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Abstract. In this article, the dynamical behaviors of a discrete-time fractional-order Rosenzweig-MacArthur

model with prey refuge are studied. The piecewise constant arguments scheme is applied to obtain the discrete-

time model. All possible fixed points and their existence conditions are investigated as well as the local behavior

of nearby solutions in various contingencies. Numerical simulations such as the time series, phase portraits, and

bifurcation diagrams are portrayed. Three types of bifurcations are shown numerically namely the forward, the

period-doubling, and Neimark-Sacker bifurcations. Some phase portraits are depicted to justify the occurrence of

those bifurcations.
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1. INTRODUCTION

The mathematical modeling which studies the interaction among two or more populations

with prey and predator relationship has a long history and becomes famous nowadays. Since

the classical Lotka-Volterra (1925) [1] and Leslie-Gower models (1948) [2] are proposed, some
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predator-prey models are developed by researchers to acquire more realistic models which cor-

respond to the actual circumstances in nature. For example, the predator-prey models involving

the Allee effect [3, 4, 5, 6, 7, 8], the fear effect [10, 11, 12, 13, 14], the prey refuge [15, 16, 17],

and the combined actions among them [18, 19, 20, 21].

One of the popular predator-prey model is proposed by Rosenzweig and MacArthur (1963)

which represents the interaction between a predator and a prey where the prey grows logistically

and the predation process following the Holling type-II fuctional response [22]. This model is

given by

dN
dt

= rN
(

1− N
K

)
− bNP

1+aN
,

dP
dt

=
bcNP
1+aN

−dP,

(1)

where N(t)≥ 0 and P(t)≥ 0 are prey and predator population densities at time t, respectively.

r, k, a, b, c and d are positive constant parameters which have biological interpretation as in

the following table.

TABLE 1. The parameters biological interpretation

Parameter Biological interpretation

r The intrinsic growth rate of prey

K The environmental carrying capacity of prey

a The half saturation constant

b The attack rate of predator

c The conversion efficiency of predator on prey

d The death rate of predator

Naturally, preys try to protect themselves from predators by hiding in a safe areas which

knowns as the prey refuge. To include the effect of prey refuge, the model (1) is modified by

Kar [23] as follows.

dN
dt

= rN
(

1− N
K

)
− b(1−m)NP

1+a(1−m)N
,

dP
dt

=
bc(1−m)NP
1+a(1−m)N

−dP,
(2)
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where m ∈ (0,1) is the refuge protecting constant of prey.

In addition, to establish a more realistic and reliable mathematical model, fractional calculus

is regarded as a noteworthy role. The application of fractional calculus in biological modeling

swiftly spreading among researchers in consequence of its ability to describe the circumstance

more efficiently and accurately [24, 25, 26]. The biological modeling using fractional calculus

is considered closer to the actual conditions due to its capability to provides the current states as

the impact of all previous biological conditions namely the memory effect [27, 28, 29, 30, 31].

To include the memory effect, the first-order derivatives on the left-hand side of model (2) are

replaced by the fractional-order derivative with power-law kernel known as the Caputo operator
CDα
∗ which given by the following definition.

Definition 1. [32, 33] Let f ∈Cn([0,+∞),R), α ∈ (0,1] and Γ(·) is the Euler’s Gamma func-

tion. The Caputo fractional derivative of order−α is defined by

(3) CDα
∗ f (t) = I 1−α f ′(t) t ≥ 0,

where I is the Riemann-Liouville fractional integral which given by

(4) I θ f (t) =
1

Γ(θ)

∫ t

0

f (s) ds
(t− s)1−θ

.

Therefore, we obtain

CDα
∗ N(t) = rN

(
1− N

K

)
− b(1−m)NP

1+a(1−m)N
,

CDα
∗ P(t) =

bc(1−m)NP
1+a(1−m)N

−dP,
(5)

Notice that, if the operator of the derivatives are replaced then the dimension of time of eq. (5)

at the left-hand side are also changed. There are inconsistency of physical dimensions in eq. (5)

where the derivatives at the left-hand side have dimensions of (time)−α while some parameters

such as r, b, and d have dimensions of (time)−1. This means, by replacing the derivative is not

enough to obtain the suitable fractional-order model. To rectify this condition, we rescale the
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parameters and obtain the following model.

CDα
∗ N(t) = r−αN

(
1− N

K

)
− b−α(1−m)NP

1+a(1−m)N
,

CDα
∗ P(t) =

b−αc(1−m)NP
1+a(1−m)N

−d−αP,

(6)

Now, for simplification, the variables and parameters of model (6) are scaled to obtain the

non-dimensional form by assuming x = N/K, y = b−αP/r−α , and τ = r−αt. Thus, we get

CDα
∗ x(τ) = x(1− x)− (1−m)xy

1+ω(1−m)x
,

CDα
∗ y(τ) =

β (1−m)xy
1+ω(1−m)x

−δy,
(7)

where ω = aK, β = b−αcK/r−α , and δ = (d/r)−α . This fractional-order modeling completes

the missing step which does not exist in [34]. Nevertheless, the dynamics of model (7) are

investigated completely in [34] including the local stability, global stability, the existence of

Hopf bifurcation, and supported by their numerical simulations.

Furthermore, although the model with fractional-order derivative is sufficiently enough to in-

vestigate the biological process, some researchers prefer to study the predator-prey relationship

in a discrete-time model. The discrete-time model is considered suitable to describes most bio-

logical processes and gives rich dynamics rather than their continuous ones [35, 36, 37]. There-

fore, we are interested to study the dynamics of model (7) in the discrete-time form, where

according to the authors’ knowledge, the discrete-time model of (7) has never been learned.

In this paper, to obtain the discrete-time model, the piecewise constant arguments (PWCA) is

employed .

We organize this paper as follows. In Section 2, the discretization process using PWCA is

provided. Furthermore, the existence of the fixed points and the dynamics around fixed points

are investigated in Section 3. In Section 4, some numerical simulations are performed not

only to confirm the analytical findings but also to explore more dynamics of the model such

as the existence of forward, period-doubling, and Neimark-Sacker bifurcations. At last, the

conclusions of our work are given in Section 5.
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2. DISCRETIZATION PROCESS

In this section, we apply the piecewise constant arguments (PWCA) scheme to obtain the

discrete form of model (7). By following the similar way in [38, 39, 41, 40], the PWCA of

model (7) is given by

CDα
∗ x(τ) = x

([
τ

h

]
h
)(

1− x
([

τ

h

]
h
))
−

(1−m)x
([

τ

h

]
h
)

y
([

τ

h

]
h
)

1+ω(1−m)x
([

τ

h

]
h
) ,

CDα
∗ y(τ) =

β (1−m)x
([

τ

h

]
h
)

y
([

τ

h

]
h
)

1+ω(1−m)x
([

τ

h

]
h
) −δy

([
τ

h

]
h
)
,

(8)

with x(0) = x0 and y(0) = y0 are the initial conditions. For τ ∈ [0,h),
τ

h
∈ [0,1), according to

eqs. (8), we get

CDα
∗ x(τ) = x0 (1− x0)−

(1−m)x0y0

1+ω(1−m)x0
,

CDα
∗ y(τ) =

β (1−m)x0y0

1+ω(1−m)x0
−δy0.

(9)

Applying eq. (3) to eqs. (9), we obtain

x1(τ) = x0 +I αx0

[
1− x0−

(1−m)y0

1+ω(1−m)x0

]
,

y1(τ) = y0 +I αy0

[
β (1−m)x0

1+ω(1−m)x0
−δ

]
.

(10)

Using eq. (4), eqs. (10) become

x1(τ) = x0 +
ταx0

Γ(1+α)

[
1− x0−

(1−m)y0

1+ω(1−m)x0

]
,

y1(τ) = y0 +
ταy0

Γ(1+α)

[
β (1−m)x0

1+ω(1−m)x0
−δ

]
.

Furthermore, let τ ∈ [h,2h),
τ

h
∈ [1,2) and hence eqs. (8) give

CDα
∗ x(τ) = x1 (1− x1)−

(1−m)x1y1

1+ω(1−m)x1
,

CDα
∗ y(τ) =

β (1−m)x1y1

1+ω(1−m)x1
−δy1.

(11)
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Based on eq. (3) the solutions of eqs. (11) are

x2(τ) = x1 +I αx1

[
1− x1−

(1−m)y1

1+ω(1−m)x1

]
,

y2(τ) = y1 +I αy1

[
β (1−m)x1

1+ω(1−m)x1
−δ

]
.

(12)

Applying eq. (4) to eqs. (12), we obtain

x2(τ) = x1 +
(τ−h)αx1

Γ(1+α)

[
1− x1−

(1−m)y1

1+ω(1−m)x1

]
,

y2(τ) = y1 +
(τ−h)αy1

Γ(1+α)

[
β (1−m)x1

1+ω(1−m)x1
−δ

]
.

Now, for τ ∈ [2h,3h),
τ

h
∈ [2,3), eqs. (8) gives

CDα
∗ x(τ) = x2 (1− x2)−

(1−m)x2y2

1+ω(1−m)x2
,

CDα
∗ y(τ) =

β (1−m)x2y2

1+ω(1−m)x2
−δy2.

(13)

By solving eqs. (13) together with eq. (3), we achieve

x3(τ) = x1 +I αx2

[
1− x1−

(1−m)y1

1+ω(1−m)x1

]
,

y3(τ) = y1 +I αy2

[
β (1−m)x1

1+ω(1−m)x1
−δ

]
.

(14)

Again by utilizing eq. (4), we have solutions for eqs. (14) as follows.

x3(τ) = x1 +
(τ−h)αx2

Γ(1+α)

[
1− x1−

(1−m)y1

1+ω(1−m)x1

]
,

y3(τ) = y1 +
(τ−h)αy2

Γ(1+α)

[
β (1−m)x1

1+ω(1−m)x1
−δ

]
.

Repeating the similar process for n-times, we obtain

CDα
∗ x(τ) =xn (1− xn)−

(1−m)xnyn

1+ω(1−m)xn
,

CDα
∗ y(τ) =

β (1−m)xnyn

1+ω(1−m)xn
−δyn,

(15)
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for τ ∈ [nh,(n+1)h),
τ

h
∈ [n,n+1), which according to eq. (3) have solutions

xn+1(τ) = xn +I αxn

[
1− xn−

(1−m)yn

1+ω(1−m)xn

]
,

yn+1(τ) = yn +I αyn

[
β (1−m)xn

1+ω(1−m)xn
−δ

]
.

(16)

Obeying eq. (3), we obtain solutions of eqs. (16) as follows.

xn+1(τ) = xn +
(τ−nh)αxn

Γ(1+α)

[
1− xn−

(1−m)yn

1+ω(1−m)xn

]
,

yn+1(τ) = yn +
(τ−nh)αyn

Γ(1+α)

[
β (1−m)xn

1+ω(1−m)xn
−δ

]
.

(17)

By taking τ → (n+1)h, eq. (17) yields

xn+1 = xn +
hαxn

Γ(1+α)

[
1− xn−

(1−m)yn

1+ω(1−m)xn

]
≡ F1(xn,yn),

yn+1 = yn +
hαyn

Γ(1+α)

[
β (1−m)xn

1+ω(1−m)xn
−δ

]
≡ F2(xn,yn).

(18)

If α→ 1, we have forward Euler discretization for the first-order derivative model. Furthermore,

we investigate the dynamics of model (18) such as the existence of fixed points and their local

stability, and some numerical simulations including the local dynamics and the existence of

several bifurcations.

3. FIXED POINTS AND THEIR LOCAL STABILITY

Now, we study the dynamics of the model (18) including the existence of fixed points and

their local stability. The following Lemmas are proposed to espouse our study.

Lemma 1. [40] Consider a difference equation

(19) xn+1 = f (xn), x ∈ R2

A point x∗ ∈R2 is called a fixed point of eq. (19) if satisfies x∗ = f (x∗). Suppose that λi, i = 1,2

are the eigenvalues of the Jacobian matrix at fixed point x∗ of eq. (19). Then the fixed point x∗

is

(i) locally asymptotically stable (sink) if |λ1|< 1 and |λ2|< 1; or

(ii) unstable (source) if |λ1|> 1 and |λ2|> 1; or
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(iii) unstable (saddle) if |λ1|< 1 and |λ2|> 1, or |λ1|> 1 and |λ2|< 1; or

(iv) non-hyperbolic |λ1|= 1 and |λ2|= 1.

Lemma 2. [41] Let F(λ ) = λ 2−Trλ +Det. Suppose that F(1)> 0, and λi, i = 1,2 are roots

of F(λ ) = 0. Then

(i) |λ1 < 1| and |λ2 < 1| if and only if F(−1)> 0 and Det < 1.

(ii) |λ1 > 1| and |λ2 > 1| if and only if F(−1)> 0 and Det > 1.

(iii) |λ1 < 1| and |λ2 > 1|, or |λ1 > 1| and |λ2 < 1| if and only if F(−1)< 0.

(iv) λ1 =−1 and λ2 6= 1 if and only if F(−1) = 0 and Tr 6= 0,2, and

(v) λ1 and λ2 are complex and |λ1|= |λ2|= 1 if and only if Tr2−4Det < 0 and Det = 1.

Now, we investigate the existence of the fixed point of model (18) by solving the following

equations.

x = x+
hαx

Γ(1+α)

[
1− x− (1−m)y

1+ω(1−m)x

]
,

y = y+
hαy

Γ(1+α)

[
β (1−m)x

1+ω(1−m)x
−δ

]
.

(20)

Thus, we obtain three fixed points as follows.

(1) The origin point E0 = (0,0) which is always exists.

(2) The predator extinction point E1 = (1,0) which is always exists.

(3) The co-existence point E∗ =

(
x∗,

(1− x∗)(1+ω(1−m)x∗)
(1−m)

)
, where x∗ =

δ

(β −δω)(1−m)
, which is exists if β >

δ

1−m
+δω .

Furthermore, the dynamics of these fixed points are presented by the following theorems.

Theorem 3. Let h0 =
α

√
2Γ(1+α)

δ
. The origin point E0 = (0,0) is a source if h > h0, a saddle

if h < h0, and a non-hyperbolic if h = h0.

Proof. For E0 = (0,0), we obtain the Jacobian matrix

J(E0) =

 1+
2
δ

(
h
h0

)α

0

0 1−2
(

h
h0

)α

 ,
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which gives the eigenvalues: λ1 = 1+
2
δ

(
h
h0

)α

and λ2 = 1− 2
(

h
h0

)α

. Since |λ1| > 0, the

fixed point E0 is always unstable. Furthermore, we use Lemma 1 to identify the type of unstable

fixed point E0. If h < h0 then |λ2|< 1, and hence E0 is a saddle point. If h > h0 then |λ2|> 1,

thus E0 is a source. Finally, if h = h0 then |λ2|= 1, which means E0 is non-hyperbolic. �

Theorem 4. Suppose that ha = α
√

2Γ(1+α), hb = ha
α

√
1+ω(1−m)

δ +(1−m)(δω−β )
, and β <

δ

1−m
+ δω . If h < min{ha,hb} then E1 is a sink, if h > max{ha,hb} then E1 is a source,

if ha < h < hb or hb < h < ha then E1 is a saddle, and if h = ha or h = hb then E1 is non-

hyperbolic.

Proof. When E1 = (1,0), the Jacobian matrix is

J(E1) =


1−2

(
h
ha

)α

− 2(1−m)

1+ω(1−m)

(
h
ha

)α

0 1−2
(

h
hb

)α

 ,

which gives eigenvalues λ1 = 1− 2
(

h
ha

)α

and λ2 = 1− 2
(

h
hb

)α

. Since β <
δ

1−m
+ δω ,

we have hb > 0. We can easily proof that if h < ha then |λ1| < 1, if h > ha then |λ1| > 1, if

h = ha then |λ1|= 1, if h < hb then |λ2|< 1, if h > hb then |λ2|> 1, and if h = hb then |λ2|= 1.

Therefore, by applying Lemma 1, Theorem 4 is well proven. �

Theorem 5. Suppose that 2x∗−1 >
√

∆ and

h1 =
α

√
4Γ(1+α)(1−m)βx∗

(1− x∗)δ +(2x∗−1+
√

∆)(1−m)βx∗
,

h2 =
α

√
Γ(1+α)((1−m)(2x∗−1)βx∗+(1− x∗)δ )

δ 2(1− x∗)
,

h3 =
α

√
4Γ(1+α)(1−m)βx∗

(1− x∗)δ +(2x∗−1−
√

∆)(1−m)βx∗
,

∆ =

(
1−2x∗− (1− x∗)δ

(1−m)βx∗

)2

− 4(1− x∗)δ 2

(1−m)βx∗
.

Therefore, E∗ is

(i) sink if ∆≥ 0 and h ∈ (0,h1), or ∆ < 0 and h ∈ (0,h2),
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(ii) source if ∆≥ 0 and h ∈ (h3,+∞), or ∆ < 0 and h ∈ (h2,+∞),

(iii) saddle if ∆≥ 0 and h ∈ (h1,h3), and

(iv) non-hyperbolic if ∆≥ 0 and h = h1 or h = h3, or ∆≤ 0 and h = h2.

Proof. By computing the Jacobian matrix at E∗, we achieve

J(E∗) =


1+

hα

Γ(1+α)

[
1−2x∗− δ (1− x∗)

β (1−m)x∗

]
− δhα

βΓ(1+α)

δ (1− x∗)hα

Γ(1+α)(1−m)x∗
1

 ,
which gives a quadratic polynomial characteristic λ2−Tr(J(E∗))λ +Det(J(E∗)) = 0, where

Tr(J(E∗)) = 2+
hα

Γ(1+α)

[
1−2x∗− δ (1− x∗)

β (1−m)x∗

]
,

Det(J(E∗)) = 1+
hα

Γ(1+α)

[
1−2x∗− δ (1− x∗)

β (1−m)x∗

]
+

h2α(1− x∗)δ 2

Γ2(1+α)(1−m)βx∗
.

Therefore, we obtain two eigenvalues:

λ1,2 = 1+
hα

2Γ(1+α)

[
1−2x∗− δ (1− x)

β (1−m)x

]
± hα

√
∆

2Γ(1+α)
.

By utilizing Lemmas 1 and 2, the Theorem 5 is completely proven. �

From the above results, all stability properties of fixed points are influenced by the value

of the step-size (h). We confirm that the step-size (h) plays an important role in giving rich

dynamical behaviors of model (18). In the next section, we will show numerically that varying

step-size (h) also provides more dynamical behaviors namely bifurcations.
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FIGURE 1. Bifurcation diagram and phase portraits of model (18) with parame-

ter values: ω = 0.3, β = 0.5, δ = 0.2, h = 0.4, and α = 0.95.
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(A) Bifurcation diagram in 1.8≤ h≤ 3.1
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(B) Period-2 solution when h = 2.3
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(C) Period-4 solution when h = 2.61
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(D) Period-8 solution when h = 2.63

FIGURE 2. Bifurcation diagram and periodic solutions around of E1 with pa-

rameter values: m = 0.8, ω = 0.3, β = 0.5, δ = 0.2, and α = 0.95.
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(A) Bifurcation diagram in 3.1≤ h≤ 3.25 (B) Local amplification to (A)
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(D) Period-4 solution when h = 3.22
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(F) Period-16 solution when h = 3.23

FIGURE 3. Bifurcation diagram and periodic solutions around of E∗ with pa-

rameter values: m = 0.4, ω = 0.3, β = 0.5, δ = 0.2, and α = 0.95.
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(A) Bifurcation diagram in 7.1≤ h≤ 8
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(B) Phase portrait when h = 7.34
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(C) Phase portrait when h = 7.44

0.46 0.50 0.54 0.58 0.62 0.66
x

0.54

0.57

0.60

0.63

0.66

y

E * = (0.56818, 0.61338)

(D) Phase portrait when h = 7.74

FIGURE 4. Bifurcation diagram and phase portraits of model (18) with parame-

ter values: m = 0.2, ω = 0.3, β = 0.5, δ = 0.2, and α = 0.95.
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4. NUMERICAL SIMULATIONS

Some numerical simulations of model (18) are demonstrated. The parameter values are se-

lected hypothetically appropriate with previous analytical results. We first set the parameter

values as follows: ω = 0.3, β = 0.5, δ = 0.2, h = 0.4, and α = 0.95. By varying the refuge

protecting constant of prey (m) in interval [0.2,0.9], we obtain the bifurcation diagram as in

Figures 1a and 1b. When 0.2≤ m < m∗, m∗ ≈ 0.55191, we have E1 and E∗ which are unstable

and stable respectively. E∗ disappeares and E1 becomes stable via forward bifurcation. We give

some phase portraits for each cases in Figures 1c and 1d. When m = 0.3, we have an unstable

E1 and a sink E∗. For m = 0.8, E∗ does not exist and E1 is a sink.

Furthermore, we investigate the impact of the step-size (h) to the dynamics of each fixed

points. First we set the parameter values as used in Figure 1d. Thus, we have a stable fixed

point E1 while E∗ does not exist. Now, the step-size is varied in interval 1.8 ≤ h ≤ 3.1. We

obtain the bifurcation diagram as in Figure 2a. For 1.8 < h < ha, ha ≈ 2.0304, E1 is a sink,

and loses its stability via period-doubling bifurcation when h passes through ha. Each branch

of stable periodic solutions also bifurcates when h is increased further. To explore the existence

of periodic solution, we set the step-size for several values i.e. h = 2.3,2.61,2.63. We achieve

three stable periodic solutions namely period-2,4, and period-8 solutions, see Figures 2b to 2d.

Next, we decrease the value of refuge protecting constant of prey to m = 0.4. Therefore,

E1 becomes unstable while E∗ is conditionally stable. To investigate the dynamical behav-

iors around E∗ driven by step-size (h), we vary h in interval [3.1,3.25]. We plot the bifurca-

tion diagram in Figure 3a. We show that E∗ is a sink when 0 ≤ h < h1, h1 ≈ 3.12295. E∗

loses its stability and the period-2 solution occurs when h passes through h1 which known as

period-doubling bifurcation. To more understanding the occurence of periodic solution, we

plot the local amplification of bifurcation diagram in Figure 3b. The period-2 solution also

bifurcates via period-doubling bifurcation for several times. We plot the periodic solution for

h = 3.13,3.22,3.228,3.23 to show the existence of period-2,4,8 and period-16 solutions.

Finally, we decrease m to 0.2 and varying h in interval [7.1,8]. When 7.1 ≤ h < h2,

h2 = 7.3511, E∗ is a sink. E∗ undergoes a Neimark-Sacker bifurcation when h crosses h2,

see Figure 4a. To give a better understanding to the dynamical behavior, we pick some values
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of step-size (h) for each cases. When h = 7.34, all solutions around E∗ convergent to E∗ as in

Figure 4b. If we increase h to 7.44, E∗ loses its stability and nearby solutions convergent to a

limit-cycle, see Figure 4c. The diameter of limit-cycle increases when h = 7.74 which shown

by Figure 4d.

5. CONCLUSIONS

The dynamics of a discrete-time fractional-order Rosenzweig-MacArthur model incorporat-

ing a prey refuge which discretized by using piecewise constant arguments have been studied.

We achieve three types of fixed points consist of two axial fixed points which always exist, and

a conditionally exists interior fixed point. All possible local stability properties are investigated

analytically. We show that the integral step-size (h) plays an important role in establishing the

dynamical behavior of our model. Finally, we demonstrate numerically the occurrence of se-

veral bifurcations. There exists a forward bifurcation driven by the refuge protecting constant

of prey (m) which shows the changes in the stability of E1 and the disappearance of E∗ simul-

taneously when the bifurcations occur. The existence of period-doubling bifurcation also has

demonstrated both around E1 and E∗. Period-2 solution occurs when the step-size (h) is varied.

Each periodic solution also experiences period-doubling bifurcations several times. We also

show that E∗ undergoes a Neimark-Sacker bifurcation driven by time-step (h). From biological

meanings, there exist two conditions that may take place in the dynamics of model (18) namely

the extinction of predator or the existence of both prey and predator. Especially, the existence

of both prey and predator explains in two ways. Both populations will convergent to constant

values or change periodically and converge to a periodic solution.
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