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Abstract. Social media are increasingly influencing people’s preferences and decisions. Modeling information

diffusion on social media networks allows to understand the impact of viral information on individuals behav-

iors in economic, political and social fields. The aim of this paper is to propose a mathematical viral model to

characterize the dynamic of information diffusion on social media platforms resulting from the spread of a viral

information. To this end, the problem will be modelled by four differential equations that describe the interactions

between ”Uninfected Users”, ”Infected Users”, ”Inert Users” and ”free viral information” based on the similarity

between a virus dynamics and people interaction on social media networks. A saturated infection rate is incor-

porated into the model. First, the problem well-posedness is investigated in terms of existence, positivity and

boundedness of solution. Moreover, the reproduction number R0 associated to our problem is calculated using the

next generation method. Next, the equilibrium points are calculated and their existence is proved. Therefore, the

stability analysis and uniform persistence of the model are investigated according to R0 threshold. Finally , some

numerical simulations are carried out in order to illustrate the analytical results. It was revealed that our proposed

model may be conductive to understand the viral information diffusion behavior on social media networks. The

presented mathematical modeling approach is the first investigation of a virus dynamical model that is used to

describe the viral information behavior.
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1. INTRODUCTION

In the last decade, the rapid development of smartphones and information technology has

made social media one of the largest and powerful industries. With over 2.7 billion monthly

active users, Facebook is currently one of the most important propagating tool for message

spreading, rumors circulating, opinions sharing, campaigns and modern social movements mo-

bilization. Recently, it was noticed that social media were widely used during the ”Arab World

Green Revolution” and Online Social Networks have been a valuable instrument in mobiliz-

ing protesters ([23, 25, 5]). More recently, several social movements have been perceived and

widely distributed on social media platforms such as Morocco consumer boycott (2018 - 2019),

the boycott of Algerian presidential election (2019) and the recent calls to boycott French goods

(2020). Mathematical modeling of Diffusion in social media networks have been the interest

of many scientific works. The aim is to well-understand the viral information spreading and to

check the different means to control its progression. In the last few years, dynamical analysis of

Information Diffusion in Social media Networks have played an undeniable role to understand

the key parameters that impact the viral information spreading (see for instance [9, 6, 7, 14]).

Epidemiological modeling is one of the most valuable tools used by many authors in order to

describe the dynamics of viral information on social media (see for instance [12, 13, 27]). In-

deed, at a large-scale, many mathematical models have been deployed a compartmental model

in order to investigate the social interaction behavior in social media platforms ([21, 17, 10, 1]).

The work of Daley et al.[4] was the first effort to present the similarity between epidemics and

rumors using mathematical analysis . Lately, some other researchers studied rumor propaga-

tion modeling in various network topology (see for instance [18, 20]). Bailey et al. studied

and showed how emerging data from social networks lead to better understanding the economic

effects by taking Facebook as an illustrative example [2]. The results suggested that friendship

networks give a process that can spread house price shocks across the economy and that at the

country level. Liu and Zhang proposed a new dynamic information propagation model based

on the susceptible-infected-recovered (SIR) epidemic model with fixed recovery time [16]. Ro-

drigues et al. analyzed the similarity between an epidemic and the viral marketing process. The

authors proposed a SIR epidemic model in order to select the successful viral marketing strategy
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[19]. Jin et al. showed that the epidemic SEIZ model was more specific in capturing the spread

of information and rumors on Twitter [10]. Zhu et al. proposed a new epidemic model with two

periods of infection in order to model human behavior in the social network [28]. On the other

hand, mathematical modeling in Virology by differential systems can provide unique insights

into the dynamics of host-pathogen interactions in vivo. Accordingly, it can be seen that there

is a similarity between virus dynamics and the spread of viral information. Indeed, in this paper

we propose a viral model in order to describe the viral information dynamics on social media

networks by means of a virus dynamical model with saturated incidence and virus-to-cell infec-

tion. The organization of this work is as follows. In the next section we show the formulation

of our proposed model. In section 3 we prove the positivity and boundedness of solutions. In

section 4, the existence of equilibrium points and the reproduction number related to the model

are carried out. Stability analysis and persistence of model are mainly discussed in Section 5.

Section 6 is devoted to present some numerical simulations to support our analytical results.

Finally, we provide some discussions and conclusion of our main results.

2. MODEL FORMULATION

In this section, we present a viral information dynamics model for social media networks with

constant population environment. The mathematical model is constructed under the following

hypothesis:

(1) We consider a homogeneous population in the sense that information spread on social

media network has same effect on minds of all users.

(2) The free diffused viral information on social network v(t) can have an ”social mind

effect” on social media users. In the virus dynamics viewpoint, it corresponds to the

free virus.

(3) The population is divided to three compartments:

• The ”Uninfected Users” compartment X(t) which represents the class of users that

are yet to receive the viral information. In the virus dynamics viewpoint, it corre-

sponds to the healthy cells.
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• The ”Infected Users” compartment Y (t) which represents the individuals who came

to know about the viral information. ”Infected Users” can spread the viral infor-

mation by ”Liking”, ”Commenting” or ”Sharing” online social media posts and

messages. In the virus dynamics viewpoint, it corresponds to the infected cells.

• The ”Inert Users” compartment Z(t) which corresponds to the ”Infected Users”

that are losing interest by getting bored of the viral information.

(4) We assume that the total population is constant, which means that X(t)+Y (t)+Z(t) =

N > 0.

(5) All state variables and parameters of the proposed model are supposed positive.

The ”uninfected users” are assumed to be produced at a constant rate µ and die at the same

rate; birth and death can be viewed as events when people join or leave online social media

platform; k, γ and c are the production rate of free virus by the ”infected users”, the transition

rate from ”infected” to ”inert users” and the clearance rate of viral information, respectively. β

is the rate at which a ”uninfected user” comes in contact with a viral information; 1+ av(t) is

the crowding effect of viral posts (see [27]). α is the transition rate from ”inert” to the class of

”uninfected users” . Figure 1 shows the schematic diagram of the model.

FIGURE 1. Diagram of the viral information dynamics on social media.

Let (x(t),y(t),z(t)) =
(

X(t)
N

,
Y (t)

N
,
Z(t)
N

)
. The model under consideration consists of four

ordinary differential equations illustrating the interaction between the susceptible users x, the
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infected users y, the inert users z and the viral posts v

(1)



dx(t)
dt = µ− βx(t)v(t)

1+av(t) −µx(t)+αz(t),
dy(t)

dt = βx(t)v(t)
1+av(t) −µy(t)− γy(t),

dv(t)
dt = ky(t)− cv(t),

dz(t)
dt = γy(t)−µz(t)−αz(t).

Remark 2.1. The proposed mathematical viral model can be useful to describe different forms

of information diffusion on social media networks such as rumors, marketing campaigns, and

all other types of messages or information that are largely published by users population of

social media.

3. POSITIVITY AND BOUNDEDNESS OF SOLUTIONS OF MODEL (1)

It is well-known that the number of social media platforms users and its related viral posts

remain nonnegative and bounded. Therefore, we will establish, in this section, the positivity

and boundedness of solution of our model (1). To this end, and to retain the validity of our

problem, we will assume first that the initial data satisfy:

(2) x(0)≥ 0, y(0)≥ 0, v(0)≥ 0 and z(0)≥ 0.

The well-posedness is proved in terms of positivity and boundedness of solution. Indeed, we

have the following result

Theorem 3.1. All solutions (x(t),y(t),v(t),z(t)) of model (1) starting from nonnegative initial

conditions exist, remain nonnegative and bounded.

Proof. From the functional differential equations theory (see for instance [8] and the ref-

erences therein), we can show that there exists a unique local solution to model (1). Let

(x(t),y(t),v(t),z(t)) be a solution of system (1) with positive initial condition. We have from

the second equation of (1) that

dy
dt

=
βxv

1+av
−µy− γy≥−µy− γy.
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Let f : R+→ R where f (t) = y(t)e(µ+γ)t ,

thus

f
′
(t) = y

′
(t)e(µ+γ)t +(µ + γ)y(t)exp(µ + γ)t

= e(µ+γ)t [y
′
(t)+(µ + γ)y(t)]

≥ 0.

Therefore f (t)≥ f (0), multiplying each side by e−(µ+γ)t , we get

y(t)≥ y(0)e−(µ+α)t ≥ 0.

Following a similar reasoning for the other cases, we can straightforward prove that

v(t) ≥ v(0)e−ct ≥ 0, z(t)≥ z(0)e−(µ+α)t ≥ 0,

x(t) ≥ x(0)e−µt−β
∫ t

0
v(u)

1+av(u)du ≥ 0.

Therefore, for all t ≥ 0, we have that all the variables of our problem are nonnegative. Hence,

the positivity of all solutions is satisfied.

Now, we will prove that the solutions are bounded. Since the population is constant for all

t ≥ 0, we have

(3) x(t)≤ 1, y(t)≤ 1 and z(t)≤ 1.

Therefore, from the third equation of system (1) we obtain

(4)
dv
dt
≤ k− cv.

By comparison principle we get

v(t)≤ v(0)e−ct +
k
c
, and for t→ ∞, we obtain v(t)≤ k

c
.

Thus, each local solution can be prolonged to any positive time, which means that the unique

solution exists globally. This complete the proof. �
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4. EQUILIBRIA AND BASIC REPRODUCTION NUMBER

4.1. Basic reproduction number. The basic reproduction number R0 is the number of sec-

ondary cases which one case would produce in the entire population supposed susceptible. In

order to determine the basic reproduction number expression, we apply the next generation ma-

trix method (see [11]).

Consider the next generation matrix G. It is comprised of two parts: F and V−1, where:

F =
(

∂Fi(x0)
∂x j

)
, V =

(
∂Vi(x0)

∂x j

)
The Fi are the new infections, while Vi represent the infection transfer from a compartment to

another. x0 is the disease-free equilibrium state. R0 is the dominant eigenvalue of the matrix

G = FV−1. From the model we have

F =

0 β

0 0

 , V =

γ +µ 0

−k c

 , FV−1 =

 βk
c(γ+µ)

β

c

0 0

 ,

thus

R0 =
βk

c(γ +µ)
.

4.2. Existence of equilibria. In this subsection, we show that there exist two equilibria,

namely:

(1) The disease-free equilibrium E0 = (1,0,0,0) which corresponds to the infection free

state. From biological point of view, the disease-free equilibrium corresponds to the

maximum of healthy cells and the infection can not invade the cell population. In this

case of viral information modeling viewpoint, it corresponds to the maximum of unin-

fected social media users and the viral information infection can not invade the popula-

tion of users.

(2) The endemic equilibrium Ee = (x∗,y∗,v∗,z∗), where:

v∗ =
(R0−1)(µ +α)(µ + γ)

[(µ +α)β + γβ +a(µ +α)(µ + γ)]
, x∗ =

(1+av∗)
R0

,

y∗ =
c
k

v∗, z∗ =
cγ

k(µ +α)
v∗.
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Here the endemic equilibrium point Ee represents the equilibrium case when the viral informa-

tion can invade the total studied population of social media users. If R0 > 1, then we have the

existence of the endemic equilibrium Ee.

5. STABILITY ANALYSIS AND UNIFORM PERSISTENCE

5.1. Stability of the model. Stability analysis is an essential tool to predict the long-time

behavior of dynamical model solutions. Generally, there are two main types of stability analysis,

local and global which are widely used in the literature. Local stability is related with the

behavior of solutions near an equilibrium point, while global stability can describe solution

behavior in the whole domain. In order to study the local stability of the disease-free equilibrium

E0 and the endemic one Ee, let us first give the problem Jacobian matrix at an arbitrary point

Ē = (x̄, ȳ, v̄, z̄)

(5) J(Ē) =


− β v̄

1+av̄ −µ 0 − β x̄
(1+av̄)2 α

β v̄
1+av̄ −(µ + γ) β v̄

(1+av̄)2 0

0 k −c 0

0 γ 0 −(µ +α)

 .

To determine the local asymptotic stability of our system, we analyze the eigenvalues of (5) at

each equilibrium point. The equilibrium is said to be stable if all eigenvalues of its correspond-

ing Jacobian matrix have a negative real part.

Theorem 5.1. The disease-free equilibrium E0 is locally asymptotically stable if R0 < 1, other-

wise it is unstable.

Proof. The Jacobian matrix of system (1) at E0 is given as follows

J(E0) =


−µ 0 −β α

0 −(µ + γ) β 0

0 k −c 0

0 γ 0 −(µ +α)

 .

The characteristic equation of J(E0) is given by

(6) (λ +µ)(λ +(µ +α))A(λ ) = 0,
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with

(7) A(λ ) = λ
2 +λ (µ + γ + c)−βk+ c(µ + γ).

The equation A(λ ) = 0 has all roots with negative real parts if

−βk+c(µ +γ)> 0, according to Routh Hurwitz criterion. Then disease-free state E0 is locally

asymptotically stable if R0 < 1 and unstable when R0 > 1. �

Theorem 5.2. The disease-free equilibrium E0 is globally asymptotically stable if R0 < 1.

Proof. Let define a Lyapunov function V0 as

V0(x,y,v,z) = (x−1)+2y+
µ + γ

k
v+ z.

Tacking the derivative of V0, we get

dV0

dt
= µ− βxv

1+av
−µx+αz+2

βxv
1+av

−2(µ + γ)y+(µ + γ)y

−cv(µ + γ)

k
+ γy−µx−αz

= µ(1− x− y− z)+
βxv

(1+av)
− cv(µ + γ)

k
,

since x+ y+ z = 1 we obtain

dV0

dt
=

βxv
(1+av)

− cv(µ + γ)

k
,

it follows that

dV0

dt
≤ v(β − c(µ + γ)

k
)

≤ v(1− 1
R0

).(8)

If R0 ≤ 1, then
dV0

dt
≤ 0. Moreover

dV0

dt
≤ 0 holds when v = 0. The largest compact invariant is

(9) E = {(x,y,v,z)|v = 0} .

Therefore, by the LaSalle invariance principle, we have limt→∞ v(t) = 0. The limit system of

equations is:
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(10)


dx(t)

dt = µ−µx(t)+αz(t),
dy(t)

dt =−µy(t)− γy(t),
dz(t)

dt = γy(t)−µz(t)−αz(t).

We define the function:

V1(x,y,z) = x−1− ln(x)+ y+ z.

Since x+ y+ z = 1, it follows
dV1

dt
=
−µ

x
(1− x)− αz

x
.

Therefore
dV1

dt
≤ 0 and the equality holds if x = 1 and z = 0, which complete the proof. �

Theorem 5.3. The endemic equilibrium is locally asymptotically stable if R0 > 1.

Proof. The Jacobian matrix of system (1) at Ee is given as follows

J(Ee) =


− βv∗

1+av∗ −µ 0 − βx∗

(1+av∗)2 α

βv∗
1+av∗ −(µ + γ) βx∗

(1+av∗)2 0

0 k −c 0

0 γ 0 −(µ +α)

 .

In order to investigate the local stability of the endemic equilibrium we make an elementary

row-transformation for the matrix J(Ee) to obtain the following matrix:

J?(Ee) =


H 0 0 0

µ G 0 0

0 k −c 0

0 γ 0 −(µ +α)

 ,

where

H = − βv∗

1+av∗
+µ

 (µ + γ)

−(µ + γ)+ γα

(α+µ) −
βkx∗

c(1+av∗)2

 , and

G = −(µ + γ)+
γα

(α +µ)
− βkx∗

c(1+av∗)2 .
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Thus, the eigenvalues are

λ1 =−(µ +α)< 0, λ2 =−c < 0,

λ3 = G =−(µ + γ)+
γα

(α +µ)
− βkx∗

c(1+av∗)2 ,

λ4 = H =− βv∗

1+av∗
+µ

 (µ + γ)

−(µ + γ)+ γα

(α+µ) −
βkx∗

c(1+av∗)2

 .

Since −(µ + γ)+ γα

(α+µ) ≤ 0, hence

(11) G =−(µ + γ)+
γα

(α +µ)
− βkx∗

c(1+av∗)2 < 0, and H =− βv∗

1+av∗
+µ(

(µ + γ)

G
)< 0,

which implies that all the eigenvalues are negatives. Therefore Ee is asymptotically stable when

R0 > 1. �

5.2. Uniform persistence. Uniform persistence is an crucial concept in population biology.

It captures the long-time survival of species, even when the size of the species is quite low

at time. From persistence theory in population dynamics (see for instance [22, 26] and the

references therein), and by using the same argument as in ([3, 24, 15]), we investigate the

uniform persistence of the model (1). Indeed, we have the following result

Theorem 5.4. If R0 > 1 then model (1) is uniformly persistent. In other words, there exists

ε > 0 such that, for any positive solution (x(t),y(t),v(t),z(t)) of the model (1)

lim
t→∞

infx(t)≥ ε, lim
t→∞

infy(t)≥ ε, lim
t→∞

infv(t)≥ ε, lim
t→∞

infz(t)≥ ε.

Proof. Let

A =
{
(x,y,v,z) ∈ R4

+ : x≥ 0,y > 0,v > 0,z > 0
}
,

then the boundary of A is

∂A =
{
(x,y,v,z) ∈ R4

+ : x≥ 0,y = 0 or v = 0 or z = 0
}
.

For any T0 = (x0,y0,v0,z0) ∈ R4
+, define u(t,T0) = (x(t,T0),y(t,T0),v(t,T0),z(t,T0)) be the so-

lution of model (1) with the initial condition u(0,T0) = u(t,T0). It’s clear that {u(t)}t≥0 is a

C0-semigroup generated by system (1). We have u(t) is dissipative in A and that by theorem
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3.1, thus conditions (1) and (2) of lemma 3.7 in [24] are satisfied. Notice that the model (1)

admits one free equilibrium E0 = (1,0,0,0). Denote N∂ =
{

T0 ∈ R4
+ : u(t,T0) ∈ ∂A,∀t ≥ 0

}
and let ω(T0) be the ω-limit set of the solution u(t,T0), its clear that {E0} ⊂

⋃
T0∈N∂

ω(T0). Fur-

thermore, for any solution u(t,T0) ∈ ∂A, then x(t)→ 1, y(t)→ 0, v(t)→ 0, z(t)→ 0 as t → ∞

( the approach is similar to the proof of theorem 5 in [3]). Hence {E0} contains all ω-limit set

in ∂A. From Theorem 5.1, we have E0 is unstable if R0 ≥ 1, then E0 is isolated and hence the

third condition of lemma 3.7 in [24] is satisfied. Moreover, as W s(E0)
⋂

A = /0, the condition

(4) of lemma 3.7 in [24] is satisfied. Based on the theory of uniform persistence in dynamical

systems, there is ε > 0 such that, for any T0 in A, we have

lim
t→∞

infx(t)≥ ε, lim
t→∞

infy(t)≥ ε, lim
t→∞

infv(t)≥ ε, lim
t→∞

infz(t)≥ ε.

This complete the proof. �

6. NUMERICAL SIMULATION

In this section some numerical simulations are performed in order to check the time evolution

of our model. We have used the Euler finite-difference scheme method to numerically resolve

the four equations.
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FIGURE 2. Time evolution of the viral information dynamics for µ =

0.04, α = 0.001, γ = 0.001, β = 0.015, a = 0.1, k = 0.02, c = 0.01 and

(x(0),y(0),v(0),z(0)) = (0.5,0.2,45,0.3).
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FIGURE 3. Time evolution of the viral information dynamics for µ =

0.04, α = 0.001, γ = 0.02, β = 0.015, a = 0.1, k = 0.3, c = 0.015 and

(x(0),y(0),v(0),z(0)) = (0.5,0.2,1,0.3).
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FIGURE 4. Time evolution of the viral information load for µ = 0.04, α =

0.001, γ = 0.02, a = 0.1, k = 0.3, c = 0.015 and (x(0),y(0),v(0),z(0)) =

(0.5,0.2,1,0.3) with R0 > 1.
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Fig. 2 shows the behavior of the viral information dynamics during the period of observation

for a set of feasible hypothetical parameters. In this figure, the basic reproduction number R0 is

less than unity (R0 = 0.73< 1). It can be seen that the curves converge to the disease-free steady

state E0 = (1,0,0,0). The uninfected users reach their maximum, the infected users, inert users

and the free viral information converge toward zero, this indicates that the viral campaign dies

out which is consistent of the theoretical stability results.

Fig. 3 depicts the behavior of the viral information dynamics during the period of observation.

In this figure, the basic reproduction number R0 is greater than unity ( R0 = 5 > 1). It can be

seen that the four curves converge to the endemic equilibrium Ee = (0.37,0.42,8.48,0.21).

Indeed the free viral information posts reach their maximum which means that the viral social

media campaign remain present in the population of users which is consistent with the analytical

stability result of Ee.

Finally, Fig. 4 shows the dynamics of the free viral information load as function of time for

different values of the infection rate β . We can clearly observe that by decreasing the infection

rate, the number of viral information posts decreases also. This indicates that infection rate can

control the viral campaign severity on social media. However, one can observe the persistence

of the viral information when R0 > 1.

Remark 6.1. The proposed viral information model can be estimated by using datasets of a

diffused viral information on Facebook platform. For this end, friendship networks, groups

and pages can thus be analyzed quantitatively and qualitatively with regards to the viral char-

acteristics of a studied viral information at regional and country levels. The diffused public

information on Facebook pages can be used to explain the impact of a given boycott campaign

or to control a viral marketing strategy.

7. CONCLUSION

In this paper, a mathematical model of viral posts dynamic on social media network is pro-

posed and studied. To this end, we have modeled the phenomenon by four differential equations

that describe the interactions between ”Uninfected Users”, ”Infected Users”, ”Inert Users” and

”free viral information”. We have included to the model a saturated infection rate that reflects
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the viral posts crowd near the uninfected users. The existence, positivity and boundedness of

the model (1) have been proved and fulfilled as this is essential in any population dynamics

models. Using the next generation matrix method, we have calculated the reproduction number

R0 related to the problem. Then we have proved the existence of two equilibrium points, namely

free-disease state E0 = (1,0,0,0) which represents the absence of viral information infection

and the total presence of uninfected users, endemic state Ee = (x?,y?,v?,z?) which correspond

to the existence of ”free viral information” and the presence of uninfected and inert users pop-

ulation. Then we have investigated the stability analysis of both equilibria according to R0.

Furthermore, we have shown that our proposed model is uniformly persistent when R0 > 1.

Finally, we have illustrated the theoretical results by numerical simulations. This model may

be conductive to understand some emergencies phenomena on social media networks such as

boycott movements.
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