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Abstract. Limited resources hinder the control and prevention of hepatitis B in some communities in Ghana and

the Brong Ahafo region is no different. In this paper, we formulated a model that explains the spread of hepatitis

B and suggested an intervention to minimise its effect. We analysed the local and global stability of the disease as

well as the basic reproduction number. It was established that the disease is locally asymptotically stable whenever

the basic reproduction number is less than unity and unstable otherwise. Optimal control theory was incorporated

to determine the best control strategy in combating the spread of hepatitis B in the environment. The following

control strategies were employed; treatment, vaccination and prevention. The results of the numerical simulation

showed that the best optimal control strategy in combating the spread of the infection was vaccination of susceptible

and treatment of the infected population.
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1. INTRODUCTION

The hepatitis B virus infects the liver to result in a disease known as hepatitis B. Hepatitis B

is among the world’s leading health worries [1]. It can cause chronic infection, and if not well
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managed, can result in death from cirrhosis and hepatocellular carcinoma [2]. It is estimated

that hepatitis B deaths in a year range between five hundred thousand to one million two hun-

dred thousand people annually, and therefore among the top ten causes of death worldwide [2].

A person gets infected when the virus enters his or her bloodstream either through mother to

child transmission (known as vertical transmission) or through blood, semen and other bodily

fluids of infected persons [3]. Sufficient contact with an infectious person leading to infection

can occur through sex, sharing needles, syringes and drug preparation equipment that are con-

taminated, sharing of toothbrushes, razors, medical equipment, etc., direct contact with blood

or open sore [4, 5].The virus, after it has left its host for some days, can still infect susceptible

individuals [6]. Infected individuals who are not able to fight off the hepatitis B virus become

chronically infected after about 180 days of infection [7]. This stage of contagiousness in the

transmission model of the diseases is known as the chronic class. If left untreated, the chroni-

cally infected is very likely to die from liver cancer or hepatocellular carcinoma [8].

There are safe and effective vaccines since 1982 for the prevention of hepatitis B infection

through vaccination [9]. The vaccines work by activating the body to produce antibodies that

ensure protection against contracting the virus. Susceptible individuals who are predisposed

to the infection or are at high risk because of their particular circumstances are candidates for

vaccination. Therefore, it is necessary to screen people to ascertain whether they are candidates

for vaccination or not.

Research is still in progress to find a cure for chronic hepatitis B infection. Reports estimate

that about one percent of the chronically infected break free from the virus each year [10]. One

goal of available antiviral therapies is to help bring down the viral load and thus reduce the

chance of disease progression towards liver scarring and liver cancer that are both extremely

life-threatening [2].

Epidemic models generally explain the spread mechanism of diseases, determine the best opti-

mal control mechanism and the most effective cost to be employed in combating the infections

[11, 12].

A real world phenomenon is translated by a disease model for optimal cost control and employ
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sensitivity analysis to determine the best control measure [13, 14]

2. MODEL DESCRIPTION AND FORMULATION

We Formulated an SEITV R model for the transmission Dynamics of Hepatitis B by parti-

tioning the human population into six compartments with respect to their disease status at any

given time t. Table 1 shows the parameters and their description used in the model.

TABLE 1. Parameter description

Parameter Description

µ1 The rate at which people give birth.

µ2 The rate at which people die .

σ1 Vaccination rate of susceptible individuals.

η Unsuccessful vaccination rate.

β1 Horizontal transmission rate cause by the infected compartment.

β2 The rate of transmission for the treated population.

α The rate at which the expose population move to the infected popu-

lation .

p1 The probability that the an infected individuals clear the virus.

p2 The probability that infected mothers give birth to infected babies.

σ2 Rate of moving from the vaccinated class to the recovered class.

σ3 The rate at which the recovered population move to the susceptible

population due to loss of immunity.

σ4 The rate at which the treated population move to the recovered pop-

ulation.

(1− p1) The probability that an infected fail to clear the virus .

λ The rate at which infected population move to any other class

Table 2 shows the various variables used in the model formulation and description.
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TABLE 2. Variable description

Variable Description of Population at a time t

S(t) Susceptible Human

E(t) Expose Population

I(t) Infected Population

T (t) Treated Population

V (t) Vaccinated Population

R(t) Recovered Population

The total population N(t) is given by;

N = S(t)+E(t)+ I(t)+T (t)+V (t)+R(t).(1)

System of differential equation of the model is given by;

(2)



dS
dt

= µ1(1− p2I)+ηV +σ3R− [(β1I +β2T )+µ2 +σ1]S

dE
dt

= (β1I +β2T )S+µ1 p2I− [µ2 +α]E

dI
dt

= αE− [p1λ +(1− p1)λ +µ2]I

dT
dt

= (1− p1)λ I− [σ4 +µ2]T

dV
dt

= σ1S− [η +σ2 +µ2]V

dR
dt

= σ2V + p1λ I +σ4T − [σ3 +µ2]R

3. MODEL ANALYSIS

This section, provides evidence of the well-posedness of the model by proving the bounded-

ness and positivity of the model solution.

3.1. Feasible region. The invariant region is given by,

ϒ = {(S(t)+E(t)+ I(t)+T (t)+V (t)+R(t))) ∈R6
+;S(t)+E(t)+ I(t)+T (t)+V (t)+R(t) =

N ≤ µ1

µ2
}.
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Consider the model equation the total population N is given by;

(3)



dN
dt

=
dS
dt

+
dE
dt

+
dI
dt

+
dT
dt

+
dV
dt

+
dR
dt

= [µ1− (S+E + I +T +V +R)µ2]

= µ1−Nµ2.

dN
dt

= µ1−Nµ2.(4)

solving the equation

dN
µ1−Nµ2

= dt∫ dN
µ1−Nµ2

=
∫

dt

− ln |µ1−Nµ2|
µ2

= t + c

− ln |µ1−Nµ2|= µ2t + c1

µ1−Nµ2 = e−µ2t+c1

µ1−Nµ2 = c2e−µ2t

N(t) =
c2e−µ2t−µ1

−µ2

N(t) =
µ1

µ2
− c2e−µ2t

When t = 0,N(t) = N(0)

N(0) =
µ1

µ2
− c2

c2 =
µ1

µ2
−N(0)

Therefore,

N(t) =
µ1

µ2
−
(

µ1

µ2
−N(0)

)
e−µ2t(5)
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now as t→ ∞

N(t)≤ µ1

µ2

hence; ϒ is positively invariant [15].

3.2. Positivity of model solutions. For the model to be biologically meaningful we prove the

positivity of the solution.

Let the initial values of the parameters be {S(t) ≥ 0,E(t) ≥ 0, I(t) ≥ 0,T (t) ≥ 0,V (t) ≥

0,R(t)≥ 0} ∈ϒ then the solution set

{S(t),E(t), I(t),T (t),V (t),R(t)} ≥ 0 ∀ t ≥ 0

Proof. From

dS
dt

= µ1(1− p2I)+ηV +σ3R− [(β1I +β2T )+µ2 +σ1]S(6)

now we have

dS
dt
≥−[(β1I +β2T )+µ2 +σ1]S(t)

dS
S(t)
≥−[(β1I +β2T )+µ2 +σ1]dt

applying anti-derivate on both sides we have∫ dS
S(t)
≥
∫
−[(β1I +β2T )+µ2 +σ1]dt

ln |S(t)| ≥ −[(β1I +β2T )+µ2 +σ1]t + c

S(t)≥ e−[(β1I+β2T )+µ2+σ1]t+c

for t ≥ 0

S(t)≥ S(0)e−[(β1I+β2T )+µ2+σ1]t ≥ 0

Therefore

S(t)≥ 0

Next,consider the second equation in the model

dE
dt

= (β1I +β2T )S+µ1 p2I− [µ2 +α]E(7)
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now we have

dE
dt
≥−[µ2 +α]E(t)

dE
E(t)

≥−[µ2 +α]dt

taking anti derivative of both sides of the equation, we have∫ dE
E(t)

≥
∫
−[µ2 +α]dt

ln |E(t)| ≥ −[µ2 +α]t + c

E(t)≥ e−[µ2+α]t+c

for non-negative values of t

E(t)≥ E(0)e−[µ2+α]t ≥ 0

Hence,

E(t)≥ 0

similarly, it can be proved that I(t),T (t),V (t) and R(t) are all positively invariant for all non-

negative values of t [16, 17]. �

3.3. Disease free equilibrium. At disease free equilibrium, there are no infections and recov-

ery, hence;

dS
dt

=
dE
dt

=
dI
dt

=
dT
dt

=
dV
dt

=
dR
dt

= 0(8)

The DFE of the model is obtained as; (
A1,0,0,0,A2,0

)
(9)

where;

A1 =
µ1[η +σ2 +µ2](

[µ2 +σ1][η +σ2 +µ2]
)
−ησ1

A2 =
σ1µ1(

[η +σ2 +µ2][µ2 +σ1]
)
−σ1η
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3.4. Basic reproduction number, R0. Using the next generation matrix approach as outlined

in [18, 19]; Considering;

(10)



dE
dt

= (β1I +β2T )S+µ1 p2I− [µ2 +α]E

dI
dt

= αE− [λ +µ2]I

dT
dt

= (1− p1)λ I− [σ4 +µ2]T

let;

Fi(x) =


(β1I +β2T )S(t)

0

0

 Vi(x) =


−µ1 p2I +[µ2 +α]E

−αE +[λ +µ2]I

−(1− p1)λ I +[σ4 +µ2]T


Taking the partial derivative of Fi(x) and Vi(x) at DFE;

F =


0 S0β1 S0β2

0 0 0

0 0 0

(11)

and

V =


[µ2 +α] −µ1P2 0

−α [λ +µ2] 0

0 −λ (1− p1) [σ4 +µ2]

(12)

finding the inverse of V

V−1 =


λ +µ2

[α +µ2][λ +µ2]−αµ1P2

µ1P2

[α +µ2][λ +µ2]−αµ1P2
0

α

[α +µ2][λ +µ2]−αµ1P2

α +µ2

[α +µ2][λ +µ2]−αµ1P2
0

(1−P1)αλ

A3

(1−P1)λ (α +µ2)

A3

1
σ4 +µ2

(13)

where, A3 = (µ2 +σ4)
(
[α +µ2][λ +µ2]−αµ1P2

)
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FV−1


D1 D2 0

0 0 0

0 0 0

(14)

Where,

D1 =
S0β1α(σ4 +µ2)+S0β2α(1−P1)λ

(µ2 +σ4)
(
[α +µ2][λ +µ2]−αµ1P2

)
D2 =

S0β1(σ4 +µ2)(α +µ2)+S0β2α(1−P1)λ (α +µ2)

(µ2 +σ4)
(
[α +µ2][λ +µ2]−αµ1P2

)
The spectral radius (largest eigen value) of the matrix FV−1 is the basic reproductive number.

Since FV−1 is a triangular matrix the eigen values are D1,0 and 0 therefore the spectral radius

is D1 hence R0 = D1

R0 =
S0β1α(σ4 +µ2)+S0β2α(1−P1)λ

(µ2 +σ4)
(
[α +µ2][λ +µ2]−αµ1P2

)(15)

Our model is epidemiologically meaningful if;

[α +µ2][λ +µ2]−αµ1P2 > 0(16)

3.5. Local stability of disease-free equilibrium.

Theorem 3.1. The disease-free equilibrium point is locally asymptotically stable if R0 ≤ 1 and

unstable if R0 > 1.

Proof. The Jacobian matrix is given by;
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JDFE =



−H1 0 −H7 −H8 η σ3

0 −H2 H7 H8 0 0

0 α −H3 0 0 0

0 0 H9 −H4 0 0

σ1 0 0 0 −H5 0

0 0 H10 σ4 σ2 −H6


(17)

where

H1 = [σ1 +µ2] H2 = [µ2 +α]

H3 = [λ +µ2] H4 = [σ4 +µ2]

H5 = [η +σ2 +µ2] H6 = [σ3 +µ2]

H7 = µ1P2 +β1S0 H8 = β2S0

H9 = λ (1− p1) H10 = λ p1

S = S0

The characteristics equation; P(λ̄ ) = |λ̄ I− JDEF |= 0 becomes

P(λ̄ ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ̄ +H1 0 H7 H8 −η −σ3

0 λ̄ +H2 −H7 −H8 0 0

0 −α λ̄ +H3 0 0 0

0 0 −H9 λ̄ +H4 0 0

−σ1 0 0 0 λ̄ +H5 0

0 0 −H10 −σ4 −σ2 λ̄ +H6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0(18)

Let

P(λ̄ ) = P(λ̄1)×P(λ̄2) = 0(19)
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P(λ̄1) = (λ̄ +H6)[(λ̄ +H1)(λ̄ +H5)−σ1η ]−σ1σ2σ3 = 0

= λ̄
3 +(H1 +H5 +H6)λ̄

2

+(H1H5 +H1H6 +H5H6−σ1η)λ̄ +H1H5H6−σ1ηH6−σ1σ2σ3 = 0

for the other factor

P(λ̄2) = (λ̄ +H4)[(λ̄ +H2)(λ̄ +H3)−αH7]−αH8H9 = 0

= λ̄
3 +(H2 +H3 +H4)λ̄

2 +(H2H3 +H2H4 +H3H4−αH7)λ̄

+H2H3H4−αH4H7−αH8H9 = 0

Now, we analyze P(λ̄1) = 0 and P(λ̄2) = 0 separately for the nature of their roots by using the

Routh-Hurwitz criteria. Let’s begin with P(λ̄1) = 0

P(λ̄1) is in the form

P(λ̄1) = λ̄
3 +m1λ̄

2 +m2λ̄ +m3 = 0(20)

and

m1 = H1 +H5 +H6

= σ1 +µ2 +η +σ2 +µ2 +σ3 +µ2

= σ1 +σ2 +σ3 +η +3µ2

m2 = H1H5 +H1H6 +H5H6−σ1η

= (σ1 +µ2)(η +σ2 +µ2)+(σ1 +µ2)

(σ3 +µ2)+(η +σ2 +µ2)(σ3 +µ2)−σ1η

= µ2η +(σ1 +µ2)(σ2 +µ2)+(σ1 +µ2)(σ3 +µ2)

+(η +σ2 +µ2)(σ3 +µ2)
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m3 = H1H5H6−σ1ηH6−σ1σ2σ3

= (σ1 +µ2)(η +σ2 +µ2)(σ3 +µ2)

−σ1η(σ3 +µ2)−σ1σ2σ3

= σ1σ2µ2 +µ2(σ1 +η +σ2 +µ2)(σ3 +µ2)

According to Routh-Hurwitz criteria, roots of P(λ̄1) will have negative real parts if the condi-

tions below are satisfied

(i) m1 > 0

(ii) m2 > 0

(iii) m3 > 0

(v) m1m2 > m3

m1 = σ1 +σ2 +σ3 +η +3µ2 > 0

m3 = σ1σ2µ2 +µ2(σ1 +η +σ2 +µ2)(σ3 +µ2)> 0

Now

m1m2 = (σ1 +σ2 +σ3 +η +3µ2)
[
µ2η +(σ1 +µ2)(σ2 +µ2)+(σ1 +µ2)(σ3 +µ2)

+(η +σ2 +µ2)(σ3 +µ2)
]

m3 = σ1σ2µ2 +µ2(σ1 +η +σ2 +µ2)(σ3 +µ2)

Notice that in expanded form , m1m2 contains all the terms in m3 and will still be left with

additional terms. Therefore m1m2 > m3 is satisfied. By the Routh-Hurwitz criteria all the roots

of P(λ̄1) = 0 are negative or have negative real parts.

Let’s now analyze the second factor P(λ̄2)

P(λ̄2) is in the form

P(λ̄2) = λ̄
3 + c1λ̄

2 + c2λ̄ + c3 = 0(21)



DYNAMICS OF HEPATITIS B WITH OPTIMAL CONTROL 13

Where

c1 = H2 +H3 +H4 = α +λ +σ4 +3µ2

c2 = H2H3 +H2H4 +H3H4−αH7 = (α +µ2)(λ +µ2)+(α +µ2)(σ4 +µ2)

+(λ +µ2)(σ4 +µ2)−α(µ1P2 +β1S)

c3 = H2H3H4−αH4H7−αH8H9 = (α +µ2)(λ +µ2)(σ4 +µ2)−αµ1P2(σ4 +µ2)

−αβ1S(σ4 +µ2)−αλβ2S(1− p1)

According to the Routh-Hurwitz criterion for P(λ̄2) = 0 to have negative real parts, c1 > 0,c3 >

0 and c1c2 > c3

c1 = α +λ +σ4 +3µ2 > 0

c2 > 0

=⇒ (α +µ2)(λ +µ2)+(α +µ2)(σ4 +µ2)+(λ +µ2)(σ4 +µ2)−αµ1P2 > αβ1S

but from R0 < 1

(α +µ2)(λ +µ2)−µ1P2 > αβ1S

c2 > 0 holds

c3 =(α +µ2)(λ +µ2)(σ4 +µ2)−αµ1P2(σ4 +µ2)−αβ1S(σ4 +µ2)−

αλβ2S(1− p1)> 0

(α +µ2)(λ +µ2)(σ4 +µ2)−αµ1P2(σ4 +µ2)> αβ1S(σ4 +µ2)+αλβ2S(1− p1)

αβ1S(σ4 +µ2)+αλβ2S(1− p1)< (α +µ2)(λ +µ2)(σ4 +µ2)−αµ1P2(σ4 +µ2)

αβ1S(σ4 +µ2)+αλβ2S(1− p1)

(α +µ2)(λ +µ2)(σ4 +µ2)−αµ1P2(σ4 +µ2)
< 1(22)
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Since R0 < 1 ,m3 > 0 holds.

We now analyze c1c2 > c3 below

(H2 +H3 +H4)(H2H3 +H2H4 +H3H4−αH7)> H2H3H4

−αH4H7−αH8H9

(H2 +H3)(H2H3 +H2H4 +H3H4−αH7)+H2H3H4 +H2H4H4

+H3H4H4−αH4H7 > H2H3H4−αH4H7−αH8H9

(H2 +H3)(H2H3 +H2H4 +H3H4)−αH7(H2 +H3)+H4H4(H2 +H3)>−αH8H9

(H2 +H3)(H2H3 +H2H4 +H3H4 +H4H4)> αH7(H2 +H3)−αH8H9

(H2 +H3)(H2 +H4)(H3 +H4)> αH7(H2 +H3)−αH8H9

αH7(H2 +H3)−αH8H9 < (H2 +H3)(H2 +H4)(H3 +H4)

substituting the model parameters

α(µ1P2 +β1S)(α +λ +2µ2)−αβ2Sλ (1− p1)<

(α +λ +2µ2)(α +σ4 +2µ2)(λ +σ4 +2µ2)

(α +λ +2µ2)β1S−αβ2Sλ (1− p1)< (α +λ +2µ2)(α +σ4 +2µ2)(λ +σ4 +2µ2)

−α(α +λ +2µ2)µ1P2αβ1S− αβ2Sλ (1− p1)

α +λ +2µ2
< (α +σ4 +2µ2)(λ +σ4 +2µ2)−

αµ1P2

αβ1S < (α +σ4 +2µ2)(λ +σ4 +2µ2)−αµ1P2 +
αβ2Sλ (1− p1)

α +λ +2µ2
(23)

From R0 < 1

αβ1S(σ4 +µ2)+αβ2λS(1− p1)< (σ4 +µ2)
[
(α +µ2)(λ +µ2)−αµ1P2

]
αβ1S(σ4 +µ2)< (σ4 +µ2)

[
(α +µ2)(λ +µ2)−αµ1P2

]

αβ1S < (α +µ2)(λ +µ2)−αµ1P2(24)
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Equation (24) is a true inequality when R0 < 1, therefore equation (23) is also true because the

right hand side of equation (23) is greater than right hand side of equation (24).

This proves that c1c2 > c3. It follows that P(λ̄2) = 0 has its roots negative or negative real parts.

In conclusion, the roots of P(λ̄ ) = 0 are all negatives or have negative real parts so the disease

free-equilibrium is asymptotically stable when R0 < 1 and unstable when R0 > 1 �

4. ENDEMIC EQUILIBRIUM

It is a constant solution of the model where the disease per exist in the system. In our model

the endemic equilibrium is denoted by Qe. To obtained the endemic equilibrium we set the

system in (2) to zero.

Therefore, the endemic equilibrium points are given by;

Se = k1

Ee =
(λ +µ2)(σ4 +µ2)(k1k2k3− k1k4 + k5)

αλ (1− p1)(k6 + k1k7− k8)

Ie =
(σ4 +µ2)(k1k2k3− k1k4 + k5)

λ (1− p1)(k6 + k1k7− k8)

T e =
k1k2k3− k1k4 + k5

k6 + k1k7− k8

V e = k1k2

Re =
σ2k1k2(1− p1)(k6 + k1k7− k8)+D6(k1k2k3− k1k4 + k5)

(σ3 +µ2)(1− p1)(k6 + k1k7− k8)

where D6 = [p1(σ4 +µ2)+σ4(1− p1)]

k1 =
(σ4 +µ2)

[
(µ2 +α)(λ +µ2)−αP2µ1

]
α
[
β1(σ4 +µ2)+β2λ (1− p1)

] k2 =
σ1

η +σ2 +µ2

k3 = λ (1− p1)(σ2 +σ3 +η) k4 = λ (1− p1)(σ3 +µ2)(σ1 +µ2)

k5 = µ1λ (1− p1) k7 = β1(σ3 +µ2)(σ4 +µ2)+λβ2(σ3 +µ2)(1− p1)

k6 = µ1P2(σ3 +µ2)(σ4 +µ2) k8 = λσ3
[
p1(σ4 +µ2)+σ4(1− p1)

]
Hence Qe = {Se,Ee, Ie,T e,V e,Re}
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4.1. Global stability of the endemic equilibrium point.

Theorem 4.1. If R0 > 1, the endemic equilibrium Qe of the model is globally asymptotically

stable.

Proof. The global asymptotic stability of the endemic equilibrium can be prooved using the

Lyapunov function define as;

G(Se,Ee, Ie,T e,V e,Re) = G1 +G2 +G3 +G4 +G5 +G6(25)


G1 = S−Se−Se ln S

Se , G2 = E−Ee−E ln E
Ee

G3 = I− Ie− Ie ln I
Ie , G4 = T −T e−T e ln T

T e

G5 =V −V e−V e ln V e

V , G6 = R−Re−Re ln R
Re

By setting the system of equation in (2) to zereo and taking the derivative of G along the solution

of the equations, we obtain;

dG
dt

=
dG1

dt
+

dG2

dt
+

dG3

dt
+

dG4

dt
+

dG5

dt
+

dG6

dt
(26)

let

dG1

dt
=

(
S−Se

S

)[
µ1(1− p2I)+ηV +σ3R− [(β1I +β2T )+µ2 +σ1]S

]
(27)

hence;

dG1

dt
=

(
S−Se

S

)[
µ1(1− p2I)+ηV +σ3R− [(β1I +β2T )+µ2 +σ1]S

]
−µ1 +µ1 p2Ie−ηV e−σ3Re +[(β1Ie +β2T e)+µ2 +σ1]Se

=

(
S−Se

S

)[
µ1P2Ie

(
1− I

Ie

)
+β1IeSe

(
1− IS

IeSe

)
+β2T eSe(

1− T S
T eSe

)
+µ2Se

(
1− S

Se

)
+σ1Se

(
1− S

Se

)
+ηV e

(
V
V e −1

)
+σ3Re

(
R
Re −1

)]
(28)
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hence;



dG1

dt
= µ1P2Ie

(
1− I

Ie −
Se

S
+

SeI
SIe

)
+β1IeSe

(
1− IS

IeSe −
Se

S
+

I
Ie

)
+β2T eSe

(
1− T I

T eIe −
Se

S
+

T
T e

)
+µ2Se

(
2− Se

S
− S

Se

)
+σ1Se

(
2− Se

S
− S

Se

)
+ηV e

(
V
V e −1− SeV

SV e +
Se

S

)
+σ3Re

(
R
Re −1− SeR

SRe +
Se

S

)
(29)

Using the positive semi-definite function M (y) = y−1− lny, for y > 0



dG1

dt
= µ1P2Ie

[
−M

(
I
Ie

)
−M

(
Se

S

)
+M

(
SeI
SIe

)]
+β1IeSe

[
−M

(
IS

IeSe

)
−M

(
Se

S

)
+M

(
I
Ie

)]
+β2T eSe

[
−M

(
T S

T eSe

)
−M

(
Se

S

)
+M

(
T
T e

)]
+µ2Se

[
−M

(
Se

S

)
−M

(
S
Se

)]
+σ1Se

[
−M

(
Se

S

)
−M

(
S
Se

)]
+ηV e

[
M

(
V
V e

)
−M

(
SeV
SV e

)
+M

(
Se

S

)]
+σ3Re

[
M

(
R
Re

)
−M

(
SeR
SRe

)
+M

(
Se

S

)]

(30)

Similarly,



dG2

dt
=

(
E−Ee

E

)[
(β1I +β2T )S+µ1 p2I− [µ2 +α]E− (β1Ie +β2T e)Se

−µ1 p2Ie +[µ2 +α]Ee
]

= µ1P2Ie
[
M

(
I
Ie

)
−M

(
EeI
EIe

)
+M

(
Ee

E

)]
+β1IeSe

[
M

(
IS

IeSe

)
−M

(
ISEe

IeSeE

)
+M

(
Ee

E

)]
+β2T eSe

[
M

(
T S

T eSe

)
−M

(
T SEe

T eSeE

)
+M

(
Ee

E

)]
+αEe

[
−M

(
Ee

E

)
−M

(
E
Ee

)]
+µ2Ee

[
−M

(
Ee

E

)
−M

(
E
Ee

)]

(31)
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dG3

dt
=

(
I−Ie

I

)[
αE− [p1λ +(1− p1)λ +µ2]I−αEe +[p1λ +(1− p1)λ +µ2]Ie

]
= αEe

[
M

(
E
Ee

)
−M

(
EIe

IEe

)
+M

(
Ie

I

)]
+p1λ Ie

[
−M

(
Ie

I

)
−M

(
I
Ie

)]
+(1− p1)λ Ie

[
−M

(
Ie

I

)
−M

(
I
Ie

)]
+µ2Ie

[
−M

(
Ie

I

)
−M

(
I
Ie

)]
(32)



dG4

dt
=

(
T−T e

T

)[
(1− p1)λ I− [σ4 +µ2]T − (1− p1)λ Ie +[σ4 +µ2]T e

]
= (1− p1)λ Ie

[
M

(
I
Ie

)
−M

(
T eI
T Ie

)
+M

(
T e

T

)]
+σ4Se

[
−M

(
T e

T

)
−M

(
T
T e

)]
+µ2T e

[
−M

(
T e

T

)
−M

(
T
T e

)](33)



dG5

dt
=

(
V−V e

V

)[
σ1S− [η +σ2 +µ2]V −σ1Se +[η +σ2 +µ2]V e

]
= σ1Se

[
M

(
S
Se

)
−M

(
V eS
V Se

)
+M

(
V e

V

)]
+ηV e

[
−M

(
V e

V

)
−M

(
V
V e

)]
+σ2V e

[
−M

(
V e

V

)
−M

(
V
V e

)]
+µ2V e

[
−M

(
V e

V

)
−M

(
V
V e

)]
(34)



dG6

dt
=

(
R−Re

R

)[
σ2V + p1λ I +σ4T − [σ3 +µ2]R−σ2V e− p1λ Ie−σ4T e

+[σ3 +µ2]Re
]

= σ2V e
[
M

(
V
V e

)
−M

(
ReV
RV e

)
+M

(
Re

R

)]
+p1λ Ie

[
M

(
I
Ie

)
−M

(
ReI
RIe

)
+M

(
Re

R

)]
+σ4T e

[
M

(
T
T e

)
−M

(
ReT
RT e

)
+M

(
Re

R

)]
+σ3Re

[
−M

(
Re

R

)
−M

(
R
Re

)]
+µ2Re

[
−M

(
Re

R

)
−M

(
R
Re

)]

(35)

Adding and simplifying all terms
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dG
dt

= µ2Se
[
−M

(
Se

S

)
−M

(
S
Se

)]
+µ2Ee

[
−M

(
Ee

E

)
−M

(
E
Ee

)]
+µ2Ie

[
−M

(
Ie

I

)
−M

(
I
Ie

)]
+µ2T e

[
−M

(
T e

T

)
−M

(
T
T e

)]
+µ2V e

[
−M

(
V e

V

)
−M

(
V
V e

)]
+µ2Re

[
−M

(
Re

R

)
−M

(
R
Re

)]
+µ1P2Ie

[
−M

(
SeI
SIe

)
+M

(
Ee

E

)
−M

(
EeI
EIe

)
+M

(
Se

S

)]
+σ1Se

[
−M

(
Se

S

)
−M

(
V eS
V Se

)
+M

(
V e

V

)]
+ηV e

[
−M

(
V e

V

)
−M

(
SeV
SV e

)
+M

(
Se

S

)]
+σ3Re

[
−M

(
Re

R

)
−M

(
SeR
SRe

)
+M

(
Se

S

)]
+β1IeSe

[
−M

(
ISEe

IeSeE

)
−M

(
Se

S

)
+M

(
I
Ie

)
+M

(
Ee

E

)]
+β2T eSe

[
−M

(
T SEe

T eSeE

)
+M

(
Ee

E

)
−M

(
Se

S

)
+M

(
T
T e

)]

(36)



+ αEe
[
−M

(
Ee

E

)
−M

(
EIe

IEe

)
+M

(
Ie

I

)]
+ p1λ Ie

[
−M

(
Ie

I

)
−M

(
ReI
RIe

)
+M

(
Re

R

)]
+(1− p1)λ Ie

[
−M

(
Ie

I

)
−M

(
T eI
T Ie

)
+M

(
T e

T

)]
+σ4T e

[
−M

(
T e

T

)
−M

(
ReT
RT e

)
+M

(
Re

R

)]
+σ2V e

[
−M

(
V e

V

)
−M

(
ReV
RV e

)
+M

(
Re

R

)]
(37)

Let

dG
dt

= L1 +L2(38)

where 

L1 =−µ2SeM

(
S
Se

)
−µ2EeM

(
E
Ee

)
−µ2IeM

(
I
Ie

)
−µ2T eM

(
T
T e

)
−µ2V eM

(
V
V e

)
−µ2ReM

(
R
Re

)
−µ1P2IeM

(
EeI
EIe

)
−σ1SeM

(
V eS
V Se

)
−ηV eM

(
SeV
SV e

)
−σ3ReM

(
SeR
SRe

)
−β1IeSeM

(
ISEe

IeSeE

)
−β2T eSeM

(
T SEe

T eSeE

)
−αEeM

(
IeE
IEe

)
− p1λ IeM

(
ReI
RIe

)
− (1− p1)λ IeM

(
T eI
T Ie

)
−σ4T eM

(
ReT
RT e

)
−σ2V eM

(
ReV
RV e

)
(39)

and
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L2 = (β1IeSe +β2T eSe +µ1P2Ie)M

(
Ee

E

)
+(σ2V e +σ4T e + p1λ Ie)M

(
Re

R

)
+(1− p1)λ IeM

(
T e

T

)
+σ1SeM

(
V e

V

)
+αEeM

(
Ie

I

)
− (µ2Ee +αEe)

M

(
Ee

E

)
− (σ3Re +µ2Re)M

(
Re

R

)
− (σ4T e +µ2T e)M

(
T e

T

)
−(ηV e +σ2V e +µ2V e)M

(
V e

V

)
− (p1λ Ie +(1− p1)λ Ie +µ2Ie)M

(
Ie

I

)
(40)

{
+µ1P2IeM

(
SeI
SIe

)
+β1IeSeM

(
I
Ie

)
+β2T eSeM

(
T
T e

)
(41)

Using endemic equilibrium relations

L2 = µ1P2IeM

(
SeI
SIe

)
+β1IeSeM

(
I
Ie

)
+β2T eSeM

(
T
T e

)
(42)

Observation; |L1| is greater than L2.

Hence;
dG
dt

= L1 +L2 ≤ 0.

Noting that L1 +L2 = 0

if (S,E, I,T,V,R) = (Se,Ee, Ie,T e,V e.Re). By La Salle’s invariance principle the endemic equi-

librium, Qe is globally asymptotically stable [20]. �

5. ANALYSIS OF OPTIMAL CONTROL PROBLEM

Arising from the results of the our analysis, time-dependent optimal control measures are

introduced into the model. An optimal control theory based on the Pontryagin’s principle is

employed to obtain the necessary conditions for the optimal strategies aimed at preventing and

controlling the disease spread [21].

Thus, the following three optimal control variables are considered: u1(t), represents a mea-

sure for preventing hepatitis B transmission through education, u2(t) represents a measure of

preventing hepatitis B transmission through vaccination and u3(t) represents a surveillance mea-

sure of availability of medical resources at health facilities to diagnose and treat people infected

with the disease.

Based on these control variables, the system of differential equation is of the form;
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dS
dt

= µ1(1− p2I)+ηV +σ3R− (1−u(t))[(β1I +β2T )]S− [µ2 +u2(t)]S

dE
dt

= (1−u1(t))[β1I +β2T ]S+µ1 p2I− [µ2 +α]E

dI
dt

= αE− [λ +µ2]I

dT
dt

= (1− p1)− [u3(t)+µ2]T

dV
dt

= u2(t)S− [η +σ2 +µ2]V

dR
dt

= σ2V + p1λ I +u3(t)T − [σ3 +µ2]R

(43)

The goal of the optimal control strategies is to minimize the number of susceptible,infected

, exposed carries of human and the treated population while keeping the costs of applying the

controls; u1(t),u2(t),u3(t) as low as possible [22, 23, 24]. The objective functional J given by ;

J(u1,u2,u3) =
∫ t f

0

[
A1S+A2E +A3I +A4T +

1
2

3

∑
i=1

ciu2
i
]
dt(44)

where A1,A2,A3,c1,c2 and c3 are positive weight constants.

where; c1u2
1 represents a measure for preventing hepatitis B transmission through education of

both susceptible and disease classes so as to observe safety protocols aimed to stem the spread

of infection. c2u2
2, the control u2(t) represents a measure of preventing hepatitis B transmission

through vaccination and c3u2
3, the control u3(t) represents a surveillance measure of availability

of medical resources at health facilities to diagnose and treat people infected.

The costs of controls have been chosen to be quadratic in nature because by assumption, cost is

usually non-linear [25, 26].

The optimal functions; {u∗1(t),u∗2(t),u∗3(t)} are such that;

J(u∗1,u
∗
2,u
∗
3) = min{J(u1,u2,u3) : u1,u2,u3 ∈ℵ}(45)

where,

ℵ = {ui : 0≤ ui(t)≤ 1 ,Lebesgue measurable, ∈ [0, t f ]}

for i = 1, . . . ,3. is called the control set.
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Theorem 5.1. If the objective functional J given by is defined on a set of bounded control ℵ

and is subject to the non-autonomous system with initial conditions at t = 0, then ∃ an optimal

control u∗ =
(
u∗1,u

∗
2,u
∗
3
)

such that J(u∗) = min{J(ui) : ui ∈ℵ},for i = 1,2, . . . ,3

6. PONTRYAGIN’S MAXIMUM PRINCIPLE

This principle gives the necessary conditions for optimality. The Hamiltonian (H) with re-

spect to (u1,u2,u3) is given by .



H = A1S+A2E +A3I +A4T +
1
2
(
c1u2

1 + c2u2
2 + c3u2

3
)

+λ1[u1(1− p2I)+ηV +σ3R− (1−u1(t))(β1I +β2T )S− [µ2 +u2(t)]S]

+λ2[(1−u1(t))[β1IS+β2T ]S+µ1 p2I− [µ2 +α]E]

+λ3[αE− [λ +µ2]I]

+λ4[(1− p1)λ I− [u3(t)+µ2]T ]

+λ5[u2(t)S− [η +σ2 +µ2]V ]

+λ6[σ2V + p1λ I +u3(t)T − [σ3 +µ2]R]

(46)

where λi, i = 1, . . . ,6 are the adjoint variables. The next result presents the adjoint .

dλ1

dt
=− ∂H

∂S(t)
dλ2

dt
=− ∂H

∂E(t)

dλ3

dt
=− ∂H

∂ I(t)
dλ4

dt
=− ∂H

∂T (t)

dλ5

dt
=− ∂H

∂V (t)
dλ6

dt
=− ∂H

∂R(t)

with terminal conditions (48). The solutions of adjoint are;
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dλ1

dt
=− ∂H

∂S(t)

=−A1 +λ1
[
(1−u1(t))(β1I +β2T )+µ2 +u2(t)

]
−λ2(1−u1(t))(β1I +β2T )−λ5w2(t)

dλ2

dt
=− ∂H

∂E(t)

=−A2 +λ2(µ2 +α)−λ3α

dλ3

dt
=− ∂H

∂ I(t)

=−A3 +λ1µ1P2 +λ1(1−u1(t))β1S−λ2β1S(1−u1(t))

−λ2µ1P2 +λ3(λ +µ2)−λ4(1−P1)λ −λ6P1λ

dλ4

dt
=− ∂H

∂T (t)

=−A4 +λ1(1−u1(t))β2S−λ2(1−u1(t))β2S+λ4(u3(t)+µ2)

−λ6u3(t)

dλ5

dt
=− ∂H

∂V (t)

=−λ1η +λ5(η +σ2 +µ2)−λ6σ2

dλ6

dt
=− ∂H

∂R(t)

=−λ1σ3 +λ6(σ3 +µ2)

(47)

which satisfies the transversality condition;

λi(t f ) = 0,∀i = 1,2, . . .6(48)

By combining the Pontryagin’s Maximum Principle and the existence of optimal control.

6.1. Characterisation of optimal control. The characterisation of the optimal control given

by (50) is derived by solving the partial differential equations
∂H
∂w1

= 0,
∂H
∂u2

= 0 and
∂H
∂u3

= 0
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for u∗1,u
∗
2 and u∗3 respectively.



∂H
∂u1(t)

= c1u1 +λ1S(β1I +β2T )−λ2S(β1I +β2T ) = 0

ū1 =
λ2S(β1I +β2T )−λ1S(β1I +β2T )

c1

=
(λ2−λ1)(β1I +β2T )S

c1
∂H

∂u2(t)
= c2u2−λ1S+λ5S = 0

ū2 =
λ1S−λ5S

c2

=
(λ1−λ5)S

c2
∂H

∂u3(t)
= c3u3−λ4T +λ6T = 0

ū3 =
λ4T −λ6T

c3

=
(λ4−λ6)T

c3

(49)

Theorem 6.1. The optimal control vector is given by (u∗1(t),u
∗
2(t),u

∗
3(t)) to miniimizes (J) is

given by



u∗1(t) = max
{

0,min
{

1,
(λ2−λ1)(β1I +β2T )S

c1

}}
u∗2(t) = max

{
0,min

{
1,
(λ1−λ5)S

c2

}}
u∗3(t) = max

{
0,min

{
1,
(λ4−λ6)T

c3

}}(50)

where λ1,λ2,λ3,λ4,λ5 and λ6 are obtained by solving Equation (47) and Equation (48) simul-

taneously. Also 

u1 = w̃1 =
(λ2−λ1)(β1I +β2T )S

c1

u2 = ũ2 =
(λ1−λ5)S

c2

u3 = ũ3 =
(λ4−λ6)T

c3

(51)
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By imposing bounds on the controls,

u∗1 =


0, i f ũ1 ≤ 0

ũ1, i f 0 < ũ1 < 1

1, i f ũ1 ≥ 1

, u∗2 =


0, i f ũ2 ≤ 0

ũ2, i f 0 < ũ2 < 1

1, i f ũ2 ≥ 1

u∗3 =


0, i f ũ3 ≤ 0

ũ3, i f 0 < ũ3 < 1

1, i f ũ3 ≥ 1

(52)

The system in (52) leads to the system in (50). Every tine interval gives a unique optimality of

the system.

7. NUMERICAL RESULTS

An iterative method of Runge-kutta’s fourth order was used to solve the optimality system

of the model (51). With a given initial guess, the program solves the state equation in forward

time interval of [0, 100], and the results of the state equation are placed in the adjoint equation

which are then solve in backward time. The state and adjoint values are used accordingly to

upgrade the controls employing the characterization (50) and the process is repeated until the

state, adjoint and the control values are almost exact as the next successive values when the

iteration terminates. The simulation was done for different combination of the controls u1, u2,

u3, and the results compared for the combination that drastically minimises the exposed and the

infected. Table 3 shows the various parameter values used in the numerical simulations. Some

were taken from publish research and others were assumed [27, 28, 29].
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TABLE 3. Numerical Values
Parameter Value Reference

β1 0.0400 [30]

β2 0.002 [31]

µ1 0.0196 [31]

µ2 0.0096 [31]

p1 0.6500 Assumed

p2 0.0025 Assumed

σ1 0.2500 [30]

σ2 0.0050 Assumed

σ3 0.0020 Assumed

σ4 0.0025 [31]

α 0.0550 Assumed

η 0.0010 Assumed

λ 0.4500 Assumed

7.1. Strategy A: Prevention and Vaccination of Susceptible. We optimise the objective

functional using prevention and vaccination of susceptible as a control measure. As a result

of prevention and vaccination control variables, there have been a reduction in the number of

infectious population as shown in Figure 1 of the results.
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;

FIGURE 1. Optimal prevention and vaccination of population susceptible.

7.2. Strategy B: Prevention and Treatment of Infected population. We optimise the ob-

jective functional using prevention of susceptible and treatment of the infected population as

a control measure. As a result of prevention and treatment control variables, there have been

a reduction in the number of population infected. This is evidence that these control variables

have an impact in controlling the spread of the infection with time as shown in Figure 2 of the

plots.
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;

FIGURE 2. Optimal prevention and treatment of population infected.

7.3. Strategy C: Vaccination and Treatment of Infected population. We optimise the ob-

jective functional using vaccination of suscepttible and treatment of infected population as a

control measure. Figure 3 shows the effects of vaccination susceptible population and treatment

of infected population. There have been a significant reduction in the number of population in-

fected.
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;

FIGURE 3. Optimal vaccination and treatment of population infected.

8. CONCLUSION

We developed a mathematical model that investigates the effect of limited medical resources

on the spread of hepatitis B, and to find an optimum intervention to control and prevent the

spread of hepatitis B infection.

We analysed and proved the local and global stability of the model using the Routh Hurwitz

criteria and two different Lyapunov functions. The results of the stability analysis showed that
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depending on the control strategies adopted, the disease can persist or get eliminated from the

region.

We simulated the model to investigate the impact of limited medical resources on the dynamics

of the disease. Hence we increased the treatment and vaccination rates steadily. The simulation

results established that limited medical resource is directly proportional to the successful fight

against the spread of the disease.

We simulated the model with and without optimal control variables simultaneously. The results

showed that with the incorporation of the control variables, the model significantly performed

better than the model without the control variables as shown in Figure 1, Figure 2 and Figure 3

of the numerical results.
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