
Available online at http://scik.org

Commun. Math. Biol. Neurosci. 2021, 2021:78

https://doi.org/10.28919/cmbn/6381

ISSN: 2052-2541

THE EFFECT OF QUARANTINE AND TREATMENT IN COVID-19
TRANSMISSION: FROM MATHEMATICAL MODELING PERSPECTIVE

ISSAKA HARUNA1,∗, HAILEYESUS TESSEMA ALEMNEH2, GETACHEW TESHOME TILAHUN3

1Pan African University Institute of Basic Sciences, Technology and Innovation, Nairobi, Kenya

2Department of Mathematics, University of Gondar, Gondar, Ethiopia

3Department of Mathematics, Haramaya University, Dire Dawa, Ethiopia

Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. Corona-virus disease (COVID-19) is caused by the novel-virus (SARS-COV2). This disease mainly

targets human respiratory system. COVID-19 (Coronavirus) has affected day to day life and is slowing down

the global economy. This pandemic has affected thousands of peoples, who are either sick or are being killed

due to the spread of this disease. In this paper we developed an eight compartmental model with quarantine and

treatment of COVID-19. After proposing the model, we analysed the qualitative behaviors of the model, like

the disease free and endemic equilibrium points and their stability analysis. Moreover, we obtained the basic

reproduction number using next-generation matrix method and we performed the sensitivity analysis to identify

the most affecting parameters in terms of disease control and spread. To investigate the detail effect of each major

parameters, we performed numerical simulation. We obtained that using both quarantine and treatment is best way

in combating COVID-19 in the community. Therefore, stakeholders and policy makers of a government should

use both quarantine and treatment simultaneously in fighting the pandemic from the population.
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1. INTRODUCTION

Since the outbreak in Wuhan, China, December, 2019, coronavirus disease (COVID-19)

caused by the novel coronavirus, has now become a global pandemic as declared by World

Health Organization (WHO) [1] and the world is presently battling with it [2, 1, 3]. The most

common symptoms of COVID-19 are fever, fatigue, and dry cough [1]. Some patients may have

ache and discomfort, nasal congestion, runny nose, sore throat, or diarrhea [3]. Such symptoms

occurs 2-14 days after exposure, most usually about 5 days [4].

The pandemic can be transmitted directly or indirectly from an infectious person to a healthy

person through the eyes, nose, mouth, and sometimes through the ears through moisture con-

tent when coughing or sneezing [3]. According to the data reported by WHO (World Health

Organization), on 13 August 2020, the reported laboratory confirmed that the number of af-

fected humans reached more than 25.9 million including more than 0.86 million death cases and

more than 18.2 million recovers are recorded [5]. The government of different countries have

been implementing diverse control measures such as imposing strict, mandatory lock downs

other measures such as individuals maintaining individual social distancing, avoiding crowded

events, imposing a maximum number on individuals in any religious and social, the use of face

masks while in public, use of sanitizers in any contact many in the markets and etc [6, 7, 8] to

mitigate the spread of this pandemic.

Mathematical models have long been used as tools in gaining insight into the dynamics of

infectious diseases [9, 10]. Several mathematical models have already been formulated for the

population dynamics of COVID-19 in several countries [4, 11, 12, 6, 13, 14]. From this studies,

Tang et al. [15] considered, an SEIR-type mathematical model to estimate the transmission risk

of COVID-19 and its implication. The study in [6] , formulated a model for novel corona virus

disease 2019 (COVID-19) in Lagos, Nigeria and shown the effect of control measures, specif-

ically the common social distancing, use of face mask and case detection on the dynamics of

COVID-19. Khan et.al,[16], formulated a fractional mathematical model for the dynamics of

COVID-19 with quarantine and isolation. D.K Mamo [13], developed SHEIQRD corona virus

pandemic spread model. He Identified that isolation of exposed and infected individuals, reduc-

tion of transmission, and stay-at-home return rate can mitigate COVID-19 pandemic. In this
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study, we developed a model by incorporating the hospitalize/quarantine and home treatment

subclasses as well as home quarantine subclasses.

The paper is organized as follows. Section 2 is devoted to the baseline model description and

the formulation. We carry out mathematical analysis of the model in Section 3. In Section 4

numerical simulation of the model was implemented for the various strategies. The conclusion

is presented in Section 5.

2. BASELINE MODEL FORMULATION

In this study the total population, N(t), at time, t is divided into eight subpopulations;

Susceptible,S(t),Stay-home susceptible, Sh(t), Exposed, E(t), Asymptomatic, A(t), Infected,

I(t), home Treatment, T (t), Hospitalized/quarantine, Q(t) and Recovered, R(t). The Suscepti-

ble are recruited into the population at a constant rate, Π. It is assumed that β1 and β2 are the

contact rate of susceptible individuals with asymptomatic and infected individuals respectively

and they move to the exposed compartment. We also assumed that susceptible individuals stay

at home at a rate of υ and at a rate of τ peoples move from stay at home for due to different

reasons and susceptible to the pandemic. Finishing the incubation period, the exposed individ-

uals becomes infected at a rate of γ . From this αγ proportion become asymptomatic and the

rest (1−α)γ become infectious. Through diagnosis σδ proportion asymptomatic individuals

got positive and join quarantine/hospitalized. The rest (1−σ)δ proportion of asymptomatic

individuals recover from the disease. Also from infected individuals, cε fraction of individ-

uals move to hospitalized. The others are taking treatment at their home at a rate (1− c)ε .

However, when the pandemic for the treated individuals become savior φρ fraction move the

quarantine/hospitalized. The remaining fractions recovers with the home treatment. Infected

individuals recover at a rate of ω and quarantine individuals recover from the pandemic a rate

k. The asymptomatic, infectious, treated and quarantine individuals die due to the disease at

a rate ρ1,ρ2,ρ3,ρ4 respectively. The whole population have an average death rate of µ . For

more information, Table 2 shows the description of model parameters. The flow diagram of the

model is shown in Figure 1 below.
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FIGURE 1. Compartmental flow diagram of the pandemic COVID 19 transmis-

sion

Therefore, based on the above assumptions, the model is governed by the following system

of differential equation:

(1)



dS
dt = Π+ τSh− (β1A+β2I)S− (υ +µ)S

dSh
dt = υ S− (τ +µ)Sh

dE
dt = (β1A+β2I)S− (γ +µ)E

dA
dt = α γ E− (ρ1 +δ +µ)A

dI
dt = (1−α)γ E− (ρ2 +ω + ε +µ) I

dT
dt = (1− c)ε I− (ρ3 +ρ +µ)T

dQ
dt = σ δ A+ cεI +φρT − (ρ4 + k+µ)Q

dR
dt = ωI +(1−σ)δ A+ kQ+(1−φ)ρ T −µ R,

with the initial condition

(2) S(0) = S0 ≥ 0 ,E(0) = E0 ≥ 0 I(0) = I0 ≥ 0 ,R(0) = R0 ≥ 0.

3. MODEL ANALYSIS

3.1. Invariant Region. In this section, a region in which solutions of the model are uniformly

bounded is the proper subset of Ω ∈ R8
+. The total population at any time t is given by N =
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S+Sh +E +A+ I +T +Q+R and dN
dt = Π−ρ1A−ρ2I−ρ3T −ρ4Q−µN. In the absence of

mortality due to COVID-19 pandemic, it becomes

(3)
dN
dt
≤Π−µN.

Solving equation (3), we obtain 0 ≤ N ≤ Π

µ
. Therefore, the feasible solution set of the system

in equation (1) is the region given by:

(4) Ω =

{
(S,Sh,E,A, I,T,Q,R) ∈R8

+ : N ≤ Π

µ

}
.

3.2. Positivity of Solutions.

Theorem 3.1. If the initial conditions of the model are nonnegative in the feasible set Ω, then

the solution set

(S(t),Sh(t),E(t),A(t), I(t),Q(t),T (t),R(t)) of system (1) is positive for future time t ≥ 0.

Proof. We let τ = sup{t > 0 : S0(ζ )≥ 0 ,Sh0(ζ )≥ 0 ,E0(ζ )≥ 0 ,A0(ζ )≥ 0, I0(ζ )≥ 0,T0(ζ )≥

0,Q0(ζ ) ≥ 0,R0(ζ ) ≥ 0 for all ζ ∈ [0, t]}. Since S0(t) ≥ 0 ,Sh0(t) ≥ 0 ,E0(t) ≥ 0 ,A0(t) ≥

0, I0(t) ≥ 0,T0(t) ≥ 0,Q0(t) ≥ 0,R0(t) ≥ 0 then τ > 0. If τ < ∞, then automatically S0(t) or

Sh0(t) or E0(t) or A0(t) or I0(t) or T0(t) or Q0(t) or R0(t) is equal to zero at τ . Taking the first

equation of the model (1)

(5)
dS
dt

= Π− (β1A+β2I)S− (υ +µ)S

Then, using the variation of constants formula the solution of equation (5) at τ is given by:

S(τ) = S(0)exp
[
−
∫

τ

0
((β1A+β2I)S+(υ +µ)S)(S)dS

]
+
∫

τ

0
Π.exp

[
−
∫

τ

S
((β1A+β2I)S+(υ +µ)S)(ζ )dζ

]
dS > 0.

Moreover, since all the variables are positive in [0,τ], hence, S(τ) > 0. It can be shown in

a similar way that Sh(τ) > 0,E(τ) > 0,A(τ) > 0 I(τ) > 0,T (τ) > 0,Q(τ) > 0 and R(τ) > 0.

Which is a contradiction. Hence τ =∞. Therefore, all the solution sets are positive for t ≥ 0. �
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3.3. COVID-19 Free Equilibrium Point(CFEP). COVID-19 free equilibrium point is the

state at which the infection is not present in the population and note that it has been eradicated.

In the case of COVID 19 free the compartments E = I = A = 0. Hence, equating zero for the

remaining equations in (1) leads the COVID-19 free equilibrium point and given by:

(6) E0 = (
π

µ
,

υπ

µ(γ +µ)
,0,0,0,0,0,0).

3.4. Basic reproduction number. To analyze the stability of the equilibrium points, the basic

reproduction number R0 of the model is important. It is obtained using the next-generation

matrix method [17, 18]. The first step is rewrite the model equations, starting with newly

infective classes:

(7)



dE
dt = (β1A+β2I)S− (γ +µ)E

dA
dt = α γ E− (ρ1 +δ +µ)A

dI
dt = (1−α)γ E− (ρ2 +ω + ε +µ) I

dT
dt = (1− c)ε I− (ρ3 +ρ +µ)T

dQ
dt = σ δ A+ cεI +φρT − (ρ4 + k+µ)Q

dR
dt = ωI +(1−σ)δ A+ kQ+(1−φ)ρ T −µ R.

Then by the principle of next-generation matrix, the Jacobian matrices at DFE is given by

F =



0 β1Π

µ

β2Π

µ
0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


and V =



γ +µ 0 0 0 0 0

−α γ ψ1 0 0 0 0

−(1−α)γ 0 ψ2 0 0 0

0 0 −(1− c)ε ψ3 0 0

0 −σ δ −cε 0 ψ4 0

0 −(1−σ)δ −ω −φ ρ −k µ


,

where,

ψ1 = ρ1 +δ +µ,ψ2 = ρ2 +ω + ε +µ,ψ3 = ρ3 +θ +µ +ϕ + ε +µ,ψ4 = ρ4 + k+ρ +µ.
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Therefore, the basic reproduction number is the spectral radius of the next-generation matrix

FV −1, is given us

(8) R0 =
((1−α)(δ +ρ1 +µ)β2 +(ε +ω +ρ2 +µ)α β1)γ Π

µ (γ +µ +υ)(δ +ρ1 +µ)(ε +ω +ρ2 +µ)
.

Which is a threshold parameter that represents the average number of infection caused by one

infectious individual when introduced in the susceptible population [17] in its infectious life

time.

3.5. Local Stability of DFEP.

Theorem 3.2. The DFEP point is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof. The Jacobian matrix, evaluated at the disease-free equilibrium E0, we get:

J =



−µ−υ τ 0 − β1(τ+µ)Π
(τ+µ+υ)µ − β2(τ+µ)Π

(τ+µ+υ)µ 0 0 0

υ −τ−µ 0 0 0 0 0 0

0 0 −γ−µ
β1(τ+µ)Π
(τ+µ+υ)µ

β2(τ+µ)Π
(τ+µ+υ)µ 0 0 0

0 0 α γ −ψ1 0 0 0 0

0 0 (1−α)γ 0 −ψ2 0 0 0

0 0 0 0 (1− c)ε −ψ3 0 0

0 0 0 σ δ cε φ ρ −ψ4 0

0 0 0 (1−σ)δ ω (1−φ)ρ k −µ

,


where,

ψ1 = ρ1 +δ +µ,ψ2 = ρ2 +ω + ε +µ,ψ3 = ρ3 +θ +µ +ϕ + ε +µ,ψ4 = ρ4 + k+ρ +µ.

The first five eigenvalues are listed as:

−µ,−(τ +µ),−ψ3,−ψ4,−µ.

The other eigenvalues are obtained from the characteristic polynomial:

P(λ ) = λ
3 +ϕ1λ

2 +ϕ2λ +ϕ3 = 0.(9)
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where

ϕ1 = ψ1 +ψ2 + γ +µ,

ϕ2 =
−Πα γ β1 +(1−α)Π γ β2 + γ µ ψ1 + γ µ ψ2 +ψ1µ2 +ψ2µ2 +ψ2µ ψ1

µ
,

ϕ3 =−
Πα γ β1ψ2−Πα γ β2ψ1 +Πγ β2ψ1− γ µ ψ1ψ2−µ2ψ1ψ2

µ
.

To check the positivity of the eigenvalues, We used Routh-Hurwitz criteria and by this principle

equation (9) has strictly negative real root iff ψ1 > 0 , ψ2 > 0 and ψ3 > 0. Clearly we see

that ψ1 > 0 and ψ2 > 0 because they are the sum of positive parameters. Then taking the third

equation,

ψ3 = (ε +ρ +µ)(δ +µ) [1−R0]> 0

Hence the DFEP is locally asymptotically stable if R0 < 1. �

3.6. Global Stability of DFEP. In this section, we investigate global asymptotic stability of

the disease free equilibrium using the theorem of Castillo-Chavez [19, 14]. We rewrite model

in equation (1) as:

(10)


dZ
dt = F(Z,Y ),

dY
dt = G(Z,Y ),G(Z,0) = 0,

where Z = (S,Sh,R) ∈R3 denotes uninfected populations and Y = (E,A, I,T,Q) ∈R5 denotes

the infected population. E0 = (Z∗,0) represents the DFEP of this system. List two conditions

as:

(i) For dZ
dt = F(Z,0),Z∗ is globally asymptotically stable.

(ii) dY
dt = DY G(Z,0)Y,−Ĝ(Z,Y ), Ĝ(Z,Y )≥ 0 f or all (Z,Y ) ∈Ω.

If DFEP satisfies the above two conditions, we conclude that E0 is globally asymptotically

stable and according to Castillo-Chavez [19] and the following theorem holds.

Theorem 3.3. The equilibrium point E0 = (Z∗,0) of the system (10) is globally asymptotically

stable if R0 < 1 and the conditions (i) and (ii) are satisfied.
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Proof. We start the proof by defining new variables and dividing the system into subsystems.

Z = (S,R,Q) and Y = (E,A). From equation (10) we have two functions G(Z,Y ) and F(Z,Y )

given by:

F(X,Y) =


Π+ϕSh− (β1A+β2I)S− (υ +µ)S

υ S− (τ +µ)Sh

ωI +(1−σ)δ A+ kQ+(1−φ)ρ T −µ R


and

G(Z,Y) =



(β1A+β2I)S− (γ +µ)E

α γ E− (ρ1 +δ +µ)A

(1−α)γ E− (ρ2 +ω + ε +µ) I

(1− c)ε I− (ρ3 +ρ +µ)T

σ δ A+ cεI +φρT − (ρ4 + k+µ)Q


.

Now we consider the reduced system dZ
dt = F(Z,0) from condition (i)

(11)


dS
dt = Π+ τSh− (υ +µ)S,

dSh
dt = υ S− (τ +µ)Sh,

dR
dt =−µR.

We note that this asymptomatic dynamics is independent of the initial conditions in Ω , therefore

the convergence of the solutions of the reduced system equation (11) is global in Ω. We compute

G(Z,Y ) = DY G(Z∗,0)Y − Ĝ(Z;Y )

and show that Ĝ(Z;Y )≥ 0. Now

DY G(Z∗,0) =



−γ−µ
β1(τ+µ)Π
(τ+µ+υ)µ

β2(τ+µ)Π
(τ+µ+υ)µ 0 0

α γ −ρ1−δ −µ 0 0 0

(1−α)γ 0 −ρ2−ϕ−ω− ε−µ 0 0

0 0 (1− c)ε −ρ3−ρ−µ 0

0 σ δ cε φ ρ −ρ4− k−µ


.
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And we get

Ĝ(X ,Y ) =



(
Π

µ
−S
)
(β1A+β2I)

0

0

0

0


.

Here, since Π

µ
= S0 ≥ S, Hence it is clear that Ĝ(Z,Y ) ≥ 0 for all (Z,Y) ∈ Ω. Therefore, by

LaSalle’s invariance principle [20] this proves that DFE is globally asymptotically stable for

R0 < 1. From this result, we can say that the model exhabits forward bifurication. In other

words, for R0 < 1 the DFEP and EEP does not co-exist. �

3.7. The Endemic Equilibrium Point (EEP). For endemic equilibrium point of the model

we denote it by E∗ and E∗ = (S∗,S∗h,E
∗,A∗, I∗,T ∗,Q∗,R∗) ≥ 0. The COVID-19 pandemic

model has a unique endemic equilibrium and it can be obtained by equating each equation of

the model equal to zero. i.e

dS
dt

=
dSh

dt
=

dA
dt

=
dI
dt

=
dT
dt

=
dQ
dt

=
dR
dt

= 0.

Then we obtain

(12)



S∗ = (γ+µ)[δ (ε+ω+ρ2+µ)+µ(ω+ρ1+ρ2+µ)+ε(ρ1+µ)+ρ1(ω+ρ2)]
γ[(1−α)(δ+ρ1+µ)β2+(ε+ω+ρ2+µ)αβ1]

S∗h = υ(γ+µ)[δ (ε+ω+ϕ+ρ2+µ)+µ(ω+ρ1+ρ2+µ)+ε(ρ1+µ)+ρ1(ω+ρ2)]
γ(τ+µ)[(1−α)(δ+ρ1+µ)β2+(ε+ω+ρ2+µ)αβ1]

E∗ = ξ1
γξ2

A∗ = αξ1
(ρ1+δ+µ)ξ2

I∗ = (1−α)ξ1
(ρ2+ω+ε+µ)ξ2

T ∗ = (α−1)(c−1)εξ1
(ρ2+ω+ε+µ)(ρ+ρ3+µ)ξ2

Q∗ = σδA∗+cεI∗+φρT ∗
ρ4+k+µ

R∗ = ωI∗+(1−α)δA∗+kQ∗+(1−φ)ρT ∗
µ

,
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where

ξ1 = (δ +ρ1 +µ)(α−1)Πγβ2− (ε +ω +ρ2 +µ)Παγβ1

+µ(γ +µ)[δ (ε +ω +ρ2 +µ)+ ε(ρ1 +µ)+µ(ω +ρ1 +ρ2 +µ)+ρ1(ω +ϕ +ρ2)],

ξ2 = (γ +µ)[δβ2(α−1)−αεβ1]− (ω +ρ2 +µ)(γ +µ)αβ1 +(α−1)(γ +µ)(ρ1 +µ)β2.

3.8. Sensitivity Analysis. We used the normalized forward sensitivity index definition to go

through sensitivity analysis on the basic parameters [21] as done in [22, 23]. The Normalized

forward sensitivity index of a variable, R0, that depends differentiably on a parameter, p, is

defined as: Λ
R0
p = ∂R0

∂ p ×
p

R0
for p represents all the basic parameters. Here we have R0 =

((1−α)(δ+ρ1+µ)β2+(ε+ω+ρ2+µ)α β1)γ Π

µ(γ+µ+υ)(δ+ρ1+µ)(ε+ω+ρ2+µ) . For the sensitivity index of R0 to the parameters:

Λ
R0
β1

=
∂R0

∂β1
× β1

R0
=

(ε +ω +ρ2 +µ)α β1

(1−α)(δ +ρ1 +µ)β2 +(ε +ω +ρ2 +µ)α β1
> 0,

Λ
R0
β2

=
∂R0

∂β2
× β2

R0
=

(1−α)(δ +ρ1 +µ)β2

(1−α)(δ +ρ1 +µ)β2 +(ε +ω +ρ2 +µ)α β1
> 0,

Λ
R0
α =

∂R0

∂α
× α

R0
=

α (−(δ +ρ1 +µ)β2 +(ε +ω +ρ2 +µ)β1)

(1−α)(δ +ρ1 +µ)β2 +(ε +ω +ρ2 +µ)α β1
< 0.

Similarly, we can work for the other parameters. The sensitivity indices of the basic reproduc-

tive number with respect to main parameters are found in Table 1.

TABLE 1. Sensitivity indecies table.

Parameter symbol Sensitivity indecies

β1 +ve

β2 +ve

γ +ve

σ1 -ve

σ2 -ve

k -ve

ε -ve

δ -ve

ω -ve

µ -ve
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From Figure 2, we find the positve indices parameters. These parameters (β1, β2, and γ)

show that they have great impact on expanding the disease in the community if their values

are increasing. This is because that the basic reproduction number increases as their values

increase, so that the average number of secondary cases of infection increases in the community.

Therfore, stakeholders should take action to decrease the effect of the pandemic.

(A) (B)

(C)

FIGURE 2. The positive indices parametres

Figure 3, shows those parameters in which their sensitivity indices are negative

(δ ,ω,ε,k, and µ) and the increment of the parameters have an effect of minimizing the bur-

den of the disease in the community. Therefore, research advice for stakeholders to work on

increasing negative indices parameters to fight the pandemic persistence.
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(A) (B)

(C) (D)

FIGURE 3. The negative indices parameters

4. NUMERICAL SIMULATIONS

Analytic studies cannot be complete without numerical verification of the results. In this sec-

tion, we present computer simulation of some solutions of the system (1). Besides verification

of our analytical outcomes, these numerical simulations are very significant from practical point

of view. To illustrate the results, we used parameter values in the Table 2 .
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TABLE 2. Description of parameters of the model (1)

Parameter Description Value Source

Π Ricuirement rate of individuals 150 Assumed

β1 Transmission rate from asymptomatic to susceptible individuals 0.00000115 [16]

β2 Transmission rate from infected to susceptible individuals 0.003 [16]

ρ Individuals who leave from treatment subpopulation 0.2 [16]

δ Proportion of exposed individuals leaving the compartment 0.2 [16]

ε Individuals who leave leave from the infected subpopulation 0.001 [16]

τ Proportion of exposed individuals who join infected compartment 0.07 [13, 24]

υ Proportion of exposed individuals who join infected compartment 0.005 [13]

µ Natural death rate the population 0.016 [13]

k Recovery rate of individuals under quarantine 0.2 [16]

ρ1 Induced death rate of asymptomatic individuals 0.002 Assumed

ρ2 Induced death rate of infected individuals 0.0002 [16, 24]

ρ3 Induced death rate of individuals under treatment 0.0303 Assumed

ρ4 Induced death rate of individuals under quarantine 0.0103 [16]

γ Exposed individuals that become infectious 0.143 [16, 24]

φ Proportion of individuals under treatment who join quarantine 0.3 [16]

c Proportion of infected individuals who join quarantine 0.5 [16]

ω Fraction of infected individuals that are immune 0.00023 [16]

σ Fraction of asymptomatic individuals that are immune 0.01 [16]

α Fraction of exposed individuals that become asymptomatic 0.1 [16]
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4.1. Impact of γ on Infected population. From Figure 4, as we increase the rate of the num-

ber of exposed population to infected and asymptomatic stage increases the number of total

infected individuals in the population. Thus, the closing of government offices fully or partially

was an important decision to control the spread of the pandemic.

FIGURE 4. Impact of γ on Infected population

4.2. Impact of hospitalizing and treatment( ε) on Infected population. As we see from

the Figure 5, by increasing the value of ε , the number of infected people is decreasing due

to an increase number of hospitalize/quarantine and treantment of infectives at home. This is

due to the reason that infectious individuals plays an important role in the infection genera-

tion, and therefore, the people should use every control mechanisms and should be educated to

avoid the interaction with such people and ready for testing. Therefore, the government should

work testing and diagnosis to reduce the infectious number from the population by quarantine/

hospitalize or and treantment of infectives at home.
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FIGURE 5. Impact of ε on Infected population

FIGURE 6. Comparison between with and without quarantine & Treatment

Figure 6, presents the dynamics of the mode with and without quarantine/hospitalize and

treatment. From the figure, one can see that, using quarantine/hospitalize and treatment, it is

possible to increase the number of recovered individuals. Therefore, here stakeholders should

work on using those combating ways to fight the pandemic.
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FIGURE 7. Comparison between quarantine only, Treatment only, with and

without quarantine & Treatment

A comparison figure is shown to see the effects on th number of total recovered individuals,

as seen in the Figure 7. It is evident from figure that from the individual management techniques

hospitalize/quarantine infective individuals is better than taking treatment at home. However,

instead of using them separately, it is best to use the integration of both techniques to produce a

big number of recovered population from the pandemic.

5. RESULTS AND CONCLUSIONS

In this paper an SEAIR deterministic model with quarantine and treatment for the transmis-

sion dynamics of the pandemic COVID-19 is formulated. The mathematical results for the

model were determined. The basic reproduction number R0 is computed and the stability of

equilibria points was investigated. Using Castillo-Chavez theorem, the disease free equilibrium

point globally asymptotically stable whenever the R0 < 1 is proven. We consider some pa-

rameters and their effect on the model graphically, which can be regarded as the controls for

disease eradication. Also we presented the effect of using quarantine and treatment in getting

a better number of recovered individuals. Therefore, as it is shown in the results, government

stakeholders and policy makers should apply both quarantine and treatment simultaneously in

cambating the pandemic.
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