1

N
−δ1

βcy3y2

N
− (µ + k+ r1ζ1 (t,x))y2 +δ2

βcy3y4

N
, t ∈ [0,T ]

h3 (y(t)) = (1− f )
βcy3y1

N
+δ1

βcy3y2

N
+ ky2− (µ +d + p+ r2ζ2 (t,x))y3 +qy4

h4 (y(t)) = r1ζ1 (t,x)y2 +(p+ r2ζ2 (t,x))y3− (µ +q)y4−δ2
βcy3y4

N
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The system (3.4) represent the nonlinear term of (2.5) and we consider the function

h(y(t)) = (h1 (y(t)) ,h2 (y(t)) ,h3 (y(t)) ,h4 (y(t))), then we can rewrite the system (2.5-2.7)

in H(Ω) as follows

(3.5)


∂y
∂ t

= Ay+h(y(t)) , t ∈ [0,T ]

y(0) = y0

Notice that the function h(t,y) defined in (3.5) are not Lipschitz continuous with respect to

y, uniformly for t ∈ [0,T ]. Therefore, we cannot apply Theorem (7.1) (see appendix) for our

problem directly.

Step 1: This step studies the local existence of positive solutions to system (2.5)-(2.7) in view

of Theorem (7.1) (see appendix). We use a truncation procedure for h. For a fixed positive inte-

ger k > 0, let us define the function sets D1 = {z/z > k}, D2 = {z/ |z|< k} ,D3 = {z/z <−k}

and consider the following auxiliary problem:
∂yk

∂ t
= Ayk +hk (t,yk (x, t)

)
, in Q,

yk (x,0) = y0, in Ω ,

where hk (t,yk) = (hk
1
(
t,yk) ,hk

2
(
t,yk) ,hk

3
(
t,yk) ,hk

4
(
t,yk)). Here, for each index i, hk

i
(
t,yk)

are defined as follows

hk
i

(
t,yk
)
= hi

(
t, [y1]Ds1

, [y2]Ds2
, [y3]Ds3

)
where [yi]Dsi

means that yi ∈ Dsi, and

[yi]Dsi
=


k i f si = 1,

yi i f si = 2,

−k i f si = 3.

As the operator A defined in (3.1-3.2) is dissipating, self-adjoint and generates a C0-semi-

group of contractions on H (Ω)([31]), it is clear that function hk (t,yk) becomes Lipschitz con-

tinuous in yk uniformly with respect to t ∈ [0,T ]. Therefore, theorem (7.1) (see appendix)

assures problem (2.5-2.7) admits a unique strong solution yk ∈W 1,2 ([0,T ] ,H (Ω)) with
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(3.6) yk
1, yk

2, yk
3, yk

4 ∈ L2 (0,T ;H2(Ω)
)

In order to show that yk
i ∈L∞ (Q) for i= 1, 2, 3, 4, we denote Mk =max

{∥∥hk
1

∥∥
L∞(Q)

,
∥∥y0

1

∥∥
L∞(Ω)

}
and {S (t) , t ≥ 0} is the C0-semi-group generated by the operator B : D(B) ⊂ L2 (Ω) −→

L2 (Ω), where Byk
1 = α1∆yk

1 and D(B) =
{

yk
1 ∈ H2 (Ω) ,

∂yk
1

∂η
= 0, a.e∂Ω

}
. It is clear that the

function Uk
1 (t,x) = yk

1−Mkt−
∥∥y0

1

∥∥
L∞(Ω)

satisfies the system

(3.7)


∂Uk

1
∂ t

(t,x) = α14Uk
1 +hk

1
(
t,yk (t)

)
−Mk , t ∈ [0,T ]

Uk
1 (0,x) = y0

1−
∥∥y0

1

∥∥
L∞(Ω)

Note that this system has a solution given by

Uk
1 (t) = S (t)(y0

1−
∥∥y0

1
∥∥

L∞(Ω)
)+

∫ t

0
S (t− s)(hk

1

(
s,yk (s)

)
−Mk)ds,

As y0
1−
∥∥y0

1

∥∥
L∞(Ω)

≤ 0 and hk
1 (t,y(t))−K ≤ 0, we have Uk

1 (t,x)≤ 0, ∀(t,x)∈Q. Similarly the

function Uk
2 (t,x) = yk

1 +Mkt +
∥∥y0

1

∥∥
L∞(Ω)

satisfies Uk
2 (t,x)≥ 0, ∀(t,x) ∈ Q. Then∣∣∣yk

1(t,x)
∣∣∣≤Mkt +

∥∥y0
1
∥∥

L∞(Ω)
, ∀(t,x) ∈ Q

and analogously, we have

(3.8)
∣∣∣yk

i (t,x)
∣∣∣≤Mkt +

∥∥y0
i
∥∥

L∞(Ω)
∀(t,x) ∈ Q f or i = 1,2,3,4

Thus we have proved that

(3.9) yk
i ∈ L∞(Q)∀(t,x) ∈ Q f or i = 1,2,3,4.

By the first equation of (2.5), we obtain

∫ t
0
∫

Ω

∣∣∣∣∂yk
1

∂ s

∣∣∣∣2 dsdx+α2
1
∫ t

0
∫

Ω

∣∣4yk
1

∣∣2 dsdx−2α1
∫ t

0
∫

Ω

∂yk
1

∂ s
4yk

1dsdx

=
∫ t

0
∫

Ω

(
Λ −

βcyk
3yk

1
N

−µyk
1

)2

dsdx

Using the regularity of yk
1 and the Green’s formula, we can write
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2
∫ t

0
∫

Ω

∂yk
1

∂ s
4yk

1dxds =−
∫

Ω

∣∣∇yk
1

∣∣2 dx+
∫

Ω

∣∣∇y0
1

∣∣2 dx

Then

∫ t
0
∫

Ω

∣∣∣∣∂yk
1

∂ s

∣∣∣∣2 dsdx+α2
1
∫ t

0
∫

Ω

∣∣4yk
1

∣∣2 dsdx+α1
∫

Ω

∣∣∇yk
1

∣∣2 dx−α1
∫

Ω

∣∣∇y0
1

∣∣2 dx

=
∫ t

0
∫

Ω

(
Λ −

βcyk
3yk

1
N

−µyk
1

)2

dsdx

Since
∥∥yk

i

∥∥
L∞(Q)

for i = 1,2,3,4 are bounded independently of (ζ1,ζ2) and y0
1 ∈ H2(Ω), we

deduce that

(3.10) yk
1 ∈ L∞

(
0,T ;H1 (Ω)

)
We make use of (3.6), (3.9), and (3.10), in order to get

yk
1 ∈L (T,Ω)∩L∞ (Q)

and concluding that the inequality in (3.3) holds for i = 1, similarly for yk
2, yk

3 and yk
4.

In ordre to show the positiveness of yk
i for i = 1,2,3,4, we write the system (2.5) in the form

(3.11)



∂yk
1

∂ t
= α14yk

1 +F1
(
yk

1,y
k
2,y

k
3,y

k
4
)

∂yk
2

∂ t
= α24yk

2 +F2
(
yk

1,y
k
2,y

k
3,y

k
4
)
, (t,x) ∈ Q

∂yk
3

∂ t
= α34yk

3 +F3
(
yk

1,y
k
2,y

k
3,y

k
4
)

∂yk
4

∂ t
= α44yk

4 +F4
(
yk

1,y
k
2,y

k
3,y

k
4
)

It is obvious to see that the functions F1
(
yk

1,y
k
2,y

k
3,y

k
4
)
, F2
(
yk

1,y
k
2,y

k
3,y

k
4
)
, F3
(
yk

1,y
k
2,y

k
3,y

k
4
)
, and

F4
(
yk

1,y
k
2,y

k
3,y

k
4
)

are continuously differentiable satisfying

F1
(
0,yk

2,y
k
3,y

k
4
)
= Λ ≥ 0, F2

(
yk

1,0,y
k
3,y

k
4
)
=

βcyk
3

N

(
f yk

1 +δ2yk
4
)
≥ 0,

F3
(
yk

1,y
k
2,0,y

k
4
)
= kyk

2 + qyk
4 ≥ 0, and F4

(
yk

1,y
k
2,y

k
3,0
)
= ζ1 (t,x)r1y2 +(p+ζ2 (t,x)r2)yk

3 ≥ 0,
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for all yk
1,y

k
2,y

k
3,y

k
4 ≥ 0. Since initial values of system (2.5) are non-negative, we deduce that

yk
1 (t,x)≥ 0, yk

2 (t,x)≥ 0, yk
3 (t,x)≥ 0, and yk

1 (t,x)≥ 0, ∀(t,x) ∈ Q (see ([24])).

Now we particularize k > 0 large enough such that

(3.12) Mkθ +
∥∥y0

i
∥∥

L∞(Ω)
≤ k, i = 1,2,3, for some θ ∈ [0,T ]

For example, we can take k > 2max
{∥∥y0

i

∥∥
L∞(Ω)

, i = 1,2,3,4
}

. Let θ ∈ (0,T ) be maximal

with property (3.12). By (3.8)-(3.12), it is clear that
∣∣yk

i (t,x)
∣∣ < k , for (t,x) ∈ [0,θ ]×Ω and

i = 1,2,3,4. So, hk(t,y1,y2,y3,y4) coincides with h(t,y1,y2,y3,y4) for(t,x) ∈ [0,θ ]×Ω , and

consequently yk =
(
yk

1,y
k
2,y

k
3,y

k
4
)

is a local solution for (2.5)-(2.7) defined on [0,θ ]×Ω .

Step 2. It remains to show that the above local positive solution of problem (2.5)-(2.7) is

in fact a global one in [0,θ ]×Ω . Indeed, it is sufficient to show the uniformly boundedness

of yi, i = 1,2,3,4, in [0,θ ]×Ω . To this end, we first introduce P = y1 + y2 + y3 + y4 then
∂P
∂ t

= α14y1 +α24y2 +α34y3 +α44y4 +Λ−µP , we have
∂P
∂ t
−d4P≤ Λ−µP with α =

4max{α1,α2,α3,α4} and 0<P(0,x)≤‖P(0,x)‖L∞(Ω). This leads to the estimate 0<P(t,x)≤

P(t), (t,x) ∈ [0,θ ]×Ω , where P(t) =
[

Λ

α
+
(∥∥P(0,x)

∥∥
L∞(Ω)

− Λ

α

)
e−tα

]
is the solution of the

problem 
∂P
∂ t

= Λ−µP,

P(0) = ‖P(0,x)‖L∞(Ω) .

Hence, we have 0 < P(t)≤ max
{
‖P(0,x)‖L∞(Ω) ,

Λ

α

}
for t ∈ [0,θ ] and thus

0 < P(t,x)≤ max
{
‖P(0,x)‖L∞(Ω) ,

Λ

α

}
.

Therefore, ‖P‖L∞([0,θ ]×Ω) ≤ mζ1 for some mζ1 > 0 independent of k and of v. Next, we can

deduce the boundedness of y1, y2, y3 and y4 on [0,θ ]×Ω . Consequently, yi are defined on the

whole set Q (and also positive and bounded). Thus (y1,y2,y3,y4) is a global positive strong

solution of system (2.5)-(2.7) and it satisfies (3.3). This completes the proof.

�
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4. THE EXISTENCE OF THE OPTIMAL SOLUTION

In this section, we will prove the existence of an optimal control for the problem (2.8) subject

to reaction diffusion system (2.5-2.7) and (ζ1,ζ2) ∈Uad . The main result of this section is the

following theorem.

Theorem 4.1. Under the hypotheses of theorem (3.1), the optimal control problem (2.5-2.7)

admits an optimal solution (y∗,(ζ ∗1 ,ζ
∗
2 )).

Proof. From Theorem 3.1, we know that, ζ1, ζ2, y1, y2, y3, and y4 are bounded uniformly in

L∞ (Q), J is finite. Let
(
ζ n

1 ,ζ
n
2
)
∈Uad be a minimizing sequence such that

limn→∝J(yn,(ζ n
1 ,ζ

n
2 )) = in f(ζ1,ζ2)∈Uad

J (y,(ζ1,ζ2))

where
(
yn

1,y
n
2,y

n
3,y

n
4
)

is the solution of system (2.5-2.7) corresponding to the control
(
ζ n

1 ,ζ
n
2
)

for n = 1,2, .... That is

(4.1)

∂yn
1

∂ t
= α1∆yn

1 +Λ −
βcyn

3yn
1

Nn −µyn
1

∂yn
2

∂ t
= α2∆yn

2 + f
βcyn

3yn
1

Nn −δ1
βcyn

3yn
2

Nn −
(
µ + k+ r1ζ n

1 (t,x)
)

yn
2 +δ2

βcyn
3yn

4
Nn , (t,x) ∈ Q

∂yn
3

∂ t
= α3∆yn

3 +(1− f )
βcyn

3yn
1

Nn +δ1
βcyn

3yn
2

Nn + ky2−
(
µ +d + p+ r2ζ n

2 (t,x)
)

y2 +qyn
4

∂yn
4

∂ t
= α4∆yn

4 + r1ζ n
1 (t,x)yn

2 +
(

p+ r2ζ n
2 (t,x)

)
yn

3− (µ +q)yn
4−δ2

βcyn
3yn

4
Nn

∂yn
1

∂η
=

∂yn
2

∂η
=

∂yn
3

∂η
=

∂yn
4

∂η
= 0 (t,x) ∈ Σ(t,x) ∈ Σ(4.2)

yn
i (0,x) = y0

i f or i = 1,2,3,4 x ∈Ω(4.3)
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By theorem (3.1) using the estimate (3.3) of the solution yn
i , there exists a constant C > 0 such

that for all n≥ 1, t ∈ [0,T ]

(4.4)
∥∥∥∥∂yn

i
∂ t

∥∥∥∥
L2(Q)

≤C, ‖yn
i ‖L2(0,T ;H2(Ω)) ≤C, ‖yn

i ‖H1(Ω) ≤C, i = 1,2,3,4

H1 (Ω) is compactly embedded in L2 (Ω), so we deduce that yn
1 (t) is compact in L2 (Ω). Let’s

Show that
{

yn
1 (t) ,n≥ 1

}
is equicontinuous in C

(
[0,T ] : L2 (Ω)

)
. As

∂yn
1

∂ t
is bounded in L2 (Q),

this implies that for all s, t ∈ [0,T ]

(4.5)
∣∣∣∣∫

Ω

(yn
1)

2 (t,x)dx−
∫

Ω

(yn
1)

2 (s,x)dx
∣∣∣∣≤ K |t− s|

The Ascoli-Arzela Theorem(See ([7])) implies that yn
1 is compact in C

(
[0,T ] : L2 (Ω)

)
. Hence,

selecting further sequences, if necessary, we have yn
1 −→ y∗1 in L2 (Ω), uniformly with respect

to t .

Analogously, we have for yn
i −→ y∗i in L2 (Ω) for i = 2 ,3 ,4 uniformly with respect to t.

From the boundedness of ∆yn
i in L2 (Q), which implies it is weakly convergent in L2 (Q) on a

subsequence denoted again4yn
i then for all distribution ϕ∫

Q
ϕ∆yn

i =
∫

Q
yn

i4ϕ →
∫

Q
y∗i4ϕ =

∫
Q

ϕ∆y∗i

Which implies that4yn
i →4y∗i weakly in L2 (Q),i = 1, 2, 3, 4. In addition, the estimates (4.4)

leads to
∂yn

i
∂ t
→ ∂y∗i

∂ t
weakly in L2 (Q), i = 1, 2, 3, 4

yn
i → y∗i weakly in L2 (0,T ;H2 (Ω)

)
, i = 1, 2, 3, 4

yn
i → y∗i weakly star in L∞

(
0,T ;H1 (Ω)

)
, i = 1, 2, 3, 4

We now show that yn
i yn

j 7→ y∗i y∗j for i = 1,2,3,4 and j = 1,2,3,4 strongly in L2 (Q), we write

yn
i yn

j − y∗i y∗j = (yn
i − y∗i )yn

j + y∗i
(
yn

j − y∗j
)

and we make use of the convergences yn
i −→ y∗i strongly in L2 (Q), i = 1, 3,3,4, yn

j −→ y∗j

strongly in L2 (Q), j = 1, 3,3,4 and of the boundedness of y∗i , yn
j in L∞ (Q), then yn

i yn
j 7→ y∗i y∗j

strongly in L2 (Q). We use 0 < Nn and 0 < N∗, and of the boundedness of N∗, Nn in L∞ (Q), we

deduce that
yn

i yn
j

Nn 7→
y∗i y∗j
N∗

for i = 1,2,3,4 and j = 1,2,3,4.
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Since ζ n
1 and ζ n

2 are bounded, we can assume that ζ n
1 → ζ ∗1 and ζ n

2 → ζ ∗2 weakly in L2 (Q)

on a subsequence denoted again ζ n
1 and ζ n

2 . Since Uad is a closed and convex set in L2 (Q), it

is weakly closed, so (ζ ∗1 ,ζ
∗
2 ) ∈Uad

We now show that

ζ
n
i yn

i+1→ ζ
∗
i y∗i+1 weakly in L2 (Q) f or i = 1,2

Writing

ζ
n
i yn

i+1−ζ
∗
i y∗i+1 =

(
yn

i+1− y∗i+1
)

ζ
n
i +(ζ n

i −ζ
∗
i )y∗i+1 f or i = 1,2

and making use of the convergences yn
i −→ y∗i strongly in L2 (Q) f or i = 1,2, i = 1,2 and

ζ n
i −→ ζ ∗i weakly in L2 (Q), f or i = 1,2, one obtains that ζ n

i yn
i+1→ ζ ∗i y∗i+1 weakly in L2 (Q)

f or i = 1,2.

By taking n→ ∞ in (2.5-2.7), we obtain that y∗ is a solution of (2.5-2.7) corresponding to

(ζ ∗1 ,ζ
∗
2 ) ∈Uad . Therefore

J (y∗,(ζ ∗1 ,ζ
∗
2 )) = ρ1

∫ T
0
∫

Ω
y∗1 (t,x)dxdt +ρ2

∫ T
0
∫

Ω
y∗2 (t,x)dxdt +

η1

2
‖ζ ∗1 ‖

2
L2(Q)+

η2

2
‖ζ ∗2 ‖

2
L2(Q)

≤ limn→∝in f
(

ρ1
∫ T

0
∫

Ω
yn

1 (t,x)dxdt +ρ2
∫ T

0
∫

Ω
yn

2 (t,x)dxdt +
η1

2
‖ζ n

1 ‖
2
L2(Q)+

η2

2
‖ζ n

2 ‖
2
L2(Q)

)
= limn→∝

(
ρ1
∫ T

0
∫

Ω
yn

1 (t,x)dxdt +ρ2
∫ T

0
∫

Ω
yn

2 (t,x)dxdt +
η1

2
‖ζ n

1 ‖
2
L2(Q)+

η2

2
‖ζ n

2 ‖
2
L2(Q)

)
= in f(ζ1,ζ2)∈Uad

J ((ζ1,ζ2))

This shows that J attains its minimum at (y∗,(ζ ∗1 ,ζ
∗
2 )), we deduce that (y∗,(ζ ∗1 ,ζ

∗
2 )) verifies

problem (2.5-2.7) and minimizes the objectif functional (2.8). The proof is complete. �

5. NECESSARY OPTIMALITY CONDITIONS

Let ζ =

 ζ1

ζ2

 ∈Uad and ζ ∗ =

 ζ ∗1

ζ ∗2

 ∈Uad , in this section, we show the optimality

conditions to problem (2.5-2.7), and we find the characterization of optimal control. First ,

we need the Gateaux differentiability of the mapping ζ → y(ζ ). For this reason, denoting

by yε =
(
yε

1,y
ε
2,y

ε
3,y

ε
4
)
= (y1,y2,y3,y4)(ζ

ε) and y∗ =
(
y∗1,y

∗
2,y
∗
3,y
∗
4
)
= (y1,y2,y3,y4)(ζ

∗) the

solution of (2.5-2.7) corresponding to ζ ε and ζ ∗ respectively, where (y∗,ζ ∗) is an optimal pair

such that ζ ε = ζ ∗+ εζ ∈Uad (for ε > 0 small) and ζ ∈
(
L2 (Q)

)2. We put θ =
βc
N

,
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H =


−θy∗3−µ 0 −θy∗1 0

f θy∗3 −k−µ−δ1θy∗3− r1ζ ε
1 θ (δ2y∗4−δ1y∗2 + f y∗1) δ2θy∗3

(1− f )θy∗3 δ1θy∗3 + k (1− f )θy∗1 +δ1θy∗2− (µ +d + p+ r2ζ ∗2 ) q

0 r1ζ ∗1 p+ r2ζ ∗2 −δ2θy∗4 −µ− p−δ2θy∗3

,

and G =


0 0

−r1y∗2 0

0 −r2y∗3

r1y∗2 r2y∗3

, we have the following theorem

Theorem 5.1. The mapping y : Uad →W 1,2 ([0,T ] ; H (Ω)) with yi ∈L (T,Ω) is Gateaux dif-

ferentiable with respect to ζ ∗. For all direction ζ ∈
(
L2 (Q)

)2, y′ (ζ ∗)ζ = Y is the unique

solution in W 1,2 ([0,T ] ; H (Ω)) with Yi ∈L (T,Ω) of the following equation

(5.1)


∂Y
∂ t

= AY +HY +Gζ t ∈ [0,T ]

Y (0,x) = 0

Proof. .We put Y ε
i =

yε
i − y∗i

ε
for i = 1,2,3,4 and we denote Sε the system (2.5-2.7) correspond-

ing to ζ εand S∗ the system (2.5-2.7) corresponding to ζ ∗, subtracting system Sε from S∗. As in

([3]), authors supposed in their stability study of this model that the total population N does not

vary in terms of ST , ET , IT , and RT . Thus, we take into account the same condition to obtain:

(5.2)



∂Y ε
1

∂ t
= α1∆Y ε

1 −
(
µ +θyε

3

)
Y ε

1 −θy∗1Y ε
3

∂Y ε
2

∂ t
= α2∆Y ε

2 + f θyε
3Y ε

1 −
(
δ1θyε

3 + r1ζ ε
1 + k+µ

)
Y ε

2

+θ (δ2y∗4−δ1y∗2 + f y∗1)Y ε
3 +δ2θyε

3Y ε
4 − r1ζ1y∗2

∂Y ε
3

∂ t
= α3∆Y ε

2 +(1− f )θyε
3Y ε

1 +
(
δ1θyε

3 + k
)

Y ε
2 +qY ε

4 − r2ζ2y∗3, (x, t) ∈ Q

+((1− f )θy∗1 +δ1θy∗2− (µ +d + p+ r2ζ ε
2 ))Y ε

3

∂Y ε
4

∂ t
= α4∆Y ε

3 + r1ζ ε
1 Y ε

2 +(p+ r2ζ ε
2 −δ2θy∗4)Y ε

3 −
(
µ +q−δ2θyε

3

)
Y ε

4

+r1ζ1y∗2 + r2ζ2y∗3
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with the homogeneous Neumann boundary conditions

(5.3)
∂Y ε

1
∂η

=
∂Y ε

2
∂η

=
∂Y ε

3
∂η

=
∂Y ε

4
∂η

= 0 (x, t) ∈ Σ

(5.4) Y ε
i (0,x) = 0 x ∈Ω, f or i = 1,2,3,4

We prove that Y ε
i are bounded in L2 (Q) uniformly with respect to ε . For this, we put

Hε =


−µ−θyε

3 0 −θy∗1 0

f θyε
3 −δ1θyε

3− r1ζ ε
1 − k−µ θ (δ2y∗4−δ1y∗2 + f y∗1) δ2θyε

3

(1− f )θyε
3 δ1θyε

3 + k (1− f )θy∗1 +δ1θy∗2− (µ +d + p+ r2ζ ε
2 ) q

0 r1ζ ε
1 p+ r2ζ ε

2 −δ2θy∗4 −µ−q−δ2θyε
3

,

Y ε =
(
Y ε

1 ,Y
ε
2 ,Y

ε
3 ,Y

ε
4
)
, and G =


0 0

−r1y∗2 0

0 −r2y∗3

r1y∗2 r2y∗3

.

then, we can rewrite system (5.2) as

(5.5)


∂Y ε

∂ t
= AY ε +HεY ε +Gζ t ∈ [0,T ]

Y ε (0,x) = 0

(S (t) , t ≥ 0) is the semi-group generated by A, then the solution of (5.5) can be expressed as

(5.6) Y ε (t) =
∫ t

0
S (t− s)Hε (s)Y ε (s)ds+

∫ t

0
S (t− s)Gζ (s)ds,

On the other hand the coefficients of the matrix Hε are bounded uniformly with respect to ε ,

using Gronwall’s inequality, we have

(5.7) ‖Y ε
i ‖L2(Q) ≤ β

where β > 0 (i = 1,2,3,4). Then

(5.8) ‖yε
i − y∗i ‖L2(Q) = ε ‖Y ε

i ‖L2(Q) (4.7)

Hence yε
i → y∗i in L2 (Q), i = 1,2,3,4. We put
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H =


−θy∗3−µ 0 −θy∗1 0

f θy∗3 −δ1θy∗3− r1ζ ε
1 − k−µ θ (δ2y∗4−δ1y∗2 + f y∗1) δ2θy∗3

(1− f )θy∗3 δ1θy∗3 + k (1− f )θy∗1 +δ1θy∗2− (µ +d + p+ r2ζ ∗2 ) q

0 r1ζ ∗1 p+ r2ζ ∗2 −δ2θy∗4 −µ−q−δ2θy∗3

,

and Y = (Y1,Y2,Y3,Y4). Hence, then system (5.2-5.4) can be written in the form

(5.9)


∂Y
∂ t

= AY +HY +Gζ t ∈ [0,T ]

Y (0) = 0

and its solution can be expressed as

(5.10) Y (t) =
∫ t

0
S (t− s)H (s)Y (s)ds+

∫ t

0
S (t− s)Gζ (s)ds,

By (5.6) and (5.10) one deduces that

(5.11) Y ε (t)−Y (t) =
∫ t

0
S (t− s)Hε (s)(Y ε −Y )(s)+Y (s)(Hε (s)−H (s))ds

Thus all the coefficients of the matrix Hε tend to the corresponding coefficients of the matrix

H in L2 (Q). An application of Gronwall’s inequality yields to Y ε
i → Yi in L2 (Q) as ε → 0, for

i = 1,2,3,4. The proof is complete. �

Let ζ ∗ be an optimal control of (2.5-2.7) , y∗ =
(
y∗1,y

∗
2,y
∗
3,y
∗
4
)

be the optimal state, D is the

matrix defined by

D =


0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

, D∗ be the adjoint matrix associated to D, H∗ be the adjoint matrix

associated to H, ρ = (0,ρ1,ρ2,0) and p = (p1, p2, p3, p4) the adjoint variable, the dual system

associated to the system (2.5-2.7) given by

(5.12)


−∂ p

∂ t
−Ap−H∗p = D∗Dρ t ∈ [0,T ]

p(T,x) = 0
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Lemma 5.1. Under hypotheses of theorem ( 3.1) , if (y∗,(ζ ∗1 ,ζ
∗
2 )) is an optimal pair, then there

exists a unique strong solution p ∈W 1,2 ([0,T ] ;H (Ω)) to the system (5.12) with pi ∈ G(T,Ω)

for i = 1,2,3,4.

Proof. Like in theorem (3.1), by making the change of variable s = T − t and the change of

functions qi (s,x) = pi (T − s,x) = pi (t,x) ,(t,x) ∈ Q, i = 1,2,3,4. We can easily prove the

existence of the solution to this lemma . �

To obtain the necessary conditions for the optimal control problem, applying standard opti-

mality techniques, analyzing the objective functional and using relationships between the state

and adjoint equations, we obtain a characterization of the optimal control.

Theorem 5.2. Let ζ ∗be an optimal control of (2.5-2.7) and let y∗ ∈W 1,2 ([0,T ] ;H (Ω)) with

y∗i ∈G(T,Ω) for i = 1,2,3,4 be the optimal state, that is y∗ is the solution to (2.5-2.7) with the

control ζ ∗. Then,

(5.13)

ζ
∗
1 = min

(
ζ

max
1 ,max

(
0,

r1y∗2
η1

(p2− p4)

))
and ζ

∗
2 = min

(
ζ

max
2 ,max

(
0,

r2y∗3
η2

(p3− p4)

))

Proof. We suppose ζ ∗ is an optimal control and y∗=
(
y∗1,y

∗
2,y
∗
3,y
∗
4
)
= (y1,y2,y3,y4)(ζ

∗) are the

corresponding state variables. Consider ζ ε = ζ ∗+ εh ∈Uad and corresponding state solution

yε =
(
yε

1,y
ε
2,y

ε
3,y

ε
4
)
= (y1,y2,y3,y4)(ζ

ε), we have

(5.14)

J′ (ζ ∗)(h) = lim
ε→0

1
ε
(J (ζ ε)− J (ζ ∗))

= lim
ε→0

1
ε

(
ρ1
∫ T

0
∫

Ω
(yε

2− y∗2)(t,x)dxdt +ρ2
∫ T

0
∫

Ω

(
yε

3− y∗3
)
(t,x)dxdt+

η1

2
∫ T

0
∫

Ω

(
(ζ ε

1 )
2− (ζ ∗1 )

2
)
(t,x)dxdt +

η2

2
∫ T

0
∫

Ω

(
(ζ ε

2 )
2− (ζ ∗2 )

2
)
(t,x)dxdt

)

= lim
ε→0

(
ρ1
∫ T

0
∫

Ω

(
yε

2− y∗2
ε

)
(t,x)dxdt +ρ2

∫ T
0
∫

Ω

(
yε

3− y∗3
ε

)
(t,x)dxdt+

η1

2
∫ T

0
∫

Ω

(
ε (h1)

2 +2h1ζ ∗1

)
(t,x)dxdt +

η2

2
∫ T

0
∫

Ω

(
ε (h2)

2 +2h2ζ ∗2

)
(t,x)dxdt

)
= ρ1

∫ T
0
∫

Ω
Y2 (t,x)dxdt +ρ2

∫ T
0
∫

Ω
Y3 (t,x)dxdt +η1

∫ T
0
∫

Ω
(h1ζ ∗1 )(t,x)dxdt

+η2
∫ T

0
∫

Ω
(h2ζ ∗2 )(t,x)dxdt

=
∫ T

0 〈Dρ,DY 〉H(Ω) dt +
∫ T

0 〈ηζ ∗,h〉
(L2(Ω))

2 dt
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with ηζ ∗ =

 η1ζ ∗1

η2ζ ∗2

. We use (5.1) and (5.13), we have

∫ T

0
〈Dρ,DY 〉H(Ω) dt =

∫ T

0
〈D∗Dρ,Y 〉H(Ω) dt

=
∫ T

0

〈
−∂ p

∂ t
−Ap−H∗p,Y

〉
H(Ω)

dt(5.15)

=
∫ T

0

〈
p,

∂Y
∂ t
−AY −HY

〉
H(Ω)

dt

=
∫ T

0
〈p,Gh〉H(Ω) dt

=
∫ T

0
〈G∗p,h〉

(L2(Ω))
2 dt

Since J is Gateaux differentiable at ζ ∗ =

 ζ ∗1

ζ ∗2

 and Uad is convex, as the minimum of the

objective functional is attained at ζ ∗ it is seen that J
′
(ζ ∗)(v−ζ ∗)≥ 0 for all v ∈Uad

We take h = v−ζ ∗ and we use (5.14-5.15) then

J
′
(ζ ∗)(v−ζ ∗) =

∫ T
0 〈G∗p+ηζ ∗,(v−ζ ∗)〉

(L2(Ω))
2 dt. We conclude that J

′
(ζ ∗)(v−ζ ∗) ≥ 0

equivalent to
∫ T

0 〈G∗p+ηζ ∗,(v−ζ ∗)〉
(L2(Ω))

2 dt ≥ 0 for all v ∈ Uad By standard arguments

varying v, we obtain

ηζ
∗ =−G∗p

Then

ζ
∗
1 =

r1y∗2
η1

(p2− p4) and ζ
∗
2 =

r2y∗3
η2

(p3− p4)

As (ζ ∗1 ,ζ
∗
2 ) ∈Uad , we have

ζ
∗
1 = min

(
ζ

max
1 ,max

(
0,

r1y∗2
η1

(p2− p4)

))
and ζ

∗
2 = min

(
ζ

max
2 ,max

(
0,

r2y∗3
η2

(p3− p4)

))
�

6. NUMERICAL RESULTS

6.1. Numerical method. In this section, the numerical results that reinforce and demonstrate

the effectiveness of our strategy of control are provided. This strategy involves applying two
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types of treatment to exposed and to infected individuals respectively, to control the spread of

the disease of tuberculosis. Concerning the numerical method, we give numerical simulations

to our optimality system which is formulated by state equations with initial and boundary con-

ditions (2.5-2.7), adjoint equations with transversality conditions (5.12), and optimal control

characterization (5.13). We apply the forward-backward sweep method (FBSM) ([21]) to solve

our optimality system in an iterative process. The state equations are solved using a forward

method in time by employing Euler explicit method, in order to discretize the second order

derivatives 4ST , 4ET , 4IT , and 4RT we use the second order Euler explicit method, initial

control variables are guessed in the beginning of the iterative method, next, the adjoint equa-

tions are solved backward in time. Finally, the control variables are updated with the current

state and adjoint solutions. The iterative process is repeated until reaching a tolerance criterion

the algorithm is as follows Algorithm :

• Step1: choose the values of terminal times T, and the initial values for the controls

ζ =

 ζ1

ζ2

 ;

• Step 2: Solve the state system (2.5-2.7) forward in time with the initial values of the

states and controls;

• Step 3: Solve the adjoint system (5.12) in time, with the conditions of the terminal time;

• Step 4: Update the control using the characterization (5.13) and the Forward-Backward

Sweep Method (FBSM) ζ =

 ζ1

ζ2

;

• Test the convergence: If the difference of values of these variables in this iteration and

the last iteration is sufficiently small, output the obtained current values as solutions;

• If the difference is not considerably small, go to Step 1.

6.2. Numerical results. The authors in ([1]) estimated that the initial susceptible, exposed,

infected, and recovered populations, are given by S0 = 95703, E0 = 13670, I0 = 1950 and R0 =

0, so N0 = 111323. As an example, we consider a population total N0 = 111323 in a 50km×

50km rectangular grid, so we assume that the distribution of susceptibles is homogeneous with

45 in each cell of 1km× 1km, except in the case of the subdomain Ωi, i = 1,2 (Source of

propagation of disease : Ω1 where the disease begins with the lower left corner of Ω and Ω2
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where the disease begins from the middle of Ω ) where we put 5 exposed to (TB) people infected

people, 2 infected people, 0 removed people and 38 susceptibles for our numerical simulation.

All simulations are performed using the parameter values in Table (1) taken from [1]. Also, the

upper limits of the optimality condition are considered to be ζ max
1 = 0.6 and ζ max

2 = 0.9, and

the constant weight values in the objective function are ρ1 = 10, ρ2 = 10, η1 = 20, and η2 = 45

taken from [1].

To explain and demonstrate the influence of every control and its effect on spreading the

disease, we have chosen to follow three different scenarios. We have simultaneously optimized

the chemoprophylaxis (ζ1) and treatment (ζ2) controls in the first scenario. But in the second

scenario, the treatment control (ζ2) is maintained constant rather than optimized, whereas the

chemoprophylaxis control (ζ1) is optimized, and then in the third scenario, optimal treatment

and constant chemoprophylaxis given to the infected persons are used.

6.2.1. Optimal chemoprophylaxis and treatment. In figures 5, 6, 7, and 8, when we apply

our strategy of spatiotemporal control with two treatments. We assume that optimal treatments

start on day t = 1 being the same day when the infection is identified in Ω. The effect of

spatiotemporal controls treatment is very significant in reducing the propagation of infection.

Indeed, in figure 6, the infected population density after 4 years decreases from 35 infected in

cases where there is no control, to 2 infected in cases where there is optimal control. In figure

6, we can see that there is a maximum number of individuals who are eliminated at about 43

people against less than 4 in case of no control, which is extremely beneficial and indicates the

value of our strategy of control.

From figures 4 and 8 we can notice that the recovered population disappears in the case of

absence of the control, the individuals recovered are moved to the infected class (see figures 2

and 3), but when the control is present, the infected individuals are moved to the recovered class

(see figure 8) by the treatment mechanisms that are applied in this case.

6.2.2. Constant treatment. In figures 5− 11, the numerical results are studied with a sin-

gle chemoprophylaxis of the population exposed and a constant treatment from the population

infected. We find that in this scenario, the number of exposed persons decreases but less sig-

nificantly than the first scenario, although the number of infected persons stays high and the
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FIGURE 5. Susceptible behavior within Ω with control (Optimal chemoprophy-

laxis and treatment). (1) Disease starts from the corner, (2) Disease starts from

the middle.

FIGURE 6. Exposed behavior within Ω with control (Optimal chemoprophy-

laxis and treatment). (1) Disease starts from the corner, (2) Disease starts from

the middle.

number of recovered is relatively increasing without achieving the same number as when using

both treatments.
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FIGURE 7. Infectied behavior within Ω with control (Optimal chemoprophy-

laxis and treatment). (1) Disease starts from the corner, (2) Disease starts from

the middle.

FIGURE 8. Recovered behavior within Ω with control (Optimal chemoprophy-

laxis and treatment). (1) Disease starts from the corner, (2) Disease starts from

the middle.

6.2.3. Constant chemoprophylaxis. In this last simulation, Here the control ζ1on chemopro-

phylaxis on treatment is not optimized but held constant, while the treatment control ζ2 is



AN OPTIMAL CHEMOPROPHYLAXIS AND TREATMENT CONTROL 27

FIGURE 9. Exposed behavior within Ω with control (Optimal chemoprophy-

laxis and Constant treatment). (1) Disease starts from the corner, (2) Disease

starts from the middle.

FIGURE 10. Infected behavior within Ω with control (Optimal chemoprophy-

laxis and Constant treatment). (1) Disease starts from the corner, (2) Disease

starts from the middle.

optimized in order to see its impact on the evolution of the system. According to the figures

12, 13 and 14, we notice that the number of exposed individuals remains high and they spend a
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FIGURE 11. Removed behavior within Ω with control (Optimal chemoprophy-

laxis and Constant treatment). (1) Disease starts from the corner, (2) Disease

starts from the middle.

long time in the class E before healing and joining the class R due to the treatment given to the

infected individuals. However, the number of recovered people does not reach the same number

as in the first scenario (using both treatments simultaneously).

To wrap this up, if the mechanisms on chemoprophylaxis and treatment are both are opti-

mized, this will allow us to cure the infected population and at the same time to block the new

infected cases within the exposed population. If we optimize only the treatment, we are going

to cure the infected population at the present time, but the sickness won’t be cured. Unlike the

treatment, the mechanisms of chemoprophylaxis allows us to stop and block the infection in the

future, but doesn’t help in to cure infected population in the present.

6.2.4. Chemoprophylaxis and treatment. In order to shed light on the optimal drug dosages,

cost of treatment and chemotherapy, used to eradicate the transmission of tuberculosis in the

population, we numerically present the optimal controls in figures (15-16). This indicates that

in the objective functional, the goal is not only to minimize the number of infected and exposed

but also to reduce the costs of drugs, We can clearly see from figures (15-16) that the distribution
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FIGURE 12. Exposed behavior within Ω with control (Constant chemoprophy-

laxis and Optimal treatment). (1) Disease starts from the corner, (2) Disease

starts from the middle.

FIGURE 13. Infected behavior within Ω with control (Constant chemoprophy-

laxis and Optimal treatment). (1) Disease starts from the corner, (2) Disease

starts from the middle.

of drugs, treatment and chemotherapy, increases until reaching 1 after 3 years then it will cancel

itself after 5 years Which gives a precise and optimal medication regimen
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FIGURE 14. Removed behavior within Ω with control (Contant chemoprophy-

laxis and Optimal treatment). (1) Disease starts from the corner, (2) Disease

starts from the middle.

FIGURE 15. Chemoprophylaxis . (1) Disease starts from the corner, (2) Disease

starts from the middle.

7. CONCLUSION

In this paper, we considered an existing model of tuberculosis that describes the dynamics

of this disease with ODE’s. Our approach is to extend this model using PDE’s in order to give
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FIGURE 16. Treatment. (1) Disease starts from the corner, (2) Disease starts

from the middle.

a more realistic description of the tuberculosis (TB). The application of a distributed optimal

control pair for a spatiotemporal tuberculosis model with chemoprophylaxis and treatment are

incorporated to reduce the actively infected individuals. We showed the existence of an optimal

control pair and existence of solutions to the state. We used techniques of optimal control theory

to characterize the controls, and derived the optimality system. The optimality system, which

is composed by the system state, the dual system and the characteristic of the control, is solved

numerically based on the forward-backward sweep method (FBSM). Numerical simulations of

the resulting optimality system showed that the optimal strategy is more effective if we apply the

combination of chemoprophylaxis and treatment together, so we can, very effectively, reduce

the spread of infection as well as to block the new infected cases within the exposed individuals.
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Notations Value Description(Units)

S0 (x,y)
45 f or (x,y) ∈Ωi i = 1,2

50 f or (x,y) /∈Ωi

Initial susceptible population(
people/km2)

I0 (x,y)
5 f or (x,y) ∈Ωi i = 1,2

0 f or (x,y) /∈Ωi

Initial in f ected population(
people/km2)

R0 (x,y) 0 f or (x,y) ∈Ω
Initial recovered population(

people/km2)
Λ 3000

Recruitment rate(
year−1)

µ 0.01
Birth rate(

year−1)
c 21

Contact rate(
day−1)

d 0.3
T B induced mortality rate(

year−1)
β 0.35

Transmission probabilities(
year−1)

k 0.00013
Natural rate o f progression to active T B(

year−1)
p 0.2

Natural recovery rate(
year−1)

q 0.005
Relapsing rate(

year−1)
r1 0.7

Treatment rate f or the latently in f ected(
year−1)

r2 0.55
Treatment rate f or the in f ectives(

year−1)
δ1 0.7

Modi f ication parameters(
year−1)

δ2 0.9
Modi f ication parameters(

year−1)
f 0.99

Probability that the in f ected will enter

the latent stage o f the disease(
year−1)

t [1,5]
time period

(year)

TABLE 1. Initial conditions and parameters values
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APPENDIX

Consider the initial value problem

(7.1)


∂ z
∂ t

= Az(t)+g(t,z(t)) , t ∈ [0,T ]

z(0) = z0

where A is a linear operator defined on a Banach space X , with the domain D(A) and g :

[0,T ]×X→ X is a given function. If X is a Hilbert space endowed with the scalar product (·, ·),

then the linear operator A is called dissipative if (Az,z)≤ 0, (∀z ∈ D(A)).

Theorem 7.1. X be a real Banach space, A : D(A) ⊆ X → X be the infinitesimal generator of

a C0−semi-group of linear contractions S(t), t ≥ 0 on X, and g : [0,T ]×X → X be a function

measurable in t and Lipschitz continuous in x ∈ X, uniformly with respect to t ∈ [0,T ].

(i) If z0 ∈ X , then problem (7.1) admits a unique mild solution, i.e. a function z∈C([0,T ];X)

which verifies the equality z(t) = S(t)z0 +
∫ t

0 S(t− s)g(s,z(s))ds,(∀t ∈ [0,T ] .

(ii) If X is a Hilbert space, A is self-adjoint and dissipative on X and z0 ∈D(A), then the mild

solution is in fact a strong solution and z ∈W 1,2([0,T ] ;X)∩L2(0,T ;D(A))

Proof. or the proof of the theorem, we shall recall the following well-known results [33, Propo-

sition 1.2 of chapter IV] (see also [34,35]). First recall a general existence result which we use

in the sequel (Proposition 1.2, p. 175, [2]; see also [23, 31]). �
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