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Abstract: In this study mortality rates due to chronic diseases in 31 European countries are examined, through certain 

time series modeling, based on the electronic database of Eurostat. The time series are grouped into 6 clusters using 

Fuzzy K-means method combined with Jensen-Shannon divergence enabling a more accurate investigation of the 

homogeneity within clusters. The intuitive interpretation of these results relies on studies concerning the differentiation 

of Europeans’ habits due to geopolitical position, nutritional, sociopolitical and environmental factors. Spearman 

coefficient, distance correlation and cross-correlation are used to reveal the underlying correlations while causality is 

checked through a parametric test, aiming to disclose the existence of Granger causality by examining all the pairs of 

the respective time series of premature mortality rates. Correlation indices and causality tests, highlight many 

statistically significant relationships with respect to their dynamics, comprehending the relationships governing the 

living standards of European countries. Finally, Europe’s average mortality is modelled while special emphasis is 

given to the emergence of the ideal representative of Europe’s rates. A detailed investigation of the relationships and 

patterns that characterize premature mortality from chronic diseases across Europe is provided, examining each 
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country either individually or in connection to the other countries, while each statistically generated outcome is 

supported by results concerning the economic status, environment, nutrition and especially status of public health.   

Keywords: linear time series analysis; SETAR models; fuzzy K-means clustering; correlation indices; granger 

causality. 

2010 AMS Subject Classification: 92C60, 62M10, 62P10, 62H30. 

 

 

1. INTRODUCTION 

The field of health and human mortality is an important research area, where the exported results 

and observations can play a decisive role in improving public health conditions aiming at a more 

targeted treatment of various diseases and illnesses encountered in nowadays while constantly 

increasing the average life expectancy. The usage of real and trustworthy data combined with 

proper modeling and effective highlighting of various types of relationships between observations 

may have a decisive role in providing important findings for utilization and further research. 

    In what follows we examine the dynamics and relations between time series describing the 

mortality rates caused by chronic diseases per 100,000 inhabitants under the age of 65 in 31 

European countries, 27 of which belong to the European Union. Many studies have been carried 

out concerning time series of mortality rates using a variety of mathematical and statistical tools, 

while in cited references some examples of such research articles are mentioned. In Valea et al. [1] 

the cardiovascular mortality rates in southern Romania are studied; Yilan et al. [2] uses ARIMA 

methodology to model mortality rates from injuries in China, while Adeyinka and Muhajarine [3] 

and Bisong et al. [4], utilize ARIMA models to study the evolution of mortality rates along with 

neural networks or Kalman filters, respectively. In Megyesiova and Lieskovska [5], the 

differentiation in Europe’s premature mortality between men and women is examined while 

highlighting the descending trend that characterizes premature mortality rates in the entire EU. 

    Our analysis can be divided in two parts: The first part focuses on modeling the rates of 

premature mortality in 31 European countries using linear and nonlinear time series methodologies. 
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It is noticed, that the majority of the time series are consisted of only 24 consecutive observations, 

constraining the utilization of complex time series models that would require the estimation of 

many unknown parameters and the invocation of many asymptotical properties. As a result, special 

attention is given to linear methodology, which is characterized by more “economic” models like 

autoregressive integrated moving average models (ARIMA), and random walk.  

    Moreover, in some time series where the fitting of any ARIMA model seems to be 

unsatisfactory, we turned our attention to nonlinear methodology and more specifically to low 

order self–exciting threshold autoregressive models (SETAR), which are adequate to describe 

more complicated relations between the observations of the time series. The short length of the 

examined time series does not allow the utilization of complex nonlinear statistical tests and tools, 

like correlation dimension, false nearest neighbors or Lyapunov exponents, aiming to uncover the 

hidden elements governing the dynamics of these time series. 

    In some time series where values are missing, we applied spline interpolation to supplement 

these values (Pratama et al. [6]). However, we have avoided extrapolation methods to increase the 

length of time series, as these methods involve larger errors especially when the length of the initial 

time series is relatively short.  

    The second part, is dedicated to the investigation of a variety of relations between the 31 

aforementioned time series of premature mortality rates. These attempts of revealing relations 

among different mortality levels include clustering algorithms, correlation indices and causality 

tests. More specifically, we utilized the fuzzy K – means algorithm combined with the Jensen – 

Shannon divergence aiming to cluster the 31 European countries and measure the differentiation 

of mortality rates between countries of the same cluster.  

    Furthermore, we provide certain correlation indices such as Spearman coefficient, distance 

correlation and cross–correlation for different lags among all 465 pairs of time series, and we 

investigate causal relations between time series by examining the (Instantaneous) Granger 

Causality. Checking the existence of Granger causality between time series allows us to examine 

whether the dynamics of each time series determines the evolution of other time series included in 
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our research.   

    Of particular interest are the methods of investigating Granger causality between time series 

using conditional (multivariate) Granger causality (Papana et al. [7]), frequency domain-based 

Granger causality (Siggiridou et al. [8]) and non-linear Granger causality (Kugiumtzis [9]). In 

Siggiridou et al. [10], a comparative study of the suitability of the aforementioned methods in 

multivariate time series is presented. One of the main disadvantages of simple (bivariate) Granger 

causality over conditional causality, is that the simple version cannot separate the causality case 

(a) x → y, x → z and z → y, from case (b) x → z and z → y. As a result, conditional Granger 

causality reveals only direct causal relationships between time series but not relationships that may 

emerge due to a third time series. In the present work, we do not examine causes using any of the 

3 aforementioned controls because of the short length of the time series.   

    The mean mortality rates from chronic diseases in Europe are depicted in a new time series. 

This time series is created by considering the mean value of the mortality rates of all 31 examined 

countries at each time point without taking into account incompatibilities due to missing values in 

some of the time points. Doubtlessly, both the modeling and the exploration of causal and non-

causal relations provide interesting results concerning the health conditions in this continent.  

    The paper is organized as follows: In section 2 we present the data sources we used. In section 

3 we outline the utilized methods and mathematical tools in linear and non-linear analysis, 

clustering and correlation-causality investigation. In section 4 we provide the results concerning 

the model selection for the mortality rates, clustering and homogeneity examination within the 

clusters, correlations and Granger causality. Finally, in section 5 we discuss and summarize the 

derived results, paying special attention to the explanation of the general descending trend that 

characterizes the evolution of the mortality rates. 

 

2. DATA 

In this study, we utilized time series data of chronic disease mortality rates per 100,000 inhabitants 

under the age of 65 in 31 European countries, 27 of which belong to the European Union. The 
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datasets used, belong to the open access, electronic database of Eurostat, which can be visited by 

interested readers through its website. More specifically, the database used in our analysis includes 

observations contained in two databases with codes: hlth_cd_asdr and sdg_03_40. The 

observations of both of these databases are organized in tables, where each row corresponds to a 

different European country and each column to a different calendar year. The first database, coded 

as sdg_03_40 and entitled "Standardized death rate due to chronic diseases by sex", contains 

observations of mortality rates from chronic diseases per 100,000 people under the age of 65 for 

17 consecutive years and more specifically rates from 2000 to 2017. In addition, these percentages 

include the cases that correspond to 6 chronic diseases. The 6 selected diseases are malignant 

neoplasms, diabetes mellitus, ischemic heart and cerebrovascular diseases, chronic diseases of the 

lower respiratory system and liver. On the other hand, the database with code hlth_cd_asdr and 

title "Causes of death - standardized death rate" includes mortality rates from 1994 to 2010 for the 

European countries. These rates are the cumulative rates of a much wider variety of chronic 

diseases. However, through Eurostat ‘s electronic system, it is possible to select only the 6 diseases 

that appear in database sdg_03_40 producing a valid combination of these datasets. 

   By merging these two databases, we obtained the mortality rates in European countries from 

1994 to 2017, a total of 24 years. Although, this fact does not imply that all 31 time series consist 

of 24 observations. The overlap that exists to the time periods covered by these two databases 

(2000 - 2010), allowed us to check their compatibility avoiding controversial conclusions. In 

addition, Eurostat ‘s electronic system allows the examination of mortality rates of men and 

women separately, but we preferred to study the behavior of these two categories as a whole. 

Finally, in the merged databases, there were time series of mortality rates for countries such as 

Liechtenstein, Turkey, Albania, Serbia and Northern Macedonia, but their length was quite short 

and their processing was beyond the scopes of this article. A really important element for our 

analysis is the short length of the examined time series, which should be taken into account in 

order to avoid precarious results. 
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3. METHODS AND MATHEMATICAL TOOLS FOR THE ANALYSIS OF MORTALITY RATES  

 

3.1 Linear Time Series Models 

Throughout this paragraph we outline the mathematical tools utilized for the upcoming 

investigation of the linear dynamics determining the progress of mortality rates in the 31 European 

countries examined in our article. Initially, our approach will be based on ARIMA models; during 

the time series analysis we start by investigating the linear methodology before applying any 

nonlinear models. Apparently, the short length of the times series requires the fitting of low 

complexity statistical models, making ARIMA models an ideal choice. The selection of the best 

ARIMA model for each of the 31 time series was made by taking into account certain statistical 

criteria like autocorrelation and partial autocorrelation function, portmanteau test, Akaike 

information criterion (AIC) and the value of the NRMSE for various ratios of training–testing sets. 

 

3.1.1. Utilization of ARIMA models 

 After subtracting the trend of the time series, the dynamics of system 𝛸𝑡 with ARMA models 

(p,q) can be studied, where p denotes the order of the autoregressive (AR) part and q denotes the 

order of the moving average model (MA). The general form of an ARMA (p,q) model is given as 

 

𝛸𝑡 = 𝑐 +  ∑ 𝜑𝑖𝑋𝑡−𝑖 + ∑ 𝜃𝑖𝜀𝑡−𝑖 + 𝜀𝑡.                                               (1)

𝑞

𝑖=1

𝑝

𝑖=1

 

 

    Special cases of ARMA models are the models AR(p) which consist only of p autoregressive 

terms and the models MA(q) which consist of q terms of moving average. Then, the ARIMA(p,d,q) 

model is defined, that describes the dynamics of a non-stationary time series. An ARIMA(p,1,q)  

model can be written as 
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𝛶𝑡 = 𝑐 +  𝛶𝑡−1 + ∑ 𝜑𝑖𝑋𝑡−𝑖 +  ∑ 𝜃𝑖𝜀𝑡−𝑖 + 𝜀𝑡.                                         (2)

𝑞

𝑖=1

𝑝

𝑖=1

 

 

    The choice of the order of an ARIMA(p,d,q) model relies on a series of criteria which will be 

briefly presented below. There is a wide variety of statistical methods, aiming to model time series 

characterized by linear relationships; indicatively, we quote the articles Yilan et al. [2], Bisong et 

al. [4], Fattah et al. [11] and Atance et al. [12]. In case that the fitting of various ARIMA models 

is not satisfactory, the stationary time series 𝛸𝑡 can be deemed as white noise with variance 𝜎𝜀
2 

while the corresponding non-stationary 𝛶𝑡 can be deemed as random walk.   

 

3.2. ARMA model selection criteria 

 In this paragraph, we will describe briefly ARMA models to examine the mortality rates of the 

31 countries contained in the dataset and provide statistical criteria for the selection of the models. 

These criteria are useful for the case of linear analysis, while criteria like AIC and NRMSE can be 

used in parallel with nonlinear methodologies. 

 

3.2.1. Autocorrelation and partial autocorrelation function  

Let {𝑥1, 𝑥2, … , 𝑥𝑛}, be a realization of the stochastic process 𝛸𝑡. We can examine the dynamics of 

the linear relations of the time series through the autocorrelation function ρ(τ). Our goal is to 

calculate the autocorrelation of the time series for various lags 𝜏, using the function 𝑟𝜏 =  �̂�(𝜏) 

which is the quotient of the estimated autocovariance of lag τ ( c(τ) ) and the variance (𝑠𝑋
2 = c(0)). 

Thus, we can estimate the autocorrelations of 𝛸𝑡 by means of the formula 

 

𝑟𝜏 =  
𝑐(𝜏)

𝑠𝑋
2 =  

1
𝑛 − 𝜏

∑ (𝑥𝑡𝑥𝑡−𝜏 − �̅�2)𝑛
𝑡=𝜏+1

1
𝑛

∑ (𝑥𝑡
2 − �̅�2)𝑛

𝑡=1

,                                              (3) 

 

where �̅� denotes the unbiased estimator of theoretical mean value, 𝜇, of the time series. Usually, 
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the way that autocorrelations decline, indicates the existence of an MA(q) model, where q denotes 

the lag after which the autocorrelations become insignificant. 

   The autocorrelation function presented in the previous paragraph decreases exponentially in 

AR(p) procedures. The random variables 𝛸𝑡  and 𝛸𝑡−𝜏 for 𝜏 >  𝑝, are correlated through the 

intermediate random variables 𝛸𝑡−1, … , 𝑋𝑡−𝜏−1 . One measure that examines the correlation 

explicitly between 𝛸𝑡  and 𝛸𝑡−𝜏  is the partial autocorrelation function, defined as 𝜑𝜏,𝜏 =

𝐶𝑜𝑟(𝑋𝑡, 𝑋𝑡−𝜏|𝛸𝑡−1, … , 𝑋𝑡−𝜏−1). We can express the partial autocorrelation function through the 

autocovariance of lag 𝜏 and the Yule – Walker equations as 

  

𝜑𝜏,𝜏 =  

|

1 𝜌1

𝜌1 1
… 𝜌𝜏−2 𝜌1

… 𝜌𝜏−3 𝜌2

⋮ ⋮
𝜌𝜏−1 𝜌𝜏−2

⋮ ⋮ ⋮
… 𝜌1 𝜌𝜏

|

|

1 𝜌1

𝜌1 1
… 𝜌𝜏−2 𝜌𝜏−1

… 𝜌𝜏−3 𝜌𝜏−2

⋮ ⋮
𝜌𝜏−1 𝜌𝜏−2

⋮ ⋮ ⋮
… 𝜌1 1

|

.                                        (4) 

 

On the other hand, the theoretical partial autocorrelation function becomes statistically 

insignificant for 𝜏 >  𝑝 in the AR(p) procedures, thus contributing to an efficient model selection. 

The partial autocorrelations of a time series can also be calculated using the Durbin – Levinson 

iterative algorithm. 

 

3.2.2. Portmanteau test 

 The first step before fitting an ARMA model to a stationary time series is testing the independence 

between its values at different lags. Independence between 𝛸𝑡−𝜏  for τ = 1, … ,
𝑛

2
, leads to the 

conclusion that the examined time series is a white noise. The short length of the time series does 

not strongly recommend the use of the standard autocorrelation criterion of  𝑟𝜏 ∉ [−
2

√𝑛
,

2

√𝑛
].  

    As a result, we culminate in testing the independence of time series according to Portmanteau 
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test which gives reliable results for small samples and allows us to examine 𝑙 autocorrelations at 

the same time. In our analysis we will utilize the correction proposed by Ljung and Box, where 

 

𝑄 = 𝑛(𝑛 + 2) ∑
𝑟𝜏

2

(𝑛 − 𝜏)

𝑙

𝜏=1
,                                                    (5) 

 

follows the 𝜒2 distribution with 𝑙 degrees of freedom. The null hypothesis which states that the 

time series is white noise, is rejected when 𝑄 >  𝜒𝑙;1−𝑎
2  where 𝛼 represents the confidence level 

of the test.  

3.2.3. Akaike information criterion (AIC) 

 There are criteria to determine the order of an ARMA(p,q), which are based on the likelihood of 

the data based on this model, where the variance of the residuals 𝜎𝜀
2 - considered as a likelihood 

indicator - is produced after fitting the model to the time series. A widely used criterion based on 

likelihood is the Akaike Information Criterion, defined as 

 

𝐴𝐼𝐶(𝑝, 𝑞) = ln(𝜎𝜀
2) +  

2(𝑝 + 𝑞 + 1)

𝑛
,                                                (6) 

 

which involves the variance of the residuals, the order of the model, as well as the length of the 

time series 𝑛 . The value of AIC decreases as 𝜎𝜀
2  decreases, and increases as the order of 

ARMA(p,q) increases. As a result, we choose p and q to be the values that minimize AIC. In cases 

where the AIC-values for various p and q are close, we employ additional criteria for the optimal 

order selection. 

 

3.2.4. Normalized root mean squared error (NRMSE) 

 An important criterion for selecting a model is the assessment of its predictive capacity. For this 

purpose, we divide our time series into two parts, the training set and the testing set. The training 

set is used to adjust and estimate the parameters of the model, while the testing set is used to 
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estimate its predictive power through an error function. The NRMSE function is suitable for this 

approach, defined as   

 

𝑁𝑅𝑀𝑆𝐸(𝑙) =  
√ 1

𝑘 − 𝑙 + 1
∑ (𝑥𝑗+𝑙 − 𝑥𝑗(𝑙))

2
𝑛+𝑘−𝑙
𝑗=𝑛

√ 1
𝑘 − 𝑙 + 1

∑ (𝑥𝑗+𝑙 − �̅�)
2𝑛+𝑙−𝑘

𝑗=𝑛

.                                         (7) 

 

In (7), 𝑙 denotes a prediction of 𝑙 steps ahead, for a series of known observations at time points 

𝑛 + 1, 𝑛 + 2, … , 𝑛 + 𝑘.  

    The closer the value of NRMSE is to 0, the better the predictive power of the fitted ARMA 

model. For NRMSE > 1 the forecasts given by the selected model are worse than those of the 

historic mean. During model selection for each of the 31 time series of mortality rates from chronic 

diseases, we derived predictions for 𝑙 = 1, using as training set the first 60, 70 and 80%. 

 

3.3. Modeling mortality from chronic diseases according to non-linear threshold models  

As provided in the previous section, we fitted ARIMA models to 19 out of the 32 examined times 

series. For the remaining 13 time series, the adaptation of any ARIMA models was not suggested. 

Since, ARIMA models failed to describe the dynamics that rules the evolution of these time series, 

the next step was the employment of nonlinear methodologies. The field of nonlinear time series 

analysis contains a variety of methods that utilize different measures to capture model’s dynamics, 

such as the mutual information function, correlation dimension, approximate entropy, Lyapunov 

exponents and others. However, all these measures require long time series in order to produce 

reliable results. Inevitably, we will limit our analysis to the usage of local linear models (Shi [13] 

and Bruin and Gooijer [14]). Typical instances of this category of nonlinear models are the self-

exciting threshold autoregressive models, which are often referred to in literature as SETAR. 

 

3.3.1. Self - exciting threshold autoregressive models (SETAR) 

 The basic idea for SETAR models relies on the usage of different AR models for each of the k 
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segments of SETAR, while the selection of each segment is being accomplished according to the 

values of the time series itself at each time point 𝑡. Let AR(p) be an autoregressive model with k 

different sets of values for the estimated parameters 𝜑𝑗,0, … , 𝜑𝑗,𝑝 corresponding to k subsets of 

ℝ𝑝. 

    The k subsets constitute a partition of ℝ𝑝, a partition obtained through the values of the 

component 𝑍𝑡, while the determination of the values of 𝜑𝑗,0, … , 𝜑𝑗,𝑝 depends on the subset of ℝ, 

to which 𝑍𝑡 belongs each time point 𝑡. Parameter 𝑑 plays the role of the lag and in our case it 

takes the value 𝑑 = 1. For a set of partition values of ℝ, let {𝑥0, 𝑥1, … , 𝑥𝑘}, with −∞ = 𝑥0 <

𝑥1 < ⋯ < 𝑥𝑘 =  ∞; this partition will be defined as ℝ = 𝑅1 ∪ 𝑅2 ∪ … ∪ 𝑅𝑘 with 𝑅𝑖 = (𝑥𝑖−1, 𝑥𝑖], 

𝑖 = 1, … , 𝑘. The general form that describes a SETAR model consisting of two AR parts can be 

given as 

 

𝑋𝑡 = (𝜑1,0 + 𝜑1,1𝑋𝑡−𝑑 +  𝜑1,2𝑋𝑡−2𝑑 + ⋯ + 𝜑1,𝐿𝑋𝑡−(𝐿−1)𝑑)𝐼(𝑍𝑡  ≤ 𝑡ℎ)

+  (𝜑2,0 + 𝜑2,1𝑋𝑡−𝑑 +  𝜑2,2𝑋𝑡−2𝑑 + ⋯ + 𝜑2,𝐻𝑋𝑡−(𝐻−1)𝑑)𝐼(𝑍𝑡 > 𝑡ℎ)

+ 𝜀𝑡,                                                                                                                                     (8)  

 

where 𝑡ℎ denotes the threshold’s value chosen for the partition of ℝ, while 𝐿 is the order of the 

AR model corresponding to the part of SETAR when 𝑍𝑡  ≤ 𝑡ℎ , 𝛨 stands for the order of the 

AR model when 𝑍𝑡  > 𝑡ℎ  while 𝑍𝑡  represents one of 𝑋𝑡−𝑑, 𝑋𝑡−2𝑑, …, chosen based on an 

information criterion. We denote by 𝐼 the index function taking the value 1 when the condition 

in parentheses is satisfied, otherwise it equals 0, while 𝑚 stands for the embedding dimension of 

the reconstructed time series, or the maximum order of the two parts (Firat [15] and Boero and 

Lampis [16]). 

         

3.4. Clustering of European countries according to mortality levels 

An interesting concept for this kind of analysis is the clustering of European countries in K defined 

groups according to their mortality levels. One of the most popular clustering algorithms is the K 
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– means algorithm that classifies a set of data points in K predefined and unequally distributed 

clusters based on some metric, e.g., Euclidean, Minkowski or Chebyshev distance, as it is 

described in KumarMalhotra et al. [17]. Usually, a preprocessing step of this procedure is the 

standardization of observations, targeting to minimize effects of heteroscedasticity (Mohamad and 

Usman [18] and Nasser et al. [19]). 

    However, in this article we prefer the production of more flexible results that can be used also 

for measuring the differentiation of mortality rates between countries of the same cluster. As a 

result, we utilized Fuzzy K – means algorithm to attain the desirable outcome.  

 

3.4.1. Fuzzy K – means algorithm  

The methodology of this iterative algorithm differs slightly from the methodology of K – means. 

The element that introduces fuzziness in this algorithm is the parameter 𝑚 (fuzzifier), according 

to which the amount of ambiguity included in the clustering results is determined. Each subgroup 

is characterized based on the elements that will be placed inside it, and by its centroid 𝑐𝑘. A weight 

𝑤𝑖𝑘 is assigned to each element of the clustering process. In our case, 𝑖 = 1, . . . , 31  represents 

the country while 𝑘 represents the cluster. For each 𝑖 we have  

 

∑ 𝑤𝑖𝑘 = 1,    0 < 𝑤𝑖𝑘 < 1.                                                  (9) 

𝛫

𝑘=1

 

 

while  𝑐𝑘 and 𝑤𝑖𝑘 are calculated as 

 

𝑐𝑘 =  
∑ (𝑤𝑖𝑘)𝑚  𝑥𝑖

𝑁
𝑖=1

∑ (𝑤𝑖𝑘)𝑚𝑁
𝑖=1

,                                                     (10) 

 

𝑤𝑖𝑘 =  
1

∑ (
||𝑥𝑖 − 𝑐𝑘||

2

||𝑥𝑖 − 𝑐𝑙||
2 )

1
𝑚−1

𝐾
𝑙=1

.                                                (11) 
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produced by the minimization of the objective function (KumarMalhotra et al. [17] and Mohamad 

and Usman [18]) 

 

𝐽(𝑐, 𝑚) = ∑ ∑(𝑤𝑖𝑘)𝑚||𝑥𝑖 − 𝑐𝑘||
2

𝐾

𝑘=1

𝑁

𝑖=1

.                                          (12) 

 

The parameters 𝑚  and 𝐾  are defined in advance, while the iterative procedure is being 

completed when 𝐽(𝑐, 𝑚) < 𝜀, where 𝜀 is constant. As stated in Nasser et al. [19] when 𝑚 → ∞, 

the fuzziness of clustering results increases, while arbitrary definition of 𝑚 and 𝐾 can cause 

untrustworthy results. Hence, in many articles, like in Höppner et al. [20], the authors propose the 

usage of 𝑚 = 2, while in Schwämmle and Jensen [21] the authors propose the estimation of 𝑚 

based on an analytical function that takes into account the number and the dimension of the data 

points. However, this function gives reliable results only for many data points. Moreover, the 

selection of 𝐾  can be determined by observing the graphs displaying the values of various 

functions in parallel with K. In our analysis, we relied on the diagrams of minimum centroid 

distance (𝑉𝑀𝐶𝐷), partition coefficient (𝑉𝑃𝐶) and partition entropy (𝑉𝑃𝐸) against K (Schwämmle 

and Jensen [21]). The selection of K arises from the part of the graph where a plateau region 

emerges. On the other hand, there are cases where this criterion cannot be implemented due to 

large amount of noise.   

 

3.4.2. Jensen – Shannon divergence  

One of the most popular applications of Kullback – Leibler divergence (𝐷𝐾𝐿) is the measurement 

of the differentiation between two probability distributions. In the discrete case, letting 𝑝 and 𝑞 

describing distributions, the Kullback – Leibler function is stated as  
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𝐷𝐾𝐿(𝑝, 𝑞) =  ∑ 𝑝(𝑥) log (
𝑝(𝑥)

𝑞(𝑥)
),                                                (13)

𝑥∈ℱ

 

  

where ℱ  denotes the σ – algebra containing all possible events of the sample space of the 

experiment Ω. More specifically, if we use 2 as the basis of the logarithm, Κullback – Leibler 

divergence measures the average number of extra bits needed to describe – encode samples of 

distribution p using distribution q.  

    In our analysis, we preferred a symmetric distribution measure, leading us to the alternative 

of Jensen – Shannon divergence that is usually referred as symmetric Kullback – Leibler. As stated 

(Belov [22], Nguyen and Vreeken [23], Menéndez et al. [24], Levene and Kononovicius [25]) the 

Jensen – Shannon divergence is defined as  

 

𝐷𝐽𝑆(𝑝, 𝑞) =  
1

2
𝐷𝐾𝐿(𝑝, 𝜇) +  

1

2
𝐷𝐾𝐿(𝑞, 𝜇)                                           (14) 

   

where 𝜇 =  
𝑝+𝑞

2
. We can claim that the Jensen – Shannon divergence measures the average 

number of extra bits needed if we try to encode samples of the distributions p and q through their 

mean distribution. Endres and Schindelin [26], underline that the Jensen – Shannon function does 

not satisfy all distance‘s properties, however this is accomplished by taking the squared root of 

(14).   

 

3.5.  Correlations in Time Series Dynamics 

After the presentation of clustering techniques, we focus on three correlation measures and more 

specifically on the Spearman coefficient, the distance correlation and the cross – correlation 

function. We underline that the following analysis concerns only the stationary equivalent of the 

initial time series, as the existence of the decreasing trend in all 31 time series would lead to 

extremely high values of the aforementioned correlation indices, producing unreliable results and 

failing to describe the dynamics of the examined time series. 
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3.5.1. Spearman coefficient  

Initially, we chose to present the results of the time series correlation investigation through the 

Spearman coefficient. We notice that the implementation of the Spearman coefficient concerns 

observations that are independently distributed (i.i.d.), and not observations that are part of time 

series where linear or non-linear relationships are likely to occur; however, in many research 

articles this measure is used with caution in order to investigate time series correlations (Kodera 

et al. [27]). Another frequently used measure for investigating linear relationships between two 

random variables is the Pearson coefficient (Liang et al. [28]). Nevertheless, we focused on the 

option of the Spearman coefficient, firstly because it takes into account monotonous and not only 

linear relations and secondly it removes the hypothesis of normality that accompanies the 

calculation of Pearson‘s coefficient. 

    Spearman’s coefficient is given by equation 

 

𝑟𝑠 = 1 −
6 ∑ 𝑑𝑖

2𝑛
𝑖=1

𝑛(𝑛2 − 1)
.                                                       (15) 

     

where 𝑑𝑖 = 𝑟𝑥𝑖
− 𝑟𝑦𝑖

 while 𝑟𝑥𝑖
, 𝑟𝑦𝑖

 represent the order of random variables 𝑥𝑖  and 𝑦𝑖 

respectively. Spearman’s coefficient takes values in [−1, 1],  where 𝑟𝑠 = 1 displays perfect 

positive correlation, 𝑟𝑠 = −1  perfect negative correlation and 𝑟𝑠 = 0  linear independence. 

Coefficient’s values are statistically significant when the condition  

 

|𝑟𝑠√
𝑛 − 2

1 − 𝑟𝑠
2

| >  𝑡
𝑛−2;

𝛼
2

                                                    (16) 

 

is satisfied for 𝑛 > 10. Finally, we should be aware that the smaller the value of 𝑛, the more 

irresponsible the results become.    
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3.5.2. Distance correlation  

In contrast to what we mentioned above about the Pearson and Spearman correlation coefficients, 

which provide an estimate for the linear correlation of two random variables or two time series, 

whether positive or negative, the distance correlation measures linear and non-linear correlations 

between the variables. However, by definition, this indicator cannot determine whether we have a 

positive or negative dependence. 

    We consider a pair of random values (𝑥𝑘, 𝑦𝑘), which are either coordinates of two random 

variables X and Y, or elements of two time series {𝑥𝑡} and {𝑦𝑡}. First, we compute the 𝑛 × 𝑛 

tables of distances (𝑎𝑗,𝑘) and (𝛽𝑗,𝑘) where the elements of the distances between observations are 

defined as 

 

𝛼𝑗,𝑘 = ||𝑥𝑗 − 𝑥𝑘|| ,    𝛽𝑗,𝑘 = ||𝑦𝑗 − 𝑦𝑘|| , 𝑗, 𝑘 =  1, … , 𝑛,                                  (17)    

 

and ||.|| denotes the Euclidean metric. In addition, we calculate the values of 

 

𝛢𝑗,𝑘 = 𝑎𝑗,𝑘 − �̅�𝑗. − �̅�.𝑘 +  �̅�. .                                                  (18) 

 

and 

 

𝛣𝑗,𝑘 = 𝛽𝑗,𝑘 − �̅�𝑗. − �̅�.𝑘 + �̅�. . ,                                               (19) 

 

where �̅�𝑗. stands for the mean value of the j-th column, �̅�.𝑘 denotes the mean value of the k-th 

row, while �̅�.. denotes the overall mean value of matrix (𝑎𝑗,𝑘). The interpretation of the quantities 

in equation (19) is similar to the interpretation of equation (18). As a result, the square of the 

sample distance covariance is the mean value of the sum of the two elements 𝛢𝑗,𝑘, 𝛣𝑗,𝑘 (Székely 

et al. [29]) and can be expressed as 
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𝑑𝐶𝑜𝑣2(𝑋, 𝑌) =  
1

𝑛2
∑ ∑ 𝛢𝑗,𝑘

𝑛

𝑘=1

𝑛

𝑗=1

𝛣𝑗,𝑘.                                             (20) 

 

    Furthermore, after displaying the sample covariance, we present the sample distance variance 

described by equation (21), 

 

𝑑𝑉𝑎𝑟2(𝑋) = 𝑑𝐶𝑜𝑣2(𝑋, 𝑋) =  
1

𝑛2
∑ 𝐴𝑗,𝑘

2 .

𝑗,𝑘

                                         (21) 

 

Finally, according to equations (17) - (21) the sample distance correlation is defined as 

 

𝑅𝑛 = 𝑑𝐶𝑜𝑟(𝑋, 𝑌) =  
𝑑𝐶𝑜𝑣(𝑋, 𝑌)

√𝑑𝑉𝑎𝑟(𝑋)𝑑𝑉𝑎𝑟(𝑌)
 .                                        (22) 

 

taking values in the interval [0, 1]. Greater values of 𝑅𝑛 are witnessing stronger dependence 

between the examined elements.  

The statistical significance of the generated value of the distance correlation 𝑅𝑛 can be examined 

by conducting a hypothesis test, where the null hypothesis stating that the examined random 

variables or time series are independent is rejected when 

 

|√𝜈 − 1
𝑅𝑛

√1 − 𝑅𝑛
2

| > 𝑡
𝜈−1;

𝛼
2

                                                 (23) 

 

as the quantity to the left of the inequality follows asymptotically the Student distribution with 

𝜈 − 1 degrees of freedom where 𝜈 =
𝑛(𝑛−3)

2
 (Székely and Rizzo [30]). 
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3.5.3. Cross – correlation of time series  

The cross – correlation function is often characterized as a sliding inner product, while its 

calculation involves the process of continuous or discrete convolution depending on the problem 

to which it applies. The most common fields of application of this mathematical tool are pattern 

recognition, cryptanalysis, signal processing, neurophysiology and the investigation of 

correlations between stochastic processes. 

    The cross – correlation of two stochastic processes is the correlation between the values of 

the processes, while it is a function of two time points 𝑡1 and 𝑡2. This function is a generalization 

of the autocorrelation function which refers to the dependency relationships that are created within 

a time series for various lags 𝜏. Thus, a correlation function can also be expressed in terms of the 

lag 𝜏 = 𝑡1 − 𝑡2. The sample correlation function of two time series {𝑥𝑡} and {𝑦𝑡} can be written 

(Sadiku et al. [31], Robbins and Fisher [32]) as 

 

𝑟𝑋𝑌(𝜏) =  
𝛫𝛸𝛶(𝜏)

𝑠𝑋𝑠𝑌
=  

1
𝑛 − 𝜏

∑ (𝑥𝑡𝑦𝑡−𝜏 − �̅��̅�)𝑛
𝑡=𝜏+1

√1
𝑛

∑ (𝑥𝑡
2 − �̅�2)

1
𝑛

∑ (𝑦𝑡
2 − �̅�2)𝑛

𝑡=1
𝑛
𝑡=1

,                                  (24) 

 

The correlation function takes values in the interval [−1, 1], where 𝑟𝑋𝑌(𝜏) > 0 denotes positive 

linear correlation between the examined time series, while 𝑟𝑋𝑌(𝜏) < 0 denotes negative linear 

correlation. Also, the symmetric property holds for this function, as 𝑟𝑋𝑌(𝜏) = 𝑟𝑋𝑌(−𝜏). The 

statistical significance of this index, is examined by checking whether 

 

𝑟𝑋𝑌(𝜏) ∉ [−
𝑍𝑎

2

√𝑛
,

𝑍𝑎
2

√𝑛
],                                                    (25) 

 

depending on the significance level 𝛼, but also on the length of the time series. Because the most 

common choice is 𝑎 = 0.05 the above control is simplified, considering statistically significant 
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values of 𝑟𝑋𝑌(𝜏)  that are outside the interval [ −
2

√𝑛
,

2

√𝑛
] . As in the previous measures, the 

calculation of the cross – correlation presupposes the stationarity of the time series (Damos [33]). 

There are many articles using this measure to highlight the causal relationships of different 

stochastic processes due to the intuitive interpretation provided by this indicator and the ease of its 

application, although this approach seems to be insufficient.  

 

3.6. Simple and Instantaneous Granger Causality 

The goal in this section is to reveal causal relations between time series that can be proven as 

beneficial during the forecasting process of these series. Let {𝑥𝑡} and {𝑦𝑡} be two stochastic 

processes and let us investigate the cause – effect relationship between these processes. If such a 

relation is proven, where process {𝑥𝑡}  functions as the cause for {𝑦𝑡}  (effect), then the 

information provided by the past values of {𝑥𝑡} will be decisive in the predictive accuracy that is 

provided using only the past values of process {𝑦𝑡}. 

    Before we move on to the rigorous mathematical representation of causality according to 

Granger, it should be noted that in many research papers exploring cause – effect relationships 

between stochastic processes, correlation, partial correlation or the mutual information function 

have been used as tools of investigating causality. Despite that these approaches are not incorrect, 

they fail to manage the concept of causality effectively, thus often yielding misleading results. The 

main difference between these techniques and Granger causality is that these measures can only 

give some indication of the correlation – dependence between processes and not whether the 

information provided by a stochastic process can contribute beneficially to the predictability of 

another. Once again, we base our analysis on stationary time series absolved from deterministic or 

stochastic trends (Papaioannou et al. [34]).  

 

3.6.1. Definition  

Suppose that 𝛪𝑡  symbolizes the total information available until time point t. Hence, this set 

contains all the information provided by the time series {𝑥𝑡}  and {𝑦𝑡} . Let �̅�𝑡  = 
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{𝑥𝑡, 𝑥𝑡−1, … , 𝑥1} be the set containing the current and past values of time series {𝑥𝑡} while �̅�𝑡 

denotes the corresponding set for {𝑦𝑡} . Finally, let 𝜎2(. )  representing the variance of the 

prediction errors. Then the following applies to the time series {𝑥𝑡} and {𝑦𝑡}: 

 

1. (Granger causality). The time series {𝑥𝑡} can be deemed as Granger causal to {𝑦𝑡} if and 

only if  

  

𝜎2(𝑦𝑡+1 | 𝐼𝑡) < 𝜎2(𝑦𝑡+1 |𝛪𝑡 − �̅�𝑡).                                             (26)  

  

meaning that the future values of {𝑦𝑡} can be predicted more accurately (less forecasting error 

variance) when we take into account information provided by the current and past values of 

{𝑥𝑡} (Koutlis [35]), 

2. (Instantaneous Granger causality). The process {𝑥𝑡} can be deemed as an instantaneous 

Granger causal to {𝑦𝑡} if and only if  

  

𝜎2(𝑦𝑡+1 | {𝐼𝑡, 𝑥𝑡+1}) < 𝜎2(𝑦𝑡+1 |𝛪𝑡),                                              (27)  

  

considering that the future values of {𝑦𝑡} can be predicted more accurately by taking into account 

the information provided by 𝑥𝑡+1, the current and the past values of {𝑥𝑡} (Gianetto [36]), 

3. (Feedback). There is a feedback between time series {𝑥𝑡}  and {𝑦𝑡} , when {𝑥𝑡}   is 

Granger causal to {𝑦𝑡} and vice versa. 

 

  The existence of feedback makes sense to be considered only in the case of Granger causality, 

because the property of instantaneous Granger causality is symmetric. 

 

3.6.2. Statistical test for Granger causality  

The existence of Granger causality from {𝑥𝑡} to {𝑦𝑡}, is examined by checking whether the 
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regression of past values of {𝑥𝑡}  and {𝑦𝑡},  to the present value  𝑦𝑡 , produces less residual 

variance compared to the variance produced using only the past values of {𝑦𝑡}. According to least 

squares method, the following equation combines the information provided by the past values of 

{𝑥𝑡} and {𝑦𝑡} for the prediction of 𝑦𝑡 

 

𝑦𝑡 = 𝑎0 +  ∑ 𝑎11
𝑘 𝑦𝑡−𝑘 +  ∑ 𝑎12

𝑘 𝑥𝑡−𝑘 + 𝑣1,𝑡

𝑘2

𝑘=𝑘0

,                                        (28)

𝑘1

𝑘=1

 

 

where 𝑘0 = 1. After the fitting of model (28), we utilize the least squares method once more, 

aiming to fit a classic AR model to the time series {𝑦𝑡}, of the form 

 

𝑦𝑡 = 𝑎0 +  ∑ 𝑎11
𝑘 𝑦𝑡−𝑘 +  𝑣2,𝑡.                                                (29)

𝑘1

𝑘=1

 

 

The model exhibited by equation (28) is called unrestricted, while model (29) is called restricted. 

The value of Granger causality is calculated as 

 

𝐺𝐶𝐼𝑋→𝑌 = 𝑙𝑛
𝑉𝑎𝑟(�̂�2,𝑡)

𝑉𝑎𝑟(𝑣1,𝑡)
.                                                     (30) 

 

If 𝐺𝐶𝐼𝑋→𝑌 > 0 then we can claim that the time series {𝑥𝑡} is a Granger cause for {𝑦𝑡}. During 

the calculation of 𝐺𝐶𝐼𝑋→𝑌 between different time series, negative values may also occur. In this 

case, the past values of the time series {𝑥𝑡} do not show causality relations with the time series 

{𝑦𝑡} and act negatively in predicting future values. 

    To check the statistical significance of the Granger causality from {𝑥𝑡} to {𝑦𝑡}, the use of 

the Snedecor – Fisher (F – test) hypothesis test is employed, where the null hypothesis states that 

𝑎12
𝑘  = 0 for all 𝑘 = 1, … , 𝑝, which is equivalent to the fact that there is no causal relation from 

time series {𝑥𝑡} to {𝑦𝑡}. The utilized F statistic, follows F distribution with 𝑝  and 𝑛 − 3𝑝 
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degrees of freedom 

 

      𝐹 =  

(𝑆𝑆𝐸𝑅 − 𝑆𝑆𝐸𝑈)
𝑝

𝑆𝑆𝐸𝑈

𝑛 − 3𝑝

~𝐹𝑝,𝑛−3𝑝                                                       (31) 

 

where 𝑆𝑆𝐸𝑅, 𝑆𝑆𝐸𝑈 denote the sum of the squared errors of the restricted and unrestricted model, 

𝑝 is the order of the model of the relation (29), 2𝑝 is the order of the model of equation (28) 

(Kugiumtzis [9]). 

    The existence of a Granger causality from {𝑦𝑡} to {𝑥𝑡} can be examined in a similar way. 

The existence or absence of causality from {𝑥𝑡} to {𝑦𝑡} in no way implies the existence or 

absence of causality from {𝑦𝑡} to {𝑥𝑡}. The instantaneous Granger causality can be controlled 

similarly, but considering in the model of equation (28) that 𝑘0 = 0 . In this way, the null 

hypothesis of the F – test is converted to 𝑎12
𝑘  = 0 for all 𝑘 = 0, … , 𝑝. 

 

4. RESULTS 

 

4.1. Trend Estimation  

Before proceeding to the results of linear time series analysis, we dedicated the first part of this 

section to the trend estimation of the 31 time series. Observing Eurostat’s dataset of premature 

mortality rates, all 31 time series were characterized by intense linear descending trend. Robertson 

and Ecob [37], provide a methodology on estimating the trend in time series of mortality rates that 

are not necessarily associated with chronic diseases, in the UK. Each of the non-stationary time 

series can be represented by equation 𝑦𝑡 =  𝑎𝑡 + 𝑏 + 𝜀𝑡,  where 𝜀𝑡  is a white noise following 

𝛮(0, 𝜎𝜀). The estimated slope and constant for each country, is presented in Table 1.  
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Table 1. Estimation of trend and constant coefficient for time series of mortality rates 

Country �̂� �̂� 

Belgium -3.1172 171.7156 

Bulgaria -4.0330 279.9960 

Czech Republic -5.8971 268.5678 

Denmark -4.4761 205.4622 

Germany -3.2601 180.9308 

Estonia -9.4230 355.5714 

Ireland -4.4379 192.3025 

Greece -0.9641 141.4141 

Spain -2.6096 152.8529 

France -2.5519 141.0100 

Croatia -3.4175 225.0550 

Italy -3.0929 152.8575 

Cyprus -1.3007 101.2978 

Latvia -5.8450 345.7130 

Lithuania -3.6026 315.5243 

Luxembourg -3.8432 175.0819 

Hungary -7.6580 421.8214 

Malta -2.5630 156.3500 

Holland -3.0266 163.6946 

Austria -3.6019 184.8275 

Poland -4.5247 261.4071 

Portugal -2.7315 170.3482 

Romania -5.2284 320.3263 

Slovenia -4.8163 230.6246 

Slovakia -4.2959 276.2481 

Finland -2.8436 167.0960 

Sweden -2.7256 139.1743 

UK -1.3007 101.2978 

Iceland -3.6751 154.5641 

Norway -3.5577 158.2551 

Switzerland -2.5487 131.0301 

    Performing hypothesis tests for the produced values of �̂�, �̂� , the presented estimated 

coefficients were deemed as statistically significant in all 31 cases of time series, at the level of 

significance α = 0.05. 

Looking at the results presented in Table 1, we observe that the most intense descending trend 

corresponds to the mortality rates of the inhabitants of Estonia with �̂� =  −9.641, while the 
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mortality rates of Hungary show the second most intense decreasing trend with �̂� =  −7.658. On 

the other hand, the smoothest descending tendency occurs in Greece ‘s occasion with �̂� =

 −0.9641, followed by UK and Cyprus with �̂� =  −1.3007.  The high value of �̂� coefficient 

in the case of Hungary classifies it among the countries with the highest mortality rates in Europe 

despite its prevalent downward trend. At the same time, compared to the values of the estimated 

�̂� coefficients of the 31 time series, value �̂� = 141.414 corresponding to Greece, is relatively 

small which states that Greece has relatively low mortality rates in Europe. However, the weak 

declining tendency shown by the 24 observations of the time series (1994 – 2017), leads to 

relatively high mortality rates in recent years compared to the rest of the European Countries.  

 

4.2. Fitting ARIMA models on premature mortality rates  

In the following analysis we utilized the aforementioned methods and models, keeping in mind the 

short length of time series that force us to choose models with limited number of parameters, while 

in some cases where the choice of unique and optimal model was not clear, priority was given to 

AR models as they offer a better understanding of system dynamics compared to MA models. We 

consider that the maximum number of estimated parameters for the proposed linear models should 

be 5, based on the length of 24 observations that characterizes the majority of the examined time 

series, avoiding precarious results. Furthermore, the most fundamental criterion in the selection of 

an ARIMA model was AIC, although in cases where AIC values were close for different 

combinations of p and q, we compared the forecasting efficiency of these models by comparing 

their corresponding NRMSE-values. The prevalent descending trend of the time series was 

removed, before the application of the mentioned criteria, using 1st and 2nd order differences.  

We next provide the methodology we followed for the selection of the two basic linear models, 

i.e. ARIMA and random walk models, for the 32 time series exhibiting the mortality rates. By 

eliminating the trend from the time series of premature mean mortality rates in Europe, we could 

study the dynamics of the stationary time series through the statistical tests and diagrams given 

below. Looking at the AIC graph, the smallest value is displayed for p = 0 and q = 2, with 

𝐴𝐼𝐶𝑀𝐴(2) = 0.6721. However, we choose model AR(2), with 𝐴𝐼𝐶𝐴𝑅(2) = 0.8375. This choice is 

based on the difference in the forecasting capacity of the two models, as for 80% training set we 
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received 𝑁𝑅𝑀𝑆𝐸𝐴𝑅(2) = 0.799, while 𝑁𝑅𝑀𝑆𝐸𝑀𝐴(2) =  0.9027. Simultaneously, the difference 

between the AICs of these two models is quite small, allowing us to choose the AR(2), which is 

also supported by the partial autocorrelation diagram, according to which the autocorrelations after 

the 2nd lag become statistically insignificant. The equation describing the AR(2) model of mean 

mortality rates in Europe, is given as 

 

𝛸𝑡 =  ∇𝑌𝑡 =  −5.1949 − 0.0816𝑋𝑡−1 − 0.4367𝑋𝑡−2 + 𝜀𝑡,                                (32) 

with 𝜎𝜀 = 1.405. 

 

 

 

Figure 1. Europe’s non-stationary and stationary time series of mean mortality rates and the 

corresponding autocorrelation diagrams, AIC and NRMSE. 
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     Next, we present a case where the fitting of any ARIMA model seems to be unsatisfactory 

according to the statistical criteria presented above; in this case the selection of random walk model 

is required. Thus, considering the stationary time series of Bulgaria’s mortality rates, we observe 

insignificant autocorrelations and partial autocorrelations just from the first lag. This phenomenon, 

in parallel with the p-values of the Portmanteau test underline the inappropriate fitting of a linear 

time series model in Bulgaria’s premature mortality rates, leading us to deem the stationary time 

series as white noise and the nonstationary equivalent as random walk.  

 

 

 

Figure 2. Bulgaria’s non-stationary and stationary time series of mortality rates and the 

corresponding autocorrelation and Portmanteau diagrams. 

 

     The results of the ARIMA and random walk models to describe the mortality rates of the 

European countries of our analysis, are presented in Table 2, where the selection of the suitable 

models was made as presented in the aforementioned two examples.  
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Table 2. Best ARIMA models with estimated coefficients and values of selection criteria for each of the 

31 countries plus the model of the mean mortality rates of Europe. 

 

Countries ARIMA(p,d,q) AIC 𝝈𝜺 𝑵𝑹𝑴𝑺𝑬 C 𝝋𝟏 𝝋𝟐 𝝋𝟑 𝜽𝟏 𝜽𝟐 𝜽𝟑 

Belgium ARIMA(0,1,2) 1.476 1.930 0.676  - - - 0.978 0.053 - 

Bulgaria Random Walk - 8.069 1 - - - - - - - 

Czech Republic ARIMA(1,1,2) 1.830 2.271 0.826 -3.895 0.371 - - 1.338 -0.874 - 

Denmark ARIMA(1,1,0) 2.338 3.151 0.947 -7.489 -0.631 - - - - - 

Germany ARIMA(0,2,1) 1.289 1.863 0.653 - - - - 0.847 - - 

Estonia Random Walk - 11.240 1 - - - - - - - 

Ireland Random Walk - 4.186 1 - - - - - - - 

Greece ARIMA(1,1,2) 1.296 1.739 0.679 -1.646 -0.721 - - -0.01 0.991 - 

Spain ARIMA(0,2,2) 0.181 1.010 0.666 - - - - 1.656 -0.912 - 

France Random Walk - 0.907 1 - - - - - - - 

Croatia ARIMA(2,1,0) 2.922 3.780 0.872 -3.559 -0.744 -0.601 - - - - 

Italy ARIMA(0,2,1) 1.137 1.691 0.698 - - - - 0.717 - - 

Cyprus Random Walk - 5.695 1 - - - - - - - 

Latvia Random Walk - 15.240 1 - - - - - - - 

Lithuania ARIMA(0,1,1) 4.852 11.077 0.960 - - - - -0.753 - - 

Luxembourg ARIMA(1,1,3) 4.461 8.227 0.790 -4.832 -0.318 - - 0.471 0.172 0.357 

Hungary ARIMA(2,1,0) 3.267 4.736 0.809 -11.245 0.030 -0.453 - - - - 

Malta ARIMA(3,1,0) 4.208 7.347 0.458 -7.33 -0.675 -0.652 -0.361 - - - 

Holland ARIMA(2,1,0) 1.013 1.534 0.817 -4.808 -0.116 -0.471 - - - - 

Austria Random Walk - 2.200 1 - - - - - - - 

Poland Random Walk - 3.630 1 - - - - - - - 

Portugal Random Walk - 3.540 1 - - - - - - - 

Romania Random Walk - 5.805 1 - - - - - - - 

Slovenia ARIMA(1,1,0) 3.511 5.666 0.704 -7.99 -0.632 - - - - - 

Slovakia Random Walk - 6.209 1 - - - - - - - 

Finland Random Walk - 2.593 1 -3.265 -0.113 - - 0.109 - - 

Sweden Random Walk - 1.586 1 - - - - -0.330 0.878 - 

UK ARIMA(2,2,0) 1.511 2.049 0.829 0.2425 -0.635 -0.499 - - - - 

Iceland ARIMA(1,1,0) 5.091 12.233 0.799 -4.858 -0.451 - - - - - 

Norway ARIMA(0,2,1) 1.415 1.985 0.732 - - - - 0.956 - - 

Switzerland ARIMA(2,1,1) 1.147 1.614 0.337 -7.499 -1.277 -0.686 - -0.964 - - 

Europe ΑRIMA(2,1,0) 0.837 1.405 0.799 -5.195 -0.082 -0.437 - - - - 
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4.3. Fitting SETAR models to Mortality Rates 

 After the presentation of the results of linear analysis, we propose the fitting of SETAR models, 

examining the 13 stationary time series of countries that during the linear analysis were considered 

white noise. This part of the analysis was implemented because the standard ARIMA models do 

not have the ability to manage systems governed by nonlinear dependency relationships.  

    However, applying the criteria of non-linear analysis and fitting SETAR models as described 

by (8), for 5 out of 13 time series, we obtained notable results through the application of local 

linear models. The selection of the SETAR models of the following analysis is mainly based on 

the AIC values and the NRMSE values, as the (partial) autocorrelation function and the 

Portmanteau test can no longer provide helpful hints, because they are useful in highlighting the 

existence of linear correlations. The selection of only 2 linear segments for time series modeling, 

aims to limit the parameters that have to be estimated, due to the short length of the time series. 

    Often in non-linear time series analysis, the appropriate value for lag 𝑑  is selected by 

observing the mutual information diagram, where the lag that correspond to the first minimum is 

chosen as 𝑑. Since in our analysis the sampling rate is low, 𝑑 = 1 could be considered as the 

ideal option. The appropriate value for 𝑚 in each case was determined after experimentation. 

 

Table 3. Best SETAR models with estimated coefficients and values of selection criteria. 

Countries AIC 𝝈𝜺 NRMSE Thres 𝝋𝟏,𝟎 𝝋𝟐,𝟎 𝝋𝟏,𝟏 𝝋𝟐,𝟏 𝝋𝟏,𝟐 𝝋𝟐,𝟐 

Austria 1.43 1.79 0.551 -4.1 -0.379 -2.425 - 0.573 0.385 - 

Bulgaria 3.92 5.66 0.572 -9.2 2.394 -7.826 0.164 -0.175 - 0.204 

Ireland 2.80 3.54 0.800 -5.6 -10.980 -4.035 -0.738 - - - 

Romania 2.41 2.69 0.747 -3.6 -3.067 -4.719 0.106 0.903 - -0.285 

Slovakia 3.78 5.74 0.858 -1.9 -4.11 -13.1 - 0.774 - - 

 

    Regarding the other 8 time series of premature mortality levels, SETAR models do not seem 

to give an adequate fit for the various values of 𝑑, 𝐿 and 𝐻. Thus, we suggest (maintain) the 

model of the random walk for them, taking as a means of forecasting for the next time steps the 

average value of the time series. However, in some cases such as the time series of France, Poland, 
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Portugal and Sweden where the standard deviation of white noise is quite small, this forecasting 

method is quite sufficient. 

 

4.4. Clustering of European countries and measuring distances between participation 

distributions  

In this paragraph we will present the experimental results of the application of Fuzzy K – means 

algorithm on the mortality rates of the 31 examined countries. For this purpose, we used the 

observations of non – stationary time series from 2003 to 2017, aiming to avoid the majority of 

missing values that concern the time interval between 1994 and 2002. Hence, we will cluster 31 

data points denoted as 𝒙𝑖  ∈  ℝ15, using 𝑚 = 2 according to the suggestions of related work. In 

addition, we select to group 𝒙𝑖 into 6 clusters, a choice that combines the results presented in 

Figure 3. 

 

Figure 3. Diagrams of VMCD − K, VPC − K and VPE − K for Κ = 2, …, 12. 

 

After the implementation of Fuzzy K – means to the 31 data points, we culminate in the 

construction of matrix 𝑾 that contains the estimated 𝑤𝑖𝑘  for 𝑖 = 1, … , 31 and 𝐾 = 1, … , 6, 

that could be deemed as the participation probabilities of each time series into the 6 clusters. In 

Figure 4, we observe the estimated values of matrix 𝑾. Based on the estimated 𝑤𝑖𝑘 for each 

country, we have the ability to put the produced results on Europe’s map, considering that 

max
𝑘=1,…,6

𝑤𝑖𝑘 is the criterion used to get a unique classification of the countries into the 6 clusters. 
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The number of the cluster in which each of the 31 countries belongs, acts as an indicator of how 

low or high is the premature mortality from chronic diseases in this country. We observe that some 

countries, e.g., Iceland, Norway, Switzerland, et al, are characterized by the lowest mortality rates 

compared to the rest of European countries, while Latvia, Lithuania, Romania and Hungary seem 

to be the most impaired instances. The convergence of the algorithm was accomplished after the 

40th iteration.  

    After the completion of the clustering process, we took advantage of the distributions of 

participation into clusters provided by the estimated 𝑤𝑖𝑘, by measuring their divergence utilizing 

the Jensen – Shannon function. The presented results concern only pairs of countries belonging 

into the same cluster, as our goal is the examination of homogeneity within the determined groups. 

Deploying the symmetry of Jensen – Shannon divergence, we constructed matrix  

 

𝑱𝑺 =  (
𝑪𝟏 ⋯ 𝟎
⋮ ⋱ ⋮
𝟎 ⋯ 𝑪𝟔

).                                                       (33) 

 

where 𝑪𝑖 are upper triangular matrices, consisted of zeros in the main diagonal as there is no 

divergence in pairs consisting of the same country.  

    In the 1st cluster, the greatest homogeneity is presented by the pair Cyprus – Norway with 

𝐷𝐽𝑆 = 0.0004 , while extremely close to them is Switzerland where the 𝐷𝐽𝑆  of Cyprus – 

Switzerland is 0.0014. In the 2nd subgroup, the highest homogeneity is given by the pair France – 

Netherlands with 𝐷𝐽𝑆 =  0.0031 , while Finland shows the greatest inhomogeneity, as the 

minimum 𝐷𝐽𝑆 we encounter is of the order of 0.0102. The most homogeneous pair of the 3rd 

subgroup, seems to be the pair of Germany – UK, having the lowest value we have encountered in 

all 6 subgroups with  𝐷𝐽𝑆 =  0.0001. On the other hand, the distribution of Slovenia seems to 

deviate considerably from the distribution of any other of the 6 countries in the 3rd subgroup, as 

all values of the Jensen - Shannon deviation are greater than 0.1. Furthermore, the Croatia - 

Estonia pair of the 4th subgroup is presented as quite homogeneous with 𝐷𝐽𝑆  = 0.0084, while 
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the distribution of Romania in the 6th subgroup seems to differ slightly compared to that of 

Lithuania (𝐷𝐽𝑆 = 0.0023), and that of Hungary (𝐷𝐽𝑆 = 0.0093).  

    Finally, in this paragraph investigation is carried out to find out the country whose mortality 

rates indicate the greatest homogeneity with the mean mortality rates of Europe. For this approach, 

we took advantage of two statistical criteria that are the value of RMSE and the combination of 

Fuzzy K – means and Jensen – Shannon divergence. Calculating the RMSE between Europe’s 

mortality rates and the other 31 countries, the minimum value was given by Slovenia (𝑅𝑀𝑆𝐸 =

4.7686)  which was approximately 4 times lower than the next lowest value given by Czech 

Republic. Simultaneously, the minimum  𝐷𝐽𝑆 =  0.00011 was given by Slovenia, although this 

time the next lowest value was 360 times greater, corresponding again to the Czech Republic.  

    The aforementioned criteria advocate that Slovenia shows the greatest homogeneity with 

Europe’s mean mortality rates, making Slovenia the best indicator of the evolution of the average 

behavior of the examined phenomenon in Europe. The Slovenia’s selection is maybe not surprising, 

because Slovenia is classified in the intermediate clusters, being in some sense a middle point 

between the technologically and medically evolved countries of northern and western Europe in 

contrast with other EU members.       

 

Figure 4. Representation of wik for each country corresponding to the participation probability 

in each cluster and the distribution of clusters on Europe’s map 
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4.5. Application of correlation indices on mortality rates 

We begin with the representation of estimated Spearman indices that display the monotonous 

correlation between the 31 examined time series. This presentation is depicted in Figure 5, where 

all (31
2

) indices rounded in the first decimal place are given.  

 

 

Figure 5. Triangle matrix displaying all 465 Spearman correlations 

    According to the data presented in Figure 5, the strongest monotonous positive correlation 

corresponds to three pairs of countries with a value of 0.77. The time series pairs that show this 

high level of correlation are Denmark – Iceland, Germany – Croatia and Cyprus – Hungary, while 

the pair Belgium – Croatia also shows a high positive linear correlation with 𝑟𝑠 = 0.758. At the 

same time, a strong positive correlation accompanies the pairs of the time series Cyprus – Slovenia 

and Cyprus – Slovakia with values 𝑟𝑠 = 0.69 and 𝑟𝑠 = 0.68. On the other hand, the strongest 

monotonous negative correlation appears in the case of Cyprus and Luxembourg with  𝑟𝑠 =

−0.75. The negative correlation indicates the opposite course in the dynamics of the 2 time series. 

    At this point, we present the most important dependence relationships that occurred between 

the 31 stationary time series, analyzed through the distance correlation coefficient. Table 5 of the 
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Appendix shows the time series pairs with a statistically significant distance correlation of 𝑅𝑛 ≥

0.55. Many of the above time series pairs also appear to have strong monotonous correlations as 

shown in Figure 5, which is rather expected considering that the distance correlation takes into 

account linear and non-linear relationships. Quite interesting are the cases of Italy – Hungary and 

Italy – Slovakia with distance correlations of 0.73, while these pairs do not reveal a significant 

Spearman correlation. 

   

 

 

 

 

 

Figure 6. Scatterplots of cases with statistically significant distance correlation and low Spearman coefficient   
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Based on the above 13 diagrams, the examined time series pairs are not necessarily characterized 

by linear relations, as the regression line of the diagrams does not seem to fit satisfactory the data 

in most cases. So, we outline the importance of this measure as it reveals in 13 cases, relationships 

between time series which could not be revealed through the Pearson or Spearman coefficients. 

    Finally, we will present all the important correlations between the 31 stationary time series 

concerning chronic mortality rates in Europe. In most cases, values outside the interval 

[−0.45, 0.45] are considered statistically significant, according to (25). Table 6 of the Appendix 

includes only the cases where 𝑟𝑋𝑌 ∉  [−0.5, 0.5] and for lags up to 𝜏 =  ± 4, aiming to give an 

adequate intuitive interpretation of the produced results. A few 𝑟𝑋𝑌  values within the interval 

[−0.5, 0.5] are displayed exceptionally in time series pairs that had already resulted in some 

stronger correlation in another lag. 

    Strong positive correlations appear in the dynamics of the time series Belgium – Croatia, 

Denmark – Iceland, Germany – Croatia and Greece – Finland with values of 0.748, 0.771, 0.734 

and 0.734 respectively. Quite interesting is the fact that these values correspond to a lag of 𝜏 = 0, 

which means that the associated time series pairs evolve in parallel and simultaneously. Still, 

strong positive correlations are found in the pairs Estonia – Spain and Greece – Hungary with 

𝑟𝑋𝑌  = 0.644 for lag 𝜏 = −1. The interpretation of these 2 cases is that for every 𝑡, this year’s 

mortality rates in Estonia and Greece are moving parallel to last year's rates of mortality in Spain 

and Hungary respectively. Finally, for each year, 𝑡, the values of the Croatian mortality rates 

move in parallel with the respective rates of Malta for three years ahead (𝑟𝑋𝑌 = 0.672). Recall that 

the reported correlation values examine the existence of linear relationships between time series. 

    Regarding negative correlations, strong cross – correlations were revealed by the time series 

pairs of Estonia – Malta, Italy – Norway, Cyprus – Luxembourg and UK – Switzerland, with 

correlations −0.62, −0.594, −0.697 and −0.697 for lags 𝜏 = −3, −3, 0 and 2 respectively. 

Negative correlation indicates the opposite evolution in time series dynamics, while the lag 

element is interpreted similarly as in the instances of positive correlations. 
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4.6. Causality investigation between European countries’ premature mortality  

The selection of 𝑘1 = 𝑘2 is often suggested for model (28) as Kirchgässner and Wolters [38] state. 

In this case, we consider 2𝑘 = 𝑘1 + 𝑘2. At the same time, the results of the aforementioned test 

are sensitive to the number of past values of the time series {𝑥𝑡} used in the model, since the more 

observations we include in the regression, the smaller the variance of the residuals. However, high 

order models can lead to overfitting, resulting in additional parameters describing the noise rather 

than the system dynamics. For this reason, the use of information criteria (Kirchgässner and 

Wolters [38]) is proposed, such as the Akaike (AIC), the Schwarz Bayesian Information Criterion 

(BIC), or the FPE that are defined as 

 

𝐵𝐼𝐶(𝑘) = ln(𝜎𝑣1
2 ) +  

ln (𝑛)(1 + 2𝑘)

𝑛
,                                                  (34) 

 

𝐹𝑃𝐸(𝑘) = 𝜎𝑣1
2

𝛵 + (1 + 2𝑘)

𝛵 − 1 − 2𝑘
.                                                      (35) 

   

Aiming to obtain the best possible balance between the reduction of residuals variance and the 

avoidance of cases of overfitting, we selected the value 𝑘 that minimizes the above criteria. In 

fact, these criteria can be used in parallel to select the order of the model (28), as in some cases the 

3 criteria do not propose the usage of the same optimal order. For example, the Schwarz criterion 

gives more conservative model choices than the one proposed through the AIC criterion. In cases 

where the proposed order of AIC and BIC criteria do not agree, the results of the F – test was 

examined for both different propositions for the class k. 

   The model’s fitting is considered acceptable when the resulting residuals follow normal 

distribution and are uncorrelated to each other in terms of the various lags. We tested these two 

conditions, using the non – parametric Kolmogorov – Smirnov normality test, while to evaluate 

the correlation of residuals, we relied on the use of the Portmanteau test, and the Lagrange test of 

independence. We note that in many cases, the hypothesis of residuals’ independence is tested 

through the Durbin – Watson test. However, we chose the Portmanteau and Lagrange tests mainly 
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because they have the advantage of examining the correlation of residuals for multiple lags 

simultaneously, in contrast to the Durbin – Watson test that must be performed for each lag 

separately (Kirchgässner and Wolters [38]). Barnett and Seth [39] present the use of a set of 

functions for calculating various measures related to Granger causality for Matlab software. With 

regard to instantaneous causality, this kind of causality may occur either because the sampling 

period is longer than the causal effect period, or because the causally active variables of the system 

remain hidden during the calculations (Hyvärinen et al. [40]). The phenomenon of long sampling 

periods is often found in time series that resulted from annual recordings. 

    The networks shown in what follows display the existence of Granger and instantaneous 

Granger causality relationships between the 31 time series of mortality rates. In the Appendix we 

can see the table that contains all the Granger causality relations, the p – values of the 

corresponding F – tests as well as the order 𝑘 of the fitted models. 

 

Figure 7. (Instantaneous) Granger causality between the premature mortality rates of European 

countries 

    In this part of analysis, we conducted 930 tests aiming to reveal all causal relationships 

existing between the (31
2

) pairs of time series belonging to the dataset. The short length of them 

led us to the selection of 𝑘 ≤ 3 because 𝑘 = 3 implies that for the fitting of model (28), 7 

unknown parameters should be estimated based on the time series’ observations. In some cases 
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where the length of the time series was less than 18 observations, we tested the existence of 

causality using only 𝑘 = 1.   The residuals of the fitted models satisfied all normality and 

independence conditions.  

    Combining the results of the above diagrams, we can identify all types of Granger causality 

that occur between the 465 time series pairs. Initially, it becomes clear that there is no symmetry 

to the property of Granger causality between two time series. Moreover, with regard to the 

feedback property, only one case, that of Sweden – Ireland, satisfied this property’s conditions 

using a model of order 𝑘 = 2. Also of particular interest is the fact that in three cases, those of 

Iceland – Denmark, Spain – Luxembourg and the UK – Spain, we observed simple and 

instantaneous Granger causality simultaneously. None of the 465 time series pairs displayed 

feedback along with instantaneous Granger causality. 

 

4.7. (Instantaneous) Granger causality of Europe’s average mortality and the rest of 

European countries  

Similar procedure was followed for the examination of causal relations between the average 

mortality rates in Europe and the other 31 European countries’ rates. The analysis revealed 12 

Granger causality and 5 instantaneous causality relations regarding the average European mortality 

rates.    

    Statistically significant causality occurred when the time series of Ireland                      

(p = 0.0482, k = 2), Latvia (p = 0.0352, k = 1) and Slovakia (p = 0.0459, k = 2) were used as an 

effect. In these occasions, the average rates of Europe could be utilized to support the forecasting 

process of these countries. 

    On the other hand, the results of statistically significant Granger causality are more interesting 

when we use Europe’s time series this time as an effect. The time series of the countries that 

showed statistically significant Granger causality having the role of cause, were Cyprus        

(p = 0.0447, k = 1), Latvia (p = 0.0006, k = 1), Austria (p = 0.0173, k = 1), Slovenia (p = 0.0122, 

k = 3), the UK (p = 0.0056, k = 2) and Norway (p = 0.03116, k = 1). 
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   The case of Latvia is of particular interest, as there is an obvious feedback between this 

country’s rates and the average rates of Europe. The important feature that accompanies the case 

where the European time series was used as a result, is that the countries mentioned above, offer 

important information in predicting the behavior that characterizes the mean mortality rates of 

Europe in the coming years. We further emphasize that the interpretation of the results concerns 

only the system dynamics and not the non-stationary time series. 

 

Figure 8. (Instantaneous) Granger causality between Europe’s average mortality and mortality 

rates of European countries 

 

5. DISCUSSION  

In our analysis we presented the clustering results on a map, aiming to examine how the 6 clusters 

are distributed geographically. We conclude from Figure 4, that as we move from western to 

eastern Europe, mortality rates from chronic diseases increase, as Eastern European countries have 

been included in clusters 4 to 6 corresponding to mortality levels that are above average. At the 

same time, as we go either north or south on this map there is a decrease in mortality rates as 

Sweden, Norway, Iceland, Italy and Cyprus belong to the 1st subgroup, that is associated with the 

lowest mortality rates. Finland is ranked in the 2nd group showing slightly higher levels, 

differentiating itself from the rest of the Nordic countries. Quite interesting is the case of Greece, 

that differs significantly from the other Balkan and Eastern European countries and belongs to the 

3rd cluster; however, one would probably expect Greece to belong to groups 1 or 2 due to its 

dietary habits which do not differentiate from those of the Mediterranean ones, in many areas; 
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apparently, other factors do also affect the classification in certain clusters. 

    We will try to interpret the results of this grouping by investigating social, economic and 

environmental factors that have probably played an important role in shaping these mortality rates. 

In order to define the possible causes that result in the deterioration of patients’ health suffering 

from the aforementioned diseases, we should look for the reasons that cause this deterioration, but 

also search for the factors that have been proven to cause the occurrence of such diseases. It is 

obvious that mortality rates are increased in countries where the incidence of chronic diseases is 

also increased.  

     In terms of eating habits, the beneficial effect of the Mediterranean diet based on olive oil 

and low – saturated fats on human health is well known. In Romagnolo and Selmin [41] and 

Georgoulis et al. [42] a systematic study has been carried out according to which, the adoption of 

the Mediterranean diet, seems to significantly reduce the incidence of malignancies and diabetes, 

while in the case of patients already suffering from these diseases, mortality rates are also reduced 

provided that the patients follow these dietary patterns. We observe, therefore, that the 

Mediterranean countries (Italy, Cyprus, Malta, France, Spain) belong to clusters 1 and 2 that have 

the lowest mortality rates confirming the above hypothesis.    

    Cluster 1 includes 2 Mediterranean countries, the Scandinavian countries Sweden and 

Norway, Iceland, while Finland belongs to the next group of mortality rates. The significantly low 

mortality levels in these countries are probably associated with the increased omega-3 fatty diet of 

the inhabitants of these countries, due to the abundance of fishery products that exist in those areas. 

More specifically, Freitas and Campos [43] show that there is a statistically significant drop in 

cancer incidence levels when consuming sufficient amounts of Ω3 fats. Their contribution seems 

to be beneficial in the case of chronic liver disease (Shi et al. [44]) and in the reduction of various 

strokes (Bu et al. [45]), because they are claimed to enhance the regeneration of brain cells, as well 

as cardiac ischemia (Ajith and Jayakumar [46]). On the other hand, according to Simopoulos [47], 

the high omega-6 fat content of the diet of Western European countries’ inhabitants, in contrast to 

that of the Nordic countries, leads to an increase in the incidence of various cancers, while it also 
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worsens the health of those already suffering. Equally aggravating is the tendency in those 

countries where people base the necessary fat intake on animal rather than vegetable fats. In Bobak 

et al. [48], Britton and McKee [49] and Pomerleau et al. [50], authors emphasize that smoking, 

rich in saturated fats and low in antioxidants nutrition, as well as alcohol, play a key role for the 

high levels of cardiovascular disease found in eastern countries compared to those in western 

Europe. In addition, the relatively high level of health care provided in western and northern 

European countries can be seen to keep premature mortality rates from chronic diseases low, which 

is confirmed by the fact that these countries belong to the top 3 subgroups in contrast to the eastern 

European countries that make up subgroups 4,5 and 6.  

    Returning now to the case of Greece, we have to consider smoking and the consumption of 

alcoholic beverages as two of the main causes of the deterioration of a patient's health. Both of 

these factors have been shown to cause cancer, while there is close association between smoking 

and deteriorating of patients’ health with chronic respiratory problems (U.S. Department of Health 

and Human Services [51]), and also association between alcohol and the health of patients with 

liver or brain diseases, as reported in numerous studies (Osna et al. [52] and Klatsky et al. [53]). 

According to published results of Eurostat surveys for 2017 (Eurostat [54]), Greece is in the 1st 

place in terms of rates of smokers aged 15 and over, a position that has been maintained since 2012. 

Equally high are the rates of countries such as Croatia, Bulgaria, France, Latvia, Poland, etc., while 

the rest of the Mediterranean countries are characterized by much lower rates. The rates are low 

also for the Nordic countries, while Sweden has the lowest rates of smokers.  

    According to a study conducted in 9 European countries, an increase of one liter in per capita 

alcohol consumption, can cause up to 3 in 4 additional liver deaths per 100,000 men and 1 

additional death per 100,000 women (Ramstedt [55]). Excessive alcohol consumption in southern 

European countries appeared to be statistically lower than in Western European countries, a fact 

that verifies the inclusion of southern countries in the first two subgroups, with the exception of 

Greece. In some cases, such as those in Ireland and Finland, alcohol overdoses are up to three 

times higher than in Italy, in contrast to Sweden’s rates that seem to be close to those of Italy, 
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reinforcing the inclusion of Finland in the 2nd cluster of the analysis and not in the 1st like its 

neighboring country. At the same time, the rates of alcohol abuse in the Baltic countries were 

presented as similar to those of Finland, as reported in Helasoja et al. [56].  

    In the field of medical care, the superiority of the health systems of the countries of western 

and northern Europe enables the extension of the life expectancy of patients with chronic diseases. 

An interesting statistic presented by Eurostat in the 2018 edition, is constituted by the rates of self-

reported cases of unfulfilled medical care. In the corresponding table for 2016, Greece is in the 

2nd place behind Estonia, while in 2016 Greece was much further behind Bulgaria, Poland, 

Romania and Latvia, which as we saw above belong to the two most burdened groups 5 and 6. We 

consider that this observation probably affects the differentiation of Greece from the rest of the 

Mediterranean countries compared to the rates of premature mortality.  

    Undoubtedly, the income of the inhabitants of European countries is a vital factor for the 

formation of the rates of premature mortality. The countries of western and northern Europe are 

known for their increased earnings, compared to countries of central and eastern Europe, such as 

those of the Balkans, the countries of the former Soviet Union and countries such as Poland, Czech 

Republic and Hungary. It is no coincidence that the income factor affects the proposed clustering, 

as it may not be responsible for the reduced incidence of chronic diseases, but plays a key role in 

maintaining patients' living standards and extending their life expectancy, especially when we have 

to deal with diseases whose treatment requires the continuous purchase of drugs and monitoring 

by specialists, thus burdening patients’ financial situation (Marmot [57]).  

    In addition, it becomes necessary to highlight some environmental conditions that, in parallel 

with the above factors, justify the grouping that emerged through the Fuzzy K – means algorithm. 

Many studies have attributed the increased incidence of chronic diseases, mainly cancerous tumors 

(Cardis, Krewski et al. [58] and Cardis, Howe et al. [59]) among the inhabitants of countries around 

Ukraine, to the radiation released into the atmosphere in 1986 after the explosion of the Chernobyl 

nuclear reactor. Looking at Figure 4, we can see that these neighboring countries for which we 

have data from Eurostat statistics seem to be burdened, while as we move away the mortality rates 
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are much more moderate. Looking at the Eurostat’s table of greenhouse gas emissions in the 2018 

edition (Eurostat [54]), which affects the health of people with respiratory problems, we see 

increased emissions mainly in countries of the 2nd and 3rd subgroups, such as Luxembourg, 

Belgium, Ireland, the Netherlands and Finland. Limiting these emissions would most likely lead 

to their inclusion in subgroups 1 and 2 respectively.  

     Regarding the wider descending trend observed in all EU countries, one of the most probable 

causes is the significant improvement of medical equipment and the strengthening of preventive 

medicine as mentioned in Gavurova et al. [60]. Special emphasis has been placed on the 

deteriorated mortality levels from cardiovascular diseases through the beneficial use of medical 

technology – methodology and in general the improvement of the conditions of the health systems 

in countries such as Lithuania, Sweden and Norway (Lisauskiene et al. [61]). In parallel, Meslé 

[62] underlines that the downward trend in deaths from cardiovascular diseases is due to the 

multifaceted development of medicine in areas such as improving systemic prognosis, the adoption 

of screening, but also the spread of new treatment techniques and surgeries.   

     The most common cancers in Europe during 2006 were breast cancer, accounting for 14% 

of all cases, prostate cancer with 13.2%, colorectal cancer with 13% and lung cancer accounting 

for 11.6% of all cases of tumor incidents (Ferlay [63]). Based on Boyle [64] and Sant et al. [65] it 

is considered that a vital role in the treatment of breast cancer, in countries such as the UK, had 

the briefing of the citizens but also the establishment of screening in combination with the more 

efficient methods of treatment. Even in countries such as Spain and Slovakia, where screening has 

not been adopted at the same scale, there is an improvement in the medical practices. Tumors can 

now be diagnosed at earlier stages than in the past, due to the constant improvement in the accuracy 

of diagnostic tools such as MRI scans, while surgery is used in advanced cases. For example, 

during the existence of a prostate cancer the treatment can be relayed on the usage of radiation. 

For the above reasons, mortality rates from cancerous tumors, such as breast cancer, are declining 

even in eastern EU countries (Tyczynski et al. [66]). As mentioned above, the incidence of lung 

cancer, as well as other chronic respiratory diseases, seems to be related to tobacco smoking. 
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Considering this factor, we realize that the reduction of active or passive smoking will 

continuously lead to a reduction in premature deaths from respiratory diseases. Thus, the anti-

smoking law in all closed and some open spaces in EU, first discussed in 2002 and widely 

implemented since 2009, is likely to lead to lower rates of premature mortality from respiratory 

diseases over the next years.  

    In addition, especially in the last two decades, artificial intelligence reinforced the fields of 

preventive and diagnostic medicine. In 2008, following the standards of the Association for the 

Advancement of Medical Instruments and the British and Irish Hypertension Society, an 

innovative blood pressure tool was developed based on a combination of convolutional and 

recurrent neural networks to solve the problem of the extraction of characteristic pulse waveforms 

of low strength. Using the generated results of this algorithm, the diagnosis of the condition of the 

patient's heart becomes more efficient (Zhang et al. [67]).  

    Furthermore, there has been a significant improvement in the quality of MRI scans and 

diagnostic measures in general using image or video. More specifically, the case of cervical cancer, 

where its existence in the early stages is mainly not accompanied by symptoms, makes the need 

for early diagnosis urgent, something that can be achieved more commonly with the use of 

convolutional neural networks (Bielak et al. [68]). Also, it is possible to enhance the video-based 

diagnostic process, as in the case of Barrett's esophagus, a precancerous condition that begins in 

the mucosa of the lower esophagus and is due to chronic gastroesophageal reflux (Hashimoto et 

al. [69]). Equally important is the contribution to the prediction of ischemic strokes and 

thromboembolism, as reported in Li et al. [70]. A general summary of the contribution of artificial 

intelligence to medicine is given in Rong et al. [71] and Becker [72]. 

  

6. CONCLUSIONS 

    Public health is a field of research with many benefits for the inhabitants and the community 

of the examined countries or continents. The capability of forecasting, interpretation and 
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investigation of causality relationship between factors of a variety of scientific fields may be 

proven beneficial for the living standards and life expectancy of people nowadays.  

    The proposed in this study ARIMA and SETAR models that are presented for each of the 31 

time series of European countries should be utilized to make predictions for the upcoming years, 

acquiring a practical tool for the understanding of premature mortality in these countries. A 

decrease in the predicted mortality rates of chronic diseases can be deemed as an encouraging hint 

for public health and medicine, although, an increase should raise the awareness of health systems. 

Τhe proposed AR(2) model for Europe’s average mortality levels, shows that the prediction of a 

year’s mortality can be based on the average mortality of the two previous years.  

    After the implementation of the clustering procedure, we gained the ability to examine the 

magnitudes of mortality rates in European countries and distinguish the differentiation that exists 

between western and eastern Europe. The usage of Jensen – Shannon divergence reinforces this 

attempt, providing an indicator of the differentiation within clusters. Furthermore, research in the 

fields of nutrition, economy, environment, public health and medicine facilitate the interpretation 

of the proposed division validating the credibility – reliability of the produced results. Quite 

interesting is the presentation of an EU country -i.e., Slovenia- as the best indicator of the average 

premature mortality in Europe, a fact that is supported unanimously by two statistical criteria.  

    The probe of the existence of correlation and causality between all the time series of this 

research, enhances the general understanding of the relationships that accompany EU countries’ 

mortality rates proposing more robust predictions concerning the future mortality of each country. 

Finally, the case of Latvia, displays the ability to use the rates of an EU country to efficiently 

predict EU’s average mortality and vice versa.      
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APPENDIX 

 

Table 4. Spearman coefficients with rs ≥ 0.55 

{𝒙𝒕} {𝒚𝒕} 𝒓𝒔 p-value 

Belgium Croatia 0.76 0.001 

Bulgaria Cyprus 0.62 0.029 

Czech Republic Switzerland 0.59 0.005 

Denmark Croatia -0.55 0.033 

 Iceland 0.77 < 0.001 

Germany Croatia 0.77 < 0.001 

France Romania 0.59 0.021 

 Finland -0.61 0.015 

Croatia Slovakia 0.62 0.013 

Italy Cyprus 0.64 0.022 

Cyprus Luxembourg -0.75 0.004 

 Hungary 0.77 0.002 

 Poland 0.64 0.018 

 Slovenia 0.69 0.011 

 Slovakia 0.68 0.013 

Latvia Lithuania 0.56 0.008 

Hungary Slovakia 0.55 0.009 

Malta Holland 0.65 < 0.001 

Austria UK 0.60 0.004 

Finland Norway 0.59 0.004 
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Table 5. Statistically significant distance correlations with Rn ≥ 0.55 

{𝒙𝒕} {𝒚𝒕} 𝑹𝒏 p-value 

Belgium  Croatia 0.69 < 0.001 

Germany 0.58 0.025 

Czech Republic  

 

Spain 0.55 0.002 

Croatia 0.56 0.022 

Denmark Germany 0.61 0.042 

 Croatia 0.61 0.022 

 Iceland 0.80 < 0.001 

Germany Croatia 0.76 < 0.001 

France Romania 0.66 < 0.001 

Spain Luxembourg 0.56 < 0.001 

Italy  

 

Cyprus 0.60 0.011 

Hungary 0.73 0.012 

Slovakia 0.73  < 0.001 

Cyprus 

 

Luxembourg 0.79 < 0.001 

Slovenia 0.63 < 0.001 

Slovakia 0.66 < 0.001 

Iceland 0.56 0.043 

Latvia Lithuania 0.73 < 0.001 

 Austria 0.71 < 0.001 

 UK 0.69 < 0.001 

Lithuania UK 0.58 0.009 

Luxembourg Slovakia 0.67 0.006 

Hungary 

 

Poland 0.55 < 0.001 

Slovakia 0.59 0.018 

Malta Holland 0.64 < 0.001 

Austria UK 0.69 < 0.001 

Finland Norway 0.57 < 0.001 
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Table 6. Cross – correlations between the examined mortality rates 

{𝒙𝒕} {𝒚𝒕} 𝒓𝑿𝒀  Lag (τ) 

Belgium Bulgaria 0.541 3 

Croatia 0.748 0 

Cyprus 0.481, - 0.573 0, 2 

Bulgaria 

 

 

France -0.508 1 

Croatia 0.548 -3 

Italy 0.511 -3 

Malta -0.563 1 

Switzerland -0.540 1 

Czech Republic Cyprus 0.551, -0.614 -2, -3 

Denmark 

 

Italy 0.539 -3 

Iceland 0.771 0 

Germany  Croatia 0.544, 0.734 -1, 0 

Malta 0.565 3 

Slovenia 0.500 -2 

Estonia 

 

 

Malta -0.620 -3 

Slovakia -0.511 -2 

Sweden 0.506 -2 

Ireland 

 

Malta 0.518 1 

Slovakia -0.590 3 

Greece 

 

 

Hungary 0.644 -1 

Finland 0.734 0 

Sweden 0.565 3 

Norway 0.508 1 

Spain Luxembourg 0.584 -1 

UK 0.532 -1 

Norway 0.509, 0.514 -2, 1 

France Holland -0.532 -4 

Romania 0.562 0 

Finland -0.562 0 
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Croatia  

 

Malta 0.672 3 

Holland 0.554 3 

Portugal -0.503 2 

Finland 0.505 -3 

Italy 

 

Cyprus 0.505 0 

Iceland -0.535, 0.511, 0.484 4, 3, 1 

Norway -0.594, 0.692 -3, -4 

Cyprus  

 

Luxembourg -0.697 0 

Poland 0.560 0 

Slovenia 0.675 0 

 Slovakia 0.602 0 

Sweden 0.525 -3 

Latvia Lithuania 0.636 0 

 

Luxembourg 

UK 

Slovakia 

0.638, -0.494 

-0.516 

0, 2 

0 

Malta 

 

Holland 0.642 0 

Slovakia -0.512 2 

Holland Slovakia 0.532 1 

Austria UK -0.560 0 

Poland 

 

Portugal -0.504 0 

Slovakia 0.510 0 

Sweden -0.615 -3 

Portugal Romania 0.523 0 

Romania Finland -0.554 0 

Slovakia Sweden -0.511 -3 

UK 0.580 -3 

UK 

Sweden 

Switzerland -0.631 2 

Norway 0.507 -2 
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Table 7. Pairs of mortality time series with statistically significant Granger causality.   

{𝒙𝒕} (cause) {𝒚𝒕} (effect) p-value Order (𝒌) 

Bulgaria Denmark 0.0238 2 

 Lithuania 0.0353 1 

 UK 0.0357 1 

Czech Republic 

 

 

Belgium 0.0351 2 

Sweden 0.0439 1 

UK 0.0353 3 

Iceland 0.0106 1 

Denmark Spain 0.0157 2 

 Slovakia 0.0035 1 

 Switzerland 0.0469 1 

Germany Denmark 0.0034 3 

Slovenia 0.0277 2 

Estonia 

 

 

Spain < 0.0001 1 

Hungary 0.0352 1 

Malta 0.0086 3 

Sweden 0.0009 2 

Ireland 

 

Croatia 0.0465 1 

Sweden 0.0356 2 

Greece France 0.0363 1 

 Hungary 0.0013 2 

 Finland < 0.0001 2 

 Latvia 0.0111 1 

Spain Lithuania 0.0012 1 

 Sweden 0.0206 1 

France Bulgaria 0.0300 1 

Croatia Finland 0.0482 1 

Italy 

 

Denmark 0.0444 3 

Iceland 0.0214 1 

Cyprus Luxembourg 0.0421 1 

 Romania 0.0242 1 

 Iceland 0.0335 1 

Lithuania Slovakia 0.0371 2 

Luxembourg 

 

Hungary 0.0286 2 

Slovenia 0.0223 2 

Hungary Germany 0.0447 2 

 Italy 0.0377 1 
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 Latvia 0.0158 1 

 Malta 0.0461 2 

 Holland 0.0286 2 

Malta 

 

 

Bulgaria 0.0010 1 

Czech Republic 0.0317 1 

Ireland 0.0089 1 

 Austria 0.0354 1 

Slovakia 0.0105 1 

Switzerland 0.0224 3 

Holland Germany 0.0213 2 

Austria 

 

Spain 0.0127 1 

UK 0.0443 1 

Poland Czech Republic 0.0406 3 

Germany 0.0032 3 

Portugal Belgium 0.0126 3 

Slovenia 

 

Denmark 0.0437 3 

Latvia 0.0172 1 

Slovakia  Bulgaria 0.0340 2 

Holland 0.0066 1 

Sweden Germany 0.0382 2 

 Ireland 0.0199 2 

 France 0.0467 1 

 Norway 0.0418 1 

UK Spain 0.0366 2 

 Latvia 0.0006 2 

 Switzerland 0.0388 2 

Iceland Bulgaria 0.0150 1 

Denmark 0.0311 1 

Norway 

 

 

Czech Republic 0.0351 2 

Ireland 0.0087 2 

Spain 0.0036 1 

Latvia 0.0056 3 

Switzerland Estonia 0.0036 2 

 Latvia 0.0438 2 

 Lithuania 0.0029 2 
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Table 8. Statistically significant instantaneous Granger causalities between mortality rates.  

{𝒙𝒕}  {𝒚𝒕}  p-value Order (𝒌) 

Belgium Denmark 0.0422 2 

 Croatia 0.0360 1 

 Luxembourg 0.0249 3 

  Slovenia 0.0242 2 

 Slovakia 0.0142 2 

Bulgaria Germany 0.0429 3 

Czech Republic Spain 0.0134 1 

Switzerland 0.0396 1 

Denmark 

 

Estonia 0.0220 1 

Iceland 0.0077 1 

Estonia 

 

 

Latvia 0.0293 2 

Lithuania 0.0295 1 

UK 0.0272 1 

Spain Luxembourg 0.0249 2 

 Malta 0.0346 1 

 UK 0.0268 2 

France Romania 0.0301 1 

Croatia Italy 0.0458 1 

Latvia  

 

Lithuania 0.0105 2 

Austria 0.0233 2 

Lithuania UK 0.0132 1 

Luxembourg Slovakia 0.0424 1 

Hungary Poland 0.0236 2 

Malta Holland 0.0060 2 

Poland Portugal 0.0404 1 

Slovakia 0.0450 1 

Sweden 0.0410 2 

Switzerland 0.0270 2 

Romania Finland 0.0487 1 

Slovenia Slovakia 0.0445 1 

Slovakia Switzerland 0.0459 2 
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