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Abstract. In this paper, we propose a discrete mathematical model that describes the interaction between the

classes of drinkers, namely, potential drinkers (P), moderate drinkers (M), heavy drinkers(H), heavy drinkers that

practice violence (V ), the individuals that practice accidents(A) and recovred and quitters of drinking (Q). We

also focus on the importance of awareness programs, media and education of drinkers to aiming to find the optimal

strategies to minimize the number of drinkers practice violence and accidents and maximize the number of the

individuals who recovred and quitters of drinking. We use three controls which represent awareness programs

and traitment through media and education for the heavy drinkers, awareness programs and security campaigns

for heavy drinkers that practice violence and heavy drinkers that practice accidents and follow-up and the psy-

chological support for temporary quitters of drinking. We use Pontryagin’s maximum principle in discrete time

to characterize these optimal controls. The resulting optimality system is solved numerically by Matlab. Conse-

quently, the obtained results confirm the performance of the optimization strategy.
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1. INTRODUCTION

Today, different societies are facing a real and suffocating crisis, which is marked by an in-

crease in traffic accidents and violence that claim the lives of many people. This crisis has led

to the loss of a large number of segments of society, especially young people, and an increase in

the number of wounded and disabled. This crisis in our country shows a clear and dangerous sit-

uation. Hundreds of young Moroccans are exposed to traffic accidents and fatal violence caused

by drinking alcohol, and the lack of solutions to control drivers who are under the influence of

alcohol increases this crisis. Effective interventions include the design of safer infrastructures,

the integration of road safety features into land-use planning and transport, improved vehicle

safety features, improved post-accident care for victims, the development and enforcement of

key risk laws, and awareness-raising through the media and programs. Awareness and education

[3] .

According to the latest WHO report on global alcohol consumption data for 2016, 3 million

people died as a result of alcohol abuse. This represents one in 20 deaths worldwide and more

than 75% of these deaths are in men. The most affected are young adults aged 20 to 29 (13.5%

of deaths). Alcohol abuse and addiction causes multiple disorders such as violence, trauma,

physical health problems (cirrhosis, cancer, fatty liver, stroke, diabetes)[2]. Among all these 3

million deaths, there are: 28% of injuries (road accidents, violence, suicide), 21% to patholo-

gies affecting the digestive system, 19% to cardiovascular diseases, 32% related to infectious

diseases, cancers, mental disorders or other conditions[2].

Harmful use of alcohol caused some 1.7 million deaths from noncommunicable diseases

in 2016, including some 1.2 million deaths from digestive and cardiovascular diseases (0.6

million for each condition) and 0.4 million deaths from cancers. Globally an estimated 0.9

million injury deaths were attributable to alcohol, including around 370000 deaths due to road

injuries, 150000 due to self-harm and around 90000 due to interpersonal violence. Of the road

traffic injuries, 187000 alcohol-attributable deaths were among people other than drivers [2]

WHO2016.

Some researchers in mathematics draw a comparison between the spread of the drinking phe-

nomenon and the spread of infectious diseases. Accordingly, several mathematicians did a lot of
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work in order to understand the dynamics of drinking and reduce its harm on the drinker and so-

ciety as well as minimizing the number of addicted drinkers. For example [18,19,1,4,5,6,7,14]:

Khajji et al [18] introduced a discrete modeling of drinking for the purpose to minimize the num-

ber of drinkers and maximize the number of the rich and poor heavy drinkers who join private

and public treatment centers of alcohol addiction and subsequently the number of quitters of

drinking. He had taken into account the impact of private and public addiction treatment cen-

ters on alcoholics results showed that those centers have substantial influence on the dynamics

of alcoholism and can greatly impact the spread of drinking. Thus, it is crucial to urge people

to know and join private and public addiction treatment centers to quit drinking. He also pre-

sented three controls which, respectively, represent awareness programs, encouragement, and

follow-up. He applied the results of the control theory and he managed to obtain the character-

izations of the optimal controls. Khajji et al [19] presented a continuous mathematical model

PMHTrTpQ of alcohol drinking with the influence of private and public addiction treatment

centers and the dynamical behavior of the model is studied. He also studied the sensitivity anal-

ysis of model parameters to know the parameters that have a high impact on the reproduction

number R0. We used the stability analysis theory for nonlinear systems to analyze the mathe-

matical drinking model and to study both the local and global behavior of drinking dynamics.

Local asymptotic stability for the drinking-free equilibrium E0 can be obtained, if the thresh-

old quantity R0 ≤ 1. On the other hand, if R0 > 1, then the alcohol present equilibrium E∗

is locally asymptotically stable. A Lyapunov function was used to show global stability of

E0. E0 is globally asymptotically stable if R0 ≤ 1. Also a Lyapunov function was used to

show global stability of E∗. E∗ is globally asymptotically stable if R0 > 1. H. F. Huo and

N. Song[5] divided heavy drinkers in thier study into two types: those who confess drinking

and those who do not and they proposed a two-stage model for binge drinking problem taking

into consideration the transition of drinkers from the class of susceptible individuals towards

the class of admitting drinkers. H. F. Huo, and Q. Wang [7] developed a non-linear mathemat-

ical model with the effect of awareness programs on the binge drinking where they show that

awareness programs are an effective measure in reducing alcohol problems. H. F. Huo et al

[6] proposed a new social epidemic model to depict alcoholism with media coverage which was
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proven to be an effective way in pushing people to quit drinking. S. H. Ma et al [14] modeled al-

coholism as a contagious disease and used an optimal control to study their mathematical model

with awareness programs and time delay. Wang et al [4] proposed and analyzed a non-linear

alcoholism model and used optimal control for the purpose of hindering interaction between

susceptible individuals and infected individuals. I. k. Adu et al [1] used a non-linear SHT R

mathematical model to study the dynamics of drinking epidemic, they divided their population

into four classes: non-drinkers (S), heavy drinkers (H), drinkers receiving treatment (T ) and

recovered drinkers (R). They discussed the existence and stability of drinking-free and endemic

equilibrium. Other mathematical models has also been widely used to study this phenomenon

(For example, [10,12,13,20.....]).

In addition, most of these previous researches have focused on continuous-time modeling.

In this research, we will adopt the discrete-time modeling as the statistical data are collected

at discrete time (day, week, month and year) as well as the treatment and vaccination of some

patients are done in discrete-time. So, it is more direct, more convenient, and more accurate to

describe the phenomena by using the discrete-time modeling than the continuous-time modeling

and the use of discrete time models may avoid some mathematical complexities such as the

choice of a function space and regularity of the solution. Hence, difference equations appear as a

more natural way to describe the epidemic models and discrete problems. Moreover, numerical

solutions of differential equations use discretization and this encourages us to employ difference

equations directly. The numerical exploration of discrete-time models is rather straightforward

and therefore can be easily implemented by non mathematicians.

Besides these works, we will study the dynamics of a mathematical alcohol model PMHVAQ

which contains the following additions:

♦ A discret mathematical modling.

♦ A compartment V that represents the number of the violent heavy drinkers.

♦ A compartment A that represents the number of the heavy drinkers who cause traffic

accidents.

♦ The death rate induced by the heavy drinkers δ1.

♦ The death rate induced by traffic accidents due to drinking alcohol δ2.
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♦ The death rate induced by practice violence due to drinking alcohol δ3.

The drinkers classes of this model are divided into sixe compartments: Potential drinkers (P),

Moderate drinkers (M), Heavy drinkers (H), violent heavy drinkers (V ), heavy drinkers who

cause traffic accidents(A) and recovered and quitters of drinking(Q). Throughout this research,

we seek to find the optimal strategies to minimize the number of heavy drinkers, violent heavy

drinkers and heavy drinkers who cause traffic accidents and maximize the number of recovered

and quitters of drinking (Q).

In order to achieve this purpose, we use optimal control strategies associated with three types

of controls: the first represents awareness programs and traitment for heavy drinkers, the second

is the effort of awareness programs and security campaigns to reduce and decrease the number

of heavy drinkers to engage in violence and accidents .The third control represents the follow-

up and the psychological support for temporary quitters of drinking.

The paper is organized as follows. In Section 2, we present our PMHVAQ mathematical

model that describes the classes of drinkers. In Section 3 and 4, we present the optimal con-

trol problem for the proposed model where we give some results concerning the existence of

the optimal controls and we characterize these optimal controls using Pontryagin’s Maximum

Principle in discrete time. Numerical simulations are given in Section 5. Finally, we conclude

the paper in Section 6. We propose a discrete model PMHVAQ to describe the dynamics of

population and the transmission of drinking. The population is divided into six compartments

denoted by P, M,H,V,A and Q.

The graphical representation of the proposed model is shown in Figure1.
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FIGURE 1. Schematic diagram of the six drinking classes in the model

The mathematical representation of the model consists of a system of non-linear difference

equations:

(1)



Pk+1= b−β 1
PkMk

Nk
+(1−µ)Pk

Mk+1= β 1
PkMk

Nk
+θQk +(1−µ−β2)Mk

Hk+1= β 2Mk+(1−µ−δ 1−α1−α2−α3)Hk

Vk+1= α1Hk+(1− γ1−µ−δ3)Vk

Ak+1= α2Hk +(1−µ− γ2−δ2)Ak

Qk+1= α3Hk + γ1Vk + γ2Ak +(1−µ−θ)Qk

where P0 ≥ 0,M0 ≥ 0,H0 ≥ 0,V0 ≥ 0,A0 ≥ 0, and Q0 ≥ 0.

The compartment P: contains the potential drinkers who represent individuals whose age

is over adolescence and adulthood and may become drinkers. This compartment is increased

by the recruitment rate denoted by b and decreased by an effective contact with the moderate

drinkers at a rate β1 and natural death µ . It is assumed that potential drinkers can acquire

drinking behavior and can become moderate drinkers through effective contact with moderate

drinkers in some social occasions like weddings, celebrating graduation ceremonies, week-end
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parties and end of the year celebration. In other words, it is assumed that the acquisition of a

drinking behavior is analogous to acquiring disease infection.

The compartment M: is composed of the moderate drinkers who drink alcohol in a con-

trolled manner during some events and occasions or in a way that is unapparent to their social

environment. It is increased by potential drinkers who turn to be moderate drinkers at a rate

β1and individuals who quit and recovred by drinking at a rate θ . This compartment is de-

creased when moderate drinkers become heavy drinkers at a rate β2, and by natural death at rate

µ.

The compartment H: comprises the heavy drinkers. This compartment becomes larger as

the number of heavy drinkers increases by the rate β2 and decreases when some of them give

up drinking who quit drinking at a rate α3 and outher becomes heavy drinkers with violence

(V ) at rate α1(α1 is a rate of heavy drinkers becomes heavy drinkers with violence) and some

becomes heavy drinkers with accidents (A) at rate α2(α2 is a rate of heavy drinkers becomes

individuals with accidents). In addition, this compartment decreases by natural death µ and due

to deaths caused by diseases resulted from excessive alcohol intake at a rate δ1.

The compartment V : represents the number of the violent heavy drinkers that commits

various types of violence due to drinking alcohol. This compartment is increased by the rate α1

and decreased by the rates γ1 and (µ +δ3) , where γ1is the individiuals violent heavy drinkers

who quit and recovred of drinking and δ3is the death rate induced by the heavy drinkers with

violence.

The compartment A: contains the number of individuals of the heavy drinkers who cause

traffic accidents that commits various types of traffic accidents due to drinking alcohol.This

compartment is increased by the rates α2 and decreased by the rates γ2 and (µ +δ2) , where γ2

is a rate of the individuals heavy drinkers with accidents who quit and recovred of drinking.

The compartment Q: encompasses the individuals who recovered from violence and ac-

cidents and quitters of drinking. It is increased with the recruitment of individuals who have

been treated at rates γ1and γ2. It also increases at the rate α3 of those who quit and recovred

alcohol and decreases by the rates µ and θ (θ is a rate of quitters of drinking that who becomes

moderate drinkers).
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The total population size at time k is denoted by Nk with Nk = Pk +Mk +Hk +Vk +Ak +Qk

and it is supposed as constant.

2. THE OPTIMAL CONTROL PROBLEM

The objective of the proposed control strategy is to minimize the number of heavy drinkers,

violent heavy drinkers and heavy drinkers who cause traffic accidents and thus we will maxi-

mize the number of recovered and quitters of drinking in the community during the time step

k = 0 to k = T . The cost spent in the awareness programs and treatment are also to be mini-

mized.

In order to achieve these objectives, we introduce three control variables. The first control u1

represents the effort of the awareness programs and traitment to protect the heavy drinkers not

to be drinkers. The second control u2 measures the effort the awereness programs and security

campaigns effort ( education programs, media...) applied on the heavy drinkers for decrease the

number of the violent heavy drinkers and heavy drinkers who cause traffic accidents. Finaly,

u3 measures the effort of follow-up and the psychological support for temporary quitters of

drinking.

So, the controlled mathematical system is given by the following system of difference equa-

tions:

(2)



Pk+1=b−β1
PkMk

Nk
+(1−µ)Pk

Mk+1=β1
PkMk

Nk
−β2Mk+(1−µ)Mk +(1−u3,k)θQk + εu1,kHk

Hk+1=β2Mk+(1−µ−δ1)Hk−α1(1−u2,k)Hk−α2(1−u2,k)Hk−α3Hk−u1,kHk

Vk+1=α1(1−u2,k)Hk+(1−µ− γ1−δ3)Vk

Ak+1=α2(1−u2,k)Hk+(1−µ− γ2−δ2)Ak

Qk+1=γ1Vk+γ2Ak +(1−µ)Qk +α3Hk− (1−u3,k)θQk +(1− ε)u1,kHk

where P0 ≥ 0,M0 ≥ 0,H0 ≥ 0,V0 ≥ 0,A0 ≥ 0 and Q0 ≥ 0.

The optimal control problem to minimize the objective functional is given by:

J(u1,u2,u3) = HT +VT +AT

+
T−1

∑
k=0

(
Hk +Vk +Ak +

A1,ku2
1,k

2
+

A2,ku2
2,k

2
+

A3,ku2
3,k

2

)
(3)
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Where the parameters A1,k > 0, A2,k > 0 and A3,k > 0 are selected to weigh the relative

importance of the cost of awareness programs and treatment respectively.

The aim is to find an optimal control u∗1,u
∗
2 and u∗3 such that :

(4) J(u∗1,u
∗
2,u
∗
3) = min

(u1,u2,u2)∈U3
ad

J(u1,u2,u3)

where Uad is the set of admissible controls defined by

(5) Uad =
{
(u1,k,u2,k,u3,k)/ 0≤ u j min ≤ u j,k ≤ u j max ≤ 1; j = 1,2,3 and k = 0,1,2, ...,T −1

}

The sufficient condition for the existence of an optimal control (u∗1,u
∗
2,u
∗
3) for problem (2)

and (3) comes from the following theorem.

Theorem 2.1. There exists the optimal control (u∗1,u
∗
2,u
∗
3) such that

(6) J(u∗1,u
∗
2,u
∗
3) = min

(u1,u2,u3)∈U3
ad

J(u1,u2,u3)

subject to the control system (2) with initial conditions.

Proof. Since the coefficients of the state equations are bounded and there are a finite number of

time steps, P = (P0,P1,P2, .......,PT ), M = (M0,M1,M2, .......,MT ), H = (H0,H1,H2, .......,HT ),

V = (V0,V1,V2, .......,VT ), A = (A0,A1,A2, .......,AT ) and Q2 = (Q0,Q1,Q2, .......,QT ) are uni-

formly bounded for all (u1,u2,u3) in the control set Uad;thus J(u1,u2,u3) is bounded for all

(u1,u2,u3)∈U3
ad. Since J(u1,u2,u3) is bounded, inf

(u1,u2,u3)∈U3
ad

J(u1,u2,u3) is finite, and there ex-

ists a sequence (u j
1,u

j
2,u

j
3) ∈U3

ad such that lim
j→+∞

(u j
1,u

j
2,u

j
3) = inf

(u1,u2,u3)∈U3
ad

J(u1,u2,u3) and cor-

responding sequences of states P j,M j,H j,V j,A j and Q j.Since there is a finite number of uni-

formly bounded sequences, there exist (u∗1,u
∗
2,u
∗
3)∈U3

ad and P∗,M∗,H∗,V ∗,A∗ and Q∗ ∈ IRT+1

such that, on a subsequence, lim
j→+∞

(u j
1,u

j
2,u

j
3) = (u∗1,u

∗
2,u
∗
3), lim

j→+∞
P j = P∗, lim

j→+∞
M j = M∗,

lim
j→+∞

H j = H∗, lim
j→+∞

V j =V ∗, lim
j→+∞

A j = A∗ and lim
j→+∞

Q j = Q∗.Finally, due to the finite dimen-

sional structure of system (2) and the objective function J(u1,u2,u3), (u∗1,u
∗
2,u
∗
3) is an optimal

control with corresponding states P∗, M∗, H∗,V ∗, A∗and Q∗.Therefore inf
(u1,u2,u3)∈U3

ad

J(u1,u2,u3)

is achieved. �
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3. CHARACTERIZATION OF THE OPTIMAL CONTROLS

We apply the discrete version of Pontryagin’s Maximum Principle [2,3,8,11,16,28]. The key

idea is introducing the adjoint function to attach the system of difference equations to the ob-

jective functional resulting in the formation of a function called the Hamiltonian. This principle

converts the problem of finding the control to optimize the objective functional subject to the

state difference equation with initial condition to find the control to optimize Hamiltonian point-

wise (with respect to the control).

Now we have the Hamiltonian Ĥ at time step k, defined by:

(7) Ĥk = Hk +Vk +Ak +
A1,ku2

1,k

2
+

A2,ku2
2,k

2
+

A3,ku2
3,k

2
+

6

∑
i=1

λi,k+1 fi;k+1

where fi;k+1 the right-hand side of the system of difference equations (2) of the ith state

variable at time step k+1.

Theorem 3.1. Given an optimal control (u∗1,u
∗
2,u
∗
3) ∈U3

ad and solutions P∗k ,M∗k ,H∗k ,V ∗k ,A∗kand

Q∗k of corresponding state system (2), there exist adjoint functions λ1, λ2, λ3, λ4, λ5 and λ6

satisfying the equations:

λ1,k =
∂ Ĥk

∂Pk
= (λ2,k+1−λ1,k+1)β1

Mk

Nk
+λ1,k+1(1−µ).

λ2,k =
∂ Ĥk

∂Mk
= (λ2,k+1−λ1,k+1)β1

Pk

Nk
+β2(λ3,k+1−λ2,k+1)+λ2,k+1(1−µ)

λ3,k =
∂ Ĥk

∂Hk
= 1+(1−u2,k)(α1λ4,k+1 +α2λ5,k+1−α1λ3,k+1−α2λ3,k+1)+(8)

α3(λ6,k+1−λ3,k+1)+(1−µ−δ1)λ3,k+1 +u1,k(ελ2,k+1−λ3,k+1 +(1− ε)λ6,k+1)(9)

λ4,k =
∂ Ĥk

∂Vk
= 1+ γ1 (λ6,k+1−λ4,k+1)+(1−µ−δ3)λ4,k+1.(10)

λ5,k =
∂ Ĥk

∂Ak
= 1+ γ2 (λ6,k+1−λ5,k+1)+(1−µ−δ2)λ5,k+1.

λ6,k =
∂ Ĥk

∂Qk
= θ(1−u3,k)(λ3,k+1−λ6,k+1)+λ6,k+1(1−µ).

with the transversality conditions at time T

(11) λ1(T ) = 0,λ2(T ) = 0,λ3(T ) = 1,λ4(T ) = 1,λ5(T ) = 1 and λ6(T ) = 0
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Furthermore, for i = 0,1, ...,T −1 we obtain the optimal control (u∗1,k,u
∗
2,k,u

∗
3,k) as

u∗1,k = min
{

max(u1min,
(λ3,k+1− ελ2,k+1− (1− ε)λ6,k+1)Hk

A1,k
),u1max

}
u∗2,k = min

{
max(u2min,

α1(λ4,k+1−λ3,k+1)Hk +α2(λ5,k+1−λ3,k+1)Hk

A2,k
),u2max

}
u∗3,k = min

{
max(u3min,

(λ2,k+1−λ6,k+1)θQk

A3,k
),u3max

}
(12)

Proof. The Hamiltonian Ĥk at time step k is given by

Ĥk = Hk +Vk +Ak+
A1,ku2

1,k

2
+

A2,ku2
2,k

2
+

A3,ku2
3,k

2

+λ 1,k+1

[
b−β 1

PkMk

Nk
+(1−µ)Pk

]
(13)

+λ 2,k+1

[
β1

PkMk

Nk
+(1−µ−β2)Mk +(1−u3,k)θQk + εu1,kHk

]
+λ 3,k+1

[
β2Mk+(1−µ−δ 1)Hk−α1(1−u2,k)Hk−α2(1−u2,k)Hk−α3Hk−u1,kHk

]
+λ 4,k+1

[
α1(1−u2,k)Hk+(1−µ− γ1−δ3)Vk

]
+λ 5,k+1

[
α2(1−u2,k)Hk +(1−µ− γ2−δ2)Ak

]
+λ 6,k+1

[
γ1Vk + γ2Ak +(1−µ)Qk +α3Hk−(1−u3,k)θQk +(1− ε)u1,kHk

]
.

For k = 0,1, ...,T −1, the adjoint equations and transversality conditions can be obtained by

using Pontryagin’s Maximum Principle, in discrete time, given in [2,3,8,11,16] such that

λ1,k =
∂ Ĥk

∂Pk
, λ1(T ) = 0

λ2,k =
∂ Ĥk

∂Mk
, λ2(T ) = 0

λ3,k =
∂ Ĥk

∂Hk
, λ3(T ) = 1

λ4,k =
∂ Ĥk

∂Vk
, λ4(T ) = 1(14)

λ5,k =
∂ Ĥk

∂Ak
, λ5(T ) = 1

λ6,k =
∂ Ĥk

∂Qk
, λ6(T ) = 0
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For k = 0,1, ...,T−1, the optimal controls u∗1,k, u∗2,k and u∗3,k can be solved from the optimality

condition

∂ Ĥk

∂u1,k
= A1,ku1,k +λ2,k+1εHk−λ3,k+1Hk +λ6,k+1(1− ε)Hk = 0

∂ Ĥk

∂u2,k
= A2,ku2,k +α1λ3,k+1Hk−α2λ5,k+1Hk +α2λ3,k+1Hk−α1λ4,k+1Hk = 0

∂ Ĥk

∂u3,k
= A3,ku3k +λ6,k+1θHk−λ2,k+1θHk = 0(15)

So, we obtain:

u1,k =

[
λ3,k+1− ελ2,k+1− (1− ε)λ6,k+1

]
Hk

A1,k

u2,k =
α1(λ4,k+1−λ3,k+1)Hk +α2(λ5,k+1−λ3,k+1)Hk

A2,k
(16)

u3,k =
(λ2,k+1−λ6,k+1)θQk

A3,k

By the bounds in Uad of the controls, it is easy to obtain u∗1,k ,u∗2,k and u∗3,k in the form of

(12). �

4. NUMERICAL SIMULATION

In this section, we shall solve numerically the optimal control problem for our PMHVAQ

model. Here, we obtain the optimality system from the state and adjoint equations. The pro-

posed optimal control strategy is obtained by solving the optimal system which consists of six

difference equations and boundary conditions. The optimality system can be solved by using

an iterative method. Using an initial guess for the control variables, u1,k ,u2,k and u3,k, the state

variables, P,M,H,V,A and Q are solved forward and the adjoint variables λi for i= 1,2,3,4,5,6

are solved backwards at times step k = 0 and k = T . If the new values of the state and adjoint

variables differ from the previous values, the new values are used to update u1,k, u2,k and u3,k,

and the process is repeated until the system converges.

The numerical solution of model (1) is executed using Matlab with the following parameter

values and initial values of state variable: P0 = 500, M0 = 300, H0 = 100, V0 = 60, A0 = 30,

Q0 = 10, b= 100, N = 1000, µ = 0.065, β1 = 0.75, β2 = 0.14, α1 = 0.03, α2 = 0.02, α3 = 0.02,

γ1 = 0.001, γ2 = 0.001, δ1 = 0.02, δ2 = 0.002,δ3 = 0.001, θ = 0.1.
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We begin by presenting the solution evolution of our model (1) with and without controls

that are represented in Figures2.

The proposed control strategy in this work helps to achieve several objectives:

First objective: Traitment the heavy drinkers and encouragement them for quitters of

drinking or return for moderate drinkers.

To realize this objective, we apply only the control u1 i.e. the implementation of awareness,

information and educational programs, traitment on heavy drinkers to make them know the

risks of this phenomenon and the resulting health and social damages. Figure2(a) shows that

the number of heavy drinkers decreases from 388.14 (without control) to 264.71 (with control)

at the end of the proposed control strategy. Figure2(b) shows that the number of heavy drinkers

with violence decreases from 173.57 (without control) to 118.26 (with control) at the end of the

proposed control strategy. Also, we observe in Figure2(c) that the number of individuals heavy

drinkers with accidents decreases and has reached the value 77.68 (with control) compared to

the situation when there is no control 114.01 at the end of the proposed strategy. Figure2(d)

shows that the number of recovred and quitters of drinking decreases from 48.78 (without con-

trol) to 225.76 (with control) at the end of the proposed control strategy. So, our objective has

been achieved.

Second objective: Protecting and preventing heavy drinkers from falling into violence

and accidents.

To achieve this objective, we only use the control u2 i.e. the implementation of awareness

programs and security campaigns on heavy drinkers to make them know the risks of this phe-

nomenon and the resulting health and social damages caused by violence and accidents. In

Figure3(a), it is observed that there is a significant decrease in the number of heavy drinkers

with violence with control compared to a situation when there is no control where the decrease

reaches 45% at the end of the proposed control strategy. Figure 3(b) shows that the number

of the heavy drinkers with accidents decreased from 114.01 (without control) to 85.84 ( with

control) at the end of the proposed control. Figure 3(c) shows that the number of the heavy

drinkers increased from 388.14 ( without control) to 487.54 ( with control) at the end of the

proposed control. Figure 3(d) shows that the number of people who recovred and quitters of



14 L. EL YOUSSOUFI, B. KHAJJI, O. BALATIF, M. RACHIK

(a) (b)

(c) (d)

FIGURE 2. represents the drinkers class with and without control u1

drinking without control increases and approaches a value of 120. It’s increase appears with

control u2.

Third objective: Protecting, preventing and traitment the heavy drinkers with and with-

out violence and accidents from falling into accidents and violence.

To meet this objective, we use the controls u1 and u2 i.e. the implementation of awareness

programs and traitment on heavy drinkers to make them know the risks of this phenomenon

and the resulting health and social damages caused by accidents and violence. Figure 4(a)

shows that the number of the heavy drinkers decreases starting from the early days a value

388.14 (without controls) to 291.12 (with controls). Also, Figure 4(b) shows that the number

of the heavy drinkers with violence decreases from 173.57 (without controls) to 78.02 (with

controls).The number of the individuals with accidents decreases from 173.57 (without con-

trols) to 78.02 (with controls) (See Figure 4(c)). Figure 4(d) depicts clearly an increase in the

number of the recoverd and quitters of drinking from 48.78 (without controls) to 247.74 (with

controls). As a result, the objective set before has been achieved.
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(a) (b)

(c) (d)

FIGURE 3. represents the drinkers class with and without control u2

(a) (b)

(c) (d)

FIGURE 4. out optimal control u1and u2
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Forth objective: Protecting and preventing heavy drinkers from falling into alcohol ad-

diction, violence and accidents and follow-up the quit temporarly.

To meet this objective, we use the controls u1, u2 and u3 i.e. the implementation of awareness

programs and traitment on heavy drinkers to make them know the risks of this phenomenon

and the resulting health and social damages caused by violence and accidents and follow-up

the quit temporarly to not return drinking. Figure 5(a) shows that the number of the heavy

drinkers decreases starting from the early days a value 388.14 (without controls) to 267.22

(with controls). Also, Figure 5(b) shows that the number of the heavy drinkers with violence

decreases from 173.57 (without controls) to 71.64 (with controls).The number of the individuals

with accidents decreases a value 114.01 (without controls) to 58.35 (with controls) (See Figure

5(c)). Figure 5(d) depicts clearly an increase in the number of the recoverd and quitters of

drinking from 48.78 (without controls) to 326.21(with controls). As a result, the objective set

before has been achieved.

(a) (b)

(c) (d)

FIGURE 5. represents the drinkers class with and without optimal control u1,u2

and u3
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5. CONCLUSION

In this research paper, we introduced a discrete mathematical modeling of drinking alcohol

resulting in roed accidents and violence for the purpose of minimizing the number of the heavy

drinkers, violent heavy drinkers and heavy drinkers cause roed accidents and maximizing the

number of recovered and quitters of drinking. Unlike some other previous models, we have

taken into account the impact the awareness programs, media, education, traitment and security

campaigns for on alcoholics and follow-up and the psychological support for temporary quitters

of drinking. The results showed that awareness programs, media, education, traitment and

security campaigns and follow-up and the psychological support haves substantial influence on

the dynamics of alcoholism and can greatly impact the spread of the drinking, thus, it is crucial

to urge people to know alcoholism complications and the consequences of traffic accidents and

violence due to alcohol drinking. We also presented three controls which represent traitment

and awareness programs for heavy drinkers, traitment and security campaigns for violent heavy

drinkers and heavy drinkers cause roed accidents and follow-up and psychological support for

temporarly quitters of drinking. We applied the results of the control theory and we managed to

obtain the characterizations of the optimal controls. The numerical simulation of the obtained

results showed the effectiveness of the proposed control strategies.
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