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Abstract: Diabetic Retinopathy (DR) can lead to vision loss if the patient does not get effective treatment based on 

the patient’s condition. Early detection is needed to know what an effective treatment for those patients is. For helping 

ophthalmologists, DR detection methods using computer-based were developed. Ophthalmologists can use the result 

of the method as a consideration in diagnosing the class of DR. One of the powerful methods is deep learning. The 

proposed method uses two deep learning architectures, namely Convolutional Neural Network (CNN) and Recurrent 

Neural Network (RNN), for DR detection. CNN is used to detect DR lesion features, and RNN is used for captioning 

based on those lesion features. We used three pre-trained CNN models, including AlexNet, VGGNet and GoogleNet, 

and used Long Short-Term Memory (LSTM) as RNN models. In the image preprocessing, we applied contrast 

enhancement using Contrast Limited Adaptive Histogram Equalization (CLAHE) and compared the results with those 

without CLAHE. We have done the training and testing process with a different proportion of data. The experimental 
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results show that our proposed method can detect the lesion features and generate caption with the highest average 

accuracy of 96.12% for GoogleNet and LSTM with CLAHE and the proportion 70% training data 30% testing data. 

Keywords: diabetic retinopathy; deep learning; convolutional neural network (CNN); long short-term memory 

(LSTM). 

2010 AMS Subject Classification: 92B20. 

 

 

1. INTRODUCTION 

Diabetic Retinopathy (DR) is a complication of diabetes caused by uncontrolled high blood 

sugar levels in the long-term [1]. DR could lead to vision loss if the patient were untreated properly 

based on the patient’s condition [2]. Early detection is required to prevent permanent vision loss 

in patients [3]. According to [4], early detection and treatment can reduce vision loss’s impact up 

to 95%. One of the methods to detect DR is through a retinal fundus image’s patient. 

Ophthalmologists identify the retinal fundus image whether there are DR lesion features, such as 

microaneurysms, exudates, hemorrhages, and neovascularization [5]. Since those processes take a 

time, researchers developed computer-based methods to speed up the DR detection process [6]. 

There are various computer-based methods for DR detection, and one of the methods is deep 

learning. Deep learning has a higher accuracy performance than other DR detection methods [7]. 

Deep learning consists of hierarchically structured layers that can automatically extract features 

from complex and big data, such as images or text [8]. Convolutional Neural Network (CNN) and 

Recurrent Neural Network (RNN) are two examples of deep learning architecture that are designed 

for spatial and sequential data, respectively. CNN is mostly used for DR detection because it has 

a convolutional layer that can extract informative features of retinal fundus images well [8, 9]. 

There are numerous CNN models for DR detection, both self-constructed models that trained from 

scratch and pre-trained models, such as LeNet, AlexNet, VGGNet, GoogleNet, ResNet and 

DenseNet. Those models are differentiated based on the number of layers and the size of 

parameters. The pre-trained CNN model is a CNN model suitable for training new small dataset 

because it can overcome the overfitting problem in the new model [9].  
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As reviewed by Alyoubi et al. [8] and Asiri et al. [9], many researchers use deep learning, 

especially CNN, for DR detection. For instance, Athira et al. [10] constructed the CNN with two 

convolutional layers for DR detection. Using self-constructed CNN, Athira et al. were able to 

detect exudates and red lesions in the retinal fundus image also classified those fundus images into 

normal (without DR) and abnormal (with DR). Athira et al. get an accuracy of 93.8%. Wang et al. 

[11] constructed a region-based CNN that can detect and classify DR along with locating the lesion 

features regions. Wang et al. were able to detect tiny DR lesion features in the retinal fundus image 

and classified those fundus images into healthy, mild, moderate, severe, and proliferative, with an 

accuracy of 92.95%. 

Some researchers use the pre-trained CNN model to detect DR lesion features. Esfahani et al. 

[12] use a pre-trained CNN model for DR lesion features detection and classified them based on 

those lesion features into normal and DR. Esfahani et al. used ResNet and gets an accuracy of 86%. 

Raj et al. [13] use VGGNet to detect blood vessels and microaneurysms, including classifying 

them into normal, mild, moderate, severe, and proliferative. Raj et al. get an accuracy of 95.41%. 

To increase the model’s performance accuracy, some researchers applied a contrast 

enhancement method on preprocessing the retinal fundus images. Contrast Limited Adaptive 

Histogram Equalization (CLAHE) is one of the contrast enhancement methods that often used for 

retinal fundus images. CLAHE is a histogram-based method that can produce a satisfactory 

contrast of retinal fundus image, and because of that, the DR lesion features detected clearly [14, 

15]. Kaur and Mann [16] applied CLAHE to their retinal fundus images before processing them 

to the model for detecting DR based on blood vessels. As a result, blood vessels are more apparent, 

and they get a model accuracy of 96.17%. Soomro et al. [14] compared the results of blood vessels 

detection through image preprocessing with CLAHE and image preprocessing without CLAHE. 

As a result, the model through image preprocessing with CLAHE is higher than without CLAHE. 

The output of the DR detection that has been widely carried out using CNN is a DR class. In 

case the output is only class of DR, the ophthalmologist does not know the retinal fundus image 

patient’s condition. The ophthalmologist needs the output in the form of a caption that explains 

the condition present in the retinal fundus image. Those captions help the ophthalmologist as a 
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consideration in diagnosing the class of DR. 

CNN, along with RNN, is usually used for image captioning. CNN is used to detect objects in 

the image, while RNN is used to generate captions based on those objects [17]. RNN has a hidden 

layer that can save the previous layer’s output and use it for the next layer so that RNN can predict 

well next word in captioning [18]. Although RNN can predict well the next word, RNN can not 

overcome long-term dependence [17]. Long Short-Term Memory (LSTM) is one of the RNN 

models with a memory cell that can overcome those issues. The memory cell allows LSTM to 

store information and context in case of a long caption [19].  

Related to DR detection, CNN can detect the DR lesion features with good results. Applying 

CLAHE as a contrast enhancement method on retinal fundus images before inputting those fundus 

images to the model can improve the model’s performance accuracy. The aim of this study is to 

determine the results and performance accuracy of CNN and LSTM in detecting DR lesion features 

and generating captions based on these lesion features. Besides, it is also to determine the effect 

of applying CLAHE to our retinal images on the model’s performance accuracy. 

 

2. MATERIALS AND METHODS 

2.1 Dataset 

Table 1. Example of retinal fundus images with captions. 

Retinal Fundus Image Captions 

 

1. Normal fundus image. 

2. A healthy fundus image. 

3. A fundus image without Diabetic Retinopathy disease characteristics. 

 

1. This fundus image has microaneurysms, hemorrhages, and 

neovascularization. 

2. A fundus image with microaneurysms, hemorrhages, and 

neovascularization. 

3. There are microaneurysms, hemorrhages, and neovascularization in this 

fundus image. 

Source: http://www.adcis.net/en/third-party/messidor/ [20] 
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A total of 54 normal and 54 DR fundus images from the MESSIDOR dataset were used in this 

study. We limited this study using only three lesion features based on the MESSIDOR dataset’s 

information, i.e. microaneurysms, hemorrhages and neovascularization. Each retinal fundus image 

has captions describing what lesion features are present on those retinal fundus images. One retinal 

fundus image has three captions with a similar meaning, as shown in Table 1. Each retinal fundus 

image will be flipped horizontally and vertically, thus becoming 324 fundus images. 

2.2 CNN 

CNN has three main layers that are the convolutional, pooling and fully connected layers. The 

convolutional layer will extract the input image features by convolving small areas in the input 

image with a matrix-shaped filter, as shown in Figure 1 [21]. There are adjustable parameters, such 

as filter and stride. For example, given a filter to convolute small areas in the q-th layer with the 

size 𝐹𝑞 × 𝐹𝑞, the weights of the filter are represented by 

  𝑊(𝑞) = [𝑤𝑖𝑗
(𝑞)

]         (1) 

where i and j are the positions along with the height and width, respectively. The result of the q-th 

convolutional layer is obtained using the following formula [21]: 

 ℎ𝑖𝑗
(𝑞+1)

= ∑ ∑ 𝑤𝑟𝑠
(𝑞)𝐹𝑞

𝑠=1

𝐹𝑞

𝑟=1 ℎ𝑖+𝑟−1,𝑗+𝑠−1
(𝑞)

     (2) 

with 𝑖 = 1, … , 𝐿𝑞 − 𝐹𝑞 + 1 an 𝑗 = 1, … , 𝐵𝑞 − 𝐹𝑞 + 1, where 𝐿𝑞 and 𝐵𝑞 are size of q-th layer. 

Meanwhile, the stride is a parameter that determines the amount of convolution shift. As shown in 

Figure 1, given a stride equal to 1, it means that a convolution will be carried out every one shift. 

 

Figure 1. Example computation in the convolutional and pooling layer. Convolve input with filter 

size 3 × 3, stride 1, and zero padding 1. Then pooled the convolution’s output with max pooling 

size 2 and stride 1. 
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Besides filter and stride, there is another parameter that can be adjusted, namely zero padding. 

Zero padding is a parameter that determines the number of pixels containing the number 0 to be 

padded to the input border, which makes the output size of the convoluted layer not much different 

from the input size [22]. Zero padding is equal to 1, which means that one pixel containing the 

number 0 in the input border will be added, as shown in Figure 1. The convolutional layer’s output 

will be transformed with a non-linear operation, namely Rectified Linear Unit (ReLU), using the 

following formula [23]: 

𝑅𝑒𝐿𝑈(𝑥) = {
𝑥, 𝑖𝑓 𝑥 ≥ 0
0, 𝑒𝑙𝑠𝑒        

        (3) 

The pooling layer reduces the size of the convolutional layer’s output by a math operation 

while retaining important information from the image [24]. Average and max pooling are types of 

operation in the pooling layer. Both are based on the average and the largest value of the small area 

in the image, respectively. Similar to the convolutional layer, the pooling layer also has a stride. 

Example operation for max pooling with the size is equal to 2 and stride is equal to 1 shown in 

Figure 1. 

After adding the appropriate number of convolutional and pooling layers, the next layer is fully 

connected. In the fully connected layer, the dimensions of the last layer of the convolutional or 

pooling layer will be converted into one dimension, which will be further processed using Feed 

Forward Neural Network [25]. The output size from CNN is based on the task to be solved. If the 

classification task, then the output size is the number of classes. 

Many CNN models have been widely applied for DR detection. Since this study uses small 

data set, so we use pre-trained CNN model. This study uses three pre-trained CNN models through 

transfer learning, i.e. AlexNet, VGGNet and GoogleNet. Transfer learning is the process of using 

the weight of a large data set to initialize the new model’s weight, followed by finetuning the new 

model’s weight on the new data set [25]. The large data set we used for transfer learning is the 

ImageNet data set. 

2.2.1 AlexNet 

AlexNet with input image size 227 × 227 is CNN which does not have layers that are too deep. 
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According to [26], AlexNet has a better computational capability of handling complexity than 

other models. AlexNet architecture shown in Figure 2 (a). Filter sizes used in the convolutional 

layer are 11 × 11 with stride 4 and zero padding 2, 5 × 5 with stride 1 and zero padding 2 and 3 × 

3 with stride 1 and zero padding 1. AlexNet uses max pooling size equal to 3 with stride 2. Between 

three fully connected layers, there are two dropout layers. The dropout layer is setting the neuron’s 

output of a fully connected layer to zero [27]. The dropout layer does not contribute to the feed-

forward process [28]. For AlexNet, each dropout layer’s size is equal to 0.5, which means 50% of 

the neuron’s output of the fully connected layer will be set to zero. The number of neurons in the 

first fully connected layer is 9,216 and the second and the last is 4,096. 

 

Figure 2. (a) AlexNet architecture, (b) VGGNet architecture. 

2.2.2 VGGNet 

VGGNet with an input image size 224 × 224 is a CNN that has a deeper layer than AlexNet. 

VGGNet performs very well with the image that has dense features, such as the retinal fundus 

image [13]. VGGNet architecture shown in Figure 2 (b). VGGNet uses a 3 × 3 filter with stride 1 

and zero padding 1 for all convolutional layers. For all pooling layers, VGGNet uses max pooling 

with size 2 and stride 2. Similar to AlexNet, between three fully connected layers, there are two 

dropout layers. The size of each dropout layer is 0.5. The number of neurons for all fully connected 

layers is 4,096. 

2.2.3 GoogleNet 

GoogleNet has a modify layer called inception module. The inception module is concatenating 
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of several convolutional channels and a max pooling channel, as shown in Figure 3 (a). The 

inception module allows GoogleNet to extract different features of the same image in parallel 

computation; hence, GoogleNet performs well even with limited memory and computing budgets 

[28, 29]. For the whole GoogleNet architecture can be seen in Figure 3 (b). In the convolutional 

layer, GoogleNet uses filter sizes 7 × 7 with stride 2 and zero padding 3, 3 × 3 with stride 1 and 

zero padding 1, and 1 × 1 with stride 1. GoogleNet uses max pooling with size 2 and stride 2 and 

average pooling with size 7. GoogleNet uses nine inception modules. The size of the dropout and 

fully connected layers are 0.2 and 1,024, respectively. 

 

Figure 3. (a) Inception module of GoogleNet, (b) GoogleNet architecture. 

2.3 RNN 

Let 𝑥 =  𝑥1, 𝑥2, … , 𝑥𝑇 denote as sequential data for the inputs of RNN, where 𝑥𝑡 is input at 

time step t. As shown in Figure 4 (a), the input 𝑥1 will be processed to produce hidden ℎ1 and 

output 𝑦1 . The hidden ℎ1  will be used in next computations to produce hidden ℎ2 , and then 

hidden ℎ2 will be used to produce output 𝑦2. This process was done until we get output 𝑦𝑇. 

There are various RNN models, such as Long Short-Term Memory (LSTM) and Gated 

Recurrent Unit (GRU). LSTM has a memory cell and three gates in the hidden layer, namely forget, 

input and output gates; meanwhile, GRU has no separate memory cell and only has two gates, 

namely reset and update [30]. Although GRU has a simpler structure, which leads to faster 

computation than LSTM, GRU does not have enough memory for a longer time [31]. In this study, 
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we used LSTM as an RNN model.  

 

Figure 4. (a) Architecture RNN, (b) hidden layer of LSTM. 

As shown in Figure 4 (b), the hidden layer of LSTM has memory cell 𝐶𝑡  that will store 

information at each time step t, and the information stored in the memory cell 𝐶𝑡 is controlled by 

three gates [32]. The forget gate 𝑓𝑡 to determine what information in the previously hidden layer 

will be stored in the memory cell 𝐶𝑡. The input gate 𝑖𝑡 determine what information in new input 

𝑥𝑡 which will be stored in the memory cell 𝐶𝑡. The output gate 𝑜𝑡 to determine what information 

will be used as the output of the hidden layer ℎ𝑡. The formula in hidden layers of LSTM as follows 

[19]: 

         𝑓𝑡 = 𝜎(𝑊𝑥
𝑓

𝑥𝑡 + 𝑊ℎ
𝑓

ℎ𝑡−1)       (4) 

         𝑖𝑡 = 𝜎(𝑊𝑥
𝑖𝑥𝑡 + 𝑊ℎ

𝑖ℎ𝑡−1)        (5) 

       𝐶𝑡 = 𝐶𝑡−1 × 𝑓𝑡 + 𝑡𝑎𝑛ℎ(𝑊𝑥
𝐶𝑥𝑡 + 𝑊ℎ

𝐶ℎ𝑡−1) × 𝑖𝑡     (6) 

         𝑜𝑡 = 𝜎(𝑊𝑥
𝑜𝑥𝑡 + 𝑊ℎ

𝑜ℎ𝑡−1)       (7) 

         ℎ𝑡 = 𝑜𝑡 ∙ 𝑡𝑎𝑛ℎ(𝐶𝑡)         (8) 

where 𝑊𝑓, 𝑊𝑖, 𝑊𝐶 and 𝑊𝑜 are weights of forget gate, input gate, memory cell, and output 

gate, respectively. 

2.4 Model Simulation 

In this study, there are two processes, training dan testing. The training and testing process 

frameworks are shown in Figure 5 (a) and Figure 5 (b), respectively. The training process will 

produce the model that can map the retinal fundus image into a caption. Then, those models will 
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be evaluated in the testing process.  

 

Figure 5. Framework of the (a) training process and (b) testing process. Retinal fundus image 

source: http://www.adcis.net/en/third-party/messidor/ [20] 

2.4.1 Image preprocessing 

In the image preprocessing, we do two different phases that produce two different models. 

Those models are the model with and without contrast enhancement. The first step in image 

preprocessing is cropping each retinal fundus image. The original size of the retinal fundus image 

in MESSIDOR is 2240 × 1488 for width and height, respectively. After we cropped the fundus 

image, the size becomes 1450 × 1420. This step is done for all models, with and without contrast 

enhancement. 

The second step is converting the color of the retinal fundus images into greyscale and applying 

CLAHE. CLAHE is a contrast enhancement method by applying a threshold on the transformation 

function that transforms the histogram of the pixel level in the image [33]. Although CLAHE was 

used on the greyscale image for the first time, CLAHE can also work for a color image. The third 

step is to resize the retinal fundus image according to the CNN model used. AlexNet is 227 × 227, 
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VGGNet and GoogleNet are 224 × 224. For the model without contrast enhancement, we do not 

through the second step and go directly to the third step.  

2.4.2 Text preprocessing 

Since the LSTM works on vectors and not integers, then the captions for the training process 

will be preprocessed before we input it to LSTM. The captions that consist of characters, such as 

words and punctuations, will be processed to the tokenizer. The tokenizer is used to convert a 

sequence of characters into a sequence of integers known as integer tokens. For example, in the 

caption ‘A healthy fundus image.’, then the caption’s integer tokens are [7, 22, 9, 13, 24]. The 

character ‘A’ is represented by integer 7, the character ‘healthy’ is represented by integer 22, and 

so on until the character ‘.’ is represented by integer 24. Determining the character’s integer based 

on the order in which the characters appear in the caption list.   

The integer tokens will be processed to word embedding. Word embedding is used to convert 

an integer of one character into the vector of floating-point numbers. The vector of floating-point 

numbers is called an embedding vector. An example of word embedding using integer tokens [7, 

22, 9, 13, 24] is shown in Table 2.    

Table 2. Example of word embedding with an embedding vector size of 4. 

Character 
Integer of 

Character 
Embedding Vector 

A 7 [-0.9619, -2.4508,  1.1078, -0.3850] 

healthy 22 [ 0.0290,  0.7733, -1.1539, -0.8179] 

fundus 9 [ 1.0061, -1.0170, -0.1592,  0.4713] 

Image 13 [ 0.5004,  0.2346,  1.3357, -0.2154] 

. 24 [-0.5194,  1.4388, -0.2997,  0.4496] 

Determining the value of the embedding vector of each character is done by treating the 

embedding vector as weight that will be trained in the training process. The embedding vector’s 

size is based on the features vector; if AlexNet and VGGNet, then the embedding size is 4,096. If 

GoogleNet, the embedding size is 1,024. 

2.4.3 Training process 

For the training process shown in Figure 5 (a), we need retinal fundus images and captions, 

which describe the lesion features in those retinal fundus images. The retinal fundus images that 
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have been preprocessed will be inputted to the CNN. Since this study uses CNN to extract images 

to obtain the image’s features, the output layer is not used. The output of CNN is a feature vector, 

which summaries the contents of the retinal fundus image. The feature vector’s size is based on 

the last fully connected layer in CNN; 4,096 for AlexNet and VGGNet, 1,024 for GoogleNet. This 

feature vector is given as an initial memory cell to LSTM. 

Furthermore, the embedding vector from text preprocessing’s output will be inputted to LSTM. 

The hidden size of LSTM follows the embedding vector’s size. If AlexNet and VGGNet are used, 

the hidden size of LSTM is 4,096. If GoogleNet is used, the hidden size of LSTM is 1,024. The 

LSTM’s output is further given to the Linear layer to be converted into integer tokens. In the 

training process, the output is integer tokens. The integer tokens from the training process will be 

compared with the integer tokens of ground-truth to compute a model’s loss. The training process 

will be done until we get the smallest loss. 

2.4.4 Testing process 

In the testing process, the models obtained from the training process are AlexNet and LSTM 

without CLAHE; AlexNet and LSTM with CLAHE; VGGNet and LSTM without CLAHE; 

VGGNet and LSTM with CLAHE; GoogleNet and LSTM without CLAHE; GoogleNet and 

LSTM with CLAHE. Those models will be evaluated by inputting each retinal fundus image into 

the model, then inputting the output’s model to the Linear layer. The output of the Linear layer is 

integer tokens. Those integer tokens will be converted to the sequence of characters in the Clean 

Sentence phase, so that at the end, the output of the testing process in the form of a sentence. The 

testing process is shown in Figure 5 (b).  

The indicators for evaluating the captions generation mostly use Bleu and Meteor, which 

evaluate whether the model can make captions that correspond to grammar based on the corpus 

[34]. Since the model’s purpose in this study is to determine whether the generated captions contain 

lesion features relate to the retinal fundus image, those evaluating indicators are not applicable. 

We used the keyword of the name of the lesion features to evaluate the models. We will know 

which caption matches the condition lesion features in the retinal fundus image from the keyword. 
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The accuracy of the model is done by computing the percentage of the caption matching the 

condition of the lesion features in the retinal fundus image. 

 

3. RESULTS AND DISCUSSIONS 

We used Google Collaboratory with PyTorch library for model simulation. The data set was 

divided into data for training and data for testing processes with three proportions, i.e. 80% training 

data and 20% testing data; 70% training data and 30% testing data; 60% training data and 40% 

testing data. Each model’s training and testing process was simulated five times with different data 

split for each simulation. The results of the testing process can be seen in Table 3. 

Table 3. The average accuracy of the testing process. 

Proportion 

of Data 
Model 

Experiment Average 

Accuracy 1 2 3 4 5 

Training data: 

80%, testing 

data: 20%. 

AlexNet and LSTM without CLAHE 53.85 69.23 70.77 61.54 72.31 65.54 

AlexNet and LSTM with CLAHE 70.77 73.85 81.54 92.31 67.69 77.23 

VGGNet and LSTM without CLAHE 73.85 86.15 78.46 81.54 81.54 80.31 

VGGNet and LSTM with CLAHE 92.31 86.15 90.77 76.92 87.69 86.77 

GoogleNet and LSTM without 

CLAHE 
93.85 93.85 87.69 95.38 92.31 92.62 

GoogleNet and LSTM with CLAHE 93.85 95.38 98.46 92.31 93.85 94.77 

Training data: 

70%, testing 

data: 30%. 

AlexNet and LSTM without CLAHE 60.20 72.45 58.16 58.16 63.27 62.45 

AlexNet and LSTM with CLAHE 80.61 76.53 73.47 74.49 69.39 74.90 

VGGNet and LSTM without CLAHE 79.59 82.65 88.78 78.57 79.59 81.84 

VGGNet and LSTM with CLAHE 90.82 91.84 87.76 87.76 80.61 87.76 

GoogleNet and LSTM without 

CLAHE 
93.88 94.90 95.92 97.96 95.92 95.71 

GoogleNet and LSTM with CLAHE 94.90 96.94 96.94 94.90 96.94 96.12 

Training data: 

60%, testing 

data: 40%. 

AlexNet and LSTM without CLAHE 57.69 68.46 54.62 54.62 78.46 62.77 

AlexNet and LSTM with CLAHE 68.46 78.46 56.15 60.77 74.62 67.69 

VGGNet and LSTM without CLAHE 86.92 88.46 70.00 86.92 86.92 83.85 

VGGNet and LSTM with CLAHE 86.92 92.31 89.23 84.62 86.92 88.00 

GoogleNet and LSTM without 

CLAHE 
93.85 92.31 92.31 95.38 93.85 93.54 

GoogleNet and LSTM with CLAHE 95.38 94.62 93.08 94.62 92.31 94.00 
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As shown in Table 3, GoogleNet and LSTM always get an accuracy of more than 87.69% for 

all experiments. We get the highest average accuracy of 96.12% by using GoogleNet and LSTM 

with CLAHE and a proportion of data 70% training data and 30% testing data.  

The models using GoogleNet as the CNN model always get higher average accuracy than other 

models. This result indicates that our retinal fundus images are well extracted using GoogleNet. 

Furthermore, the models with CLAHE in most experiments, eighty-one of ninety experiments, have 

higher average accuracy than without CLAHE; these show that contrast enhancement with CLAHE 

affects the model accuracy. Besides the CNN model and model with CLAHE or not, the proportion 

of data used also affects our model accuracy. For our results, the highest average accuracy got when 

we use proportion of data 70% training data and 30% testing data. 

Table 4. Example of output of this study. 

No. Input Output Ground-truth 

1 

 

a fundus image contains microaneurysms , 

hemorrhages , neovascularization . 

Normal fundus 

image 

2 

 

normal fundus image . 

Normal fundus 

image 

3 

 

this is a normal fundus image . DR fundus image 

4 

 

there are microaneurysms , hemorrhages , and 

neovascularization in this fundus image . 
DR fundus image 

Compared to the previous work as mentioned in Section Introduction, our method able to 

produce the output in the form of captions. The example of the output can be seen in Table 4. 

Numbers 1 and 2 are examples of input for the model without CLAHE; meanwhile, numbers 3 and 
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4 are examples of input for the model with CLAHE. The output of numbers 1 and 3 is an example 

of incorrect output because it does not match the ground-truth. The correct output example is the 

output of numbers 2 and 4 because it matches the ground-truth. 

 

4. CONCLUSION 

Detecting DR lesion features and generate brief captions based on those lesion features using 

deep learning have been done. The experiment results show that from all models obtained, 

GoogleNet and LSTM with CLAHE using 70% training data and 30% testing data has the highest 

average accuracy. For future works, we suggest other researchers modify LSTM and use other pre-

trained CNN models or construct a CNN model from scratch to improve the performance of 

accuracy. 
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