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Abstract. Malaria is a vector-borne contagious disease which remains a public health burden for decades. It

is highly endemic in Sub-Saharan African, and an estimated number of two hundred and twenty-eight million

cases was reported in 2018 around the world. We develop and examine a deterministic model which describes the

transmission dynamics of malaria between mosquito and human populations and examine the impacts of control

interventions with their level of awareness on its control. The malaria-free equilibrium of the model is shown to be

locally asymptotically stable if the threshold quantity R0 < 1. We study the stability of the endemic equilibrium

and the conditions for the existence of backward bifurcation are presented. A sensitivity analysis was done to

measure the outcome of the control intervention parameters on the reproduction number. The result shows that

residual spray and bed-net usage are the most important parameter on the reproduction number. A numerical

simulation was carried out and the result shows that combining bed-net usage and residual spray will reduce the

burden of malaria faster. Particularly, results suggest that awareness and proportion of bed-net usage and residual

spray should be priorities and increased to at least 75% for the possibilities of eliminating malaria.
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1. INTRODUCTION

Among the deadliest diseases with a highly challenging health burden in the tropical regions

is malaria. It is a vector-borne transmissible disease that is highly endemic in Sub-Saharan

Africa, especially in improvised and low hygienic environments [1, 2, 3]. Despite continuous

research about malaria for the past decades, it remains a major public health burden for which it

was declared endemic in one hundred and nine countries in 2008 [4]. An estimated number of

two hundred and twenty-eight million cases were reported in 2018 around the world. As stated

in the world malaria report released by the World Health Organization (WHO) in 2019, about

four hundred and five thousand deaths were recorded [2, 5]. Approximately three hundred to

five hundred million cases occur globally annually, with over one million deaths yearly. The

burden of malaria is tremendous in the Sub-Saharan African region such that eighty percent

of these cases and ninety percent of these deaths occur in this region [6, 7, 8]. About 78%

of deaths occurs in children below age five [1]. Malaria is caused by an infection with the

protozoan parasite of genus Plasmodium. In humans, five different species of Plasmodium can

cause infection, namely Plasmodium falciparum, Plasmodium malariae, Plasmodium ovale,

Plasmodium vivax, and Plasmodium knowlesi [1, 9, 10]. It is transferred to humans through

the bite of an infected female Anopheles mosquito [1]. After an effective bite, the parasite

multiplies in the human liver and bloodstream to develop into an infectious form. After the

incubation period of the disease (which is within 9-14 days), human begins to show symptoms.

The symptoms characterized by malaria include; rise in body temperature, headache, cold,

shivering, pain, anemia, fatigue, and vomiting among other symptoms [2, 11]. To present, there

is no effective vaccine against malaria. However, it is preventable and curable. Treatments

such as the use of anti-malaria drugs have been in use for decades. Though, some existing

anti-malaria medications are losing their effectiveness as a result of the drug resistance evolved

in the parasite [2, 12]. Some control techniques have been employed to prevent the infection

of malaria in the human population, such as insecticide-treated mosquito nets (ITNs), indoor

residual spraying (IRS) and bed-nets use [4, 11]. The occurrence of malaria has been increasing

lately as a result of parasite drug resistance and mosquito insecticide resistance [9, 13], thus

causing the disease to remain endemic in many regions.
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Many researchers have employed mathematical models from different fields to investigate the

spread of infectious diseases in a given population using diverse approaches (see [14, 15, 16,

17, 18, 19, 20]). Modeling of malaria has helped in understanding the transmission dynamics

of this disease, including appropriate control strategies to mitigate it. Sir Ross published the

first model in 1911 to demonstrates the development of malaria [2, 21]. Over the years, this

model has been used in the past due to its simple nature. However, as the burden of malaria

increases over the decades, numerous researchers have modified the existing model of Sir Ross,

and have developed models by introducing different factors, parameters, and variables to further

understand its dynamics spread in the population. For example, the model by Sir Ross’s was

improved by incorporating; the latent period of infection [2, 22]; the heterogeneity of human and

mosquito [23, 24]; immunity factor [2, 25, 26]; susceptibility to malaria in the host population

[27, 28]; a model with exposed human and exposed mosquito [12, 29] and recovered human

[23, 30], among many other study. Furthermore, some modeler has developed models that

integrate the effect of climate change (such as temperature and rainfall), and seasonality [31,

32, 33, 34, 35]. In addition, some researchers have investigate the transmission dynamics of

malaria within-host level [36, 37, 38, 39, 40]. A mathematical model has been utilized in the

decision-making process of intervention programs for the prevention and control of malaria

in the populace. Thus, a huge number of researchers have employed mathematical models

to predict effective control of malaria using optimal control theory. These studies assess the

optimal interventions strategies required for effective control of malaria. Examples of these

studies includes [11, 41, 42, 43, 44, 45]. Although numerous researches have been performed

on the spread and control of malaria, however, it remains a health burden in some regions,

especially Sub-Saharan Africa. Thus, continuous efforts must be encouraged in modeling the

dynamics of this disease and its control in the endemic regions. Among many models that have

been developed, we discuss the methods, results, and limitation of few studies that stands as the

foundation to the model proposed in this work.

In [30], the authors proposed a five compartmental deterministic model to describe the trans-

mission dynamics of malaria between the mosquito and human populations. The model allows

the transmission from the recovered humans due to incomplete immunity to reinfection. In this



4 MAYOWA M. OJO, EMILE FRANC DOUNGMO GOUFO

study, the authors employ both the standard incidence and the mass action incidence malaria

model to evaluate the effect of incomplete immunity to reinfection in the spread of the disease

in the human population. The result from this study shows that the standard incidence model

shows the phenomenon of backward bifurcation as a result of the reinfection of individuals who

recovered from malaria. Furthermore, the result shows that this phenomenon can be eliminated

by using the mass action incidence instead of the standard incidence function. Thus, the global

dynamics of malaria disease with reinfection is determined by the threshold quantity repro-

duction number. In addition, numerical simulations result suggests that increasing the rate of

incomplete protection of recovered humans and decreasing the life expectancy of mosquitoes,

will increase the region of backward bifurcation. It must be noted that the model developed and

analyzed in [30] did not consider the exposed humans and the aquatic stage of the mosquito

population. Also, it is not always true that a recovered individual must be re-infected by an

infected mosquito before progressing to the infected human population. Immune human indi-

viduals progress to the susceptible population following the loss of their immunity [11, 29].

A study on the effect of bed-net usage on malaria commonness is presented in [46]. The

authors formulated and analyzed the basic susceptible – infectious (SI) model, consisting of

human and mosquito populations, to examine the effect of bed-net use on the spread of malaria

infection in the population. The model incorporates the effect of human behavior such as the

lack of effective usage of bed-net, on the spread of the disease. Results from the model anal-

ysis show the existence of backward bifurcation. This implies that reducing the reproduction

number only is not sufficient in eliminating the disease, except when the initial cases of malaria

infection in both populations are insignificant. Furthermore, results illustrate that bed-net us-

age decreases the reproduction number. Specifically, results reveal that if seventy-five percent

of the human population effectively uses the bed-net, then malaria may be eradicated. The

limitation of this model includes the absence of the exposed individuals who can transfer the

malaria infection to mosquitoes when they come for their blood meal. Also, since the presence

of backward bifurcation nullifies the guarantee that reduction of the threshold quantity below

unity will eliminate the disease, it is important to encourage additional strategies like indoor

residual spraying, and early treatment of infected individuals to lessen the burden of malaria in
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the population. In addition, a model that accounts for the control of immature mosquitoes in the

aquatic stage will help in studying the effective control of malaria in the population.

2. MODEL FORMULATION

Motivated by the model presented in [30, 41, 46], we present a deterministic model to in-

vestigate the impact of awareness about preventive measures and treatment care on the spread

of malaria in a population. Malaria is a disease that is preventable, treatable, and curable in

the human population. Among many other preventative measures against malaria is the use of

insecticides treated nets (henceforth refer to as bed-nets); use of residual spray; intermittent

preventive treatment; and use of repellent that contains diethyltoluamide [41, 47]. However,

if an individual is infected with malaria, the use of anti-malaria medications has been shown

to regulate malaria in humans [48]. Sadly, the incidence of malaria is increasing due to drug

and mosquito insecticide resistance in regions where malaria is endemic [9, 13]. Preventive and

treatment healthcare has shown to lessen the burden of malaria in the endemic regions [48, 49],

thus increasing the chance of eradicating malaria in these regions, it is important to increase the

awareness or educational campaign about prevention and treatment strategies against this dis-

ease. Individuals’ awareness about malaria and its mode of transmission will allow the human

population to take precautionary measures such as personal prevention against mosquito bites,

and control of mosquito population. As a result of this awareness, it is expected that the human

population embraces prevention and treatment of malaria, thus leading to a decrease in the cases

of malaria. In this study, we incorporate a saturated function for the level of awareness on bed-

nets usage, residual spray, and treatment of infected humans in the model to study the outcome

of preventive and treatment measures enhanced by awareness on the dynamic transmission of

malaria among humans. We denote the awareness about the use of bed-nets as A1, awareness

about residual spray as A2 and awareness about the mode of treatment for malaria disease as A3,

such that {A1,A2,A3} ∈ A.

Transmission of malaria can only occur between two interacting hosts namely human and

mosquito, thus we group the interacting hosts into human and mosquito populations. The human

population is further sub-group into susceptible Sh, exposed Eh, infectious Ih, and recovered Rh,
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based on their disease status. There are mainly four stages in the development of mosquitoes

namely; egg, larva, pupa, and adult stage. However, for simplicity purposes, we classify the

mosquito population into the immature and mature stage, such that (egg, larva, and pupa) are

classified as immature mosquito population denoted by Mm. Furthermore, we sub-divide the

mature mosquito population into susceptible Sm, exposed Em, and infectious Im. Hence, the

total human and mosquito populations at time t ≥ 0 are given as Nh(t) = Sh +Eh + Ih +Rh,

and Nm(t) = Mm + Sm +Em + Im respectively. The susceptible human population is produced

through birth or immigration at the recruitment rate πh, followed by the loss of immunity of

recovered humans at a rate ω . All human populations are reduced by natural mortality with a

constant rate µh. The susceptible human population is more reduced by the force of infection

rate λh(A1 +A2) (defined in 4), following an effective bite by an infected mosquito, thus sus-

ceptible humans moved to the exposed human population after infection. The exposed human

population decreased by the progression rate of exposed individuals to the infectious popula-

tion at a rate σh. The infectious population is generated by the progression of exposed humans

to their infectious state at a rate σh and is reduced by disease-induced death (death caused by

malaria) at a rate δh, and recovery of infectious individuals at a rate τh(A3). The recovery rate

of infectious humans is model as a function of awareness such that

τh(A3)≡ τh(q) = τh +
τmaxqA3

1+A3
, 0≤ q≤ 1, 0≤ A3 ≤ 1(1)

where the recovery rate of individuals is denoted by τh, and τmaxq is the recovery rate due to

awareness. Lastly, on the human population, the recovered human population is produced by

the recovery rate of infectious humans. The recovered human population is depopulated as a

result of the loss of immunity at a rate ω . The mosquito population is grouped into four sub-

populations namely immature, susceptible, exposed, and infectious mosquito populations. The

immature mosquito population is generated by mosquito egg deposition at a rate πm(A2). This

population is reduced due to the development of immature mosquitoes at a rate φ and mosquito

death at rate µm(A2). We model the egg deposition rate as a function of awareness such that

πm(A2)≡ πm(p) = πmax−
(πmax−πmin) pA2

1+A2
, 0≤ p≤ 1, 0≤ A2 ≤ 1(2)
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where πmax and πmin are the maximum and minimum egg deposition rates of mosquitoes. Resid-

ual spraying is expected to reduce the recruitment of mosquitoes to its minimum rate such that

if p = 0, the egg deposition rate of mosquito will remain in its maximum value πmax. The

susceptible mosquito population is created by the maturation rate of immature mosquitoes. All

the mature mosquitoes (susceptible, exposed, and infectious) are reduced by mosquito mortal-

ity with a rate µm(A1 +A2). After effective contact with an infected human, the susceptible

mosquito population is further reduced by the force of infection rate λm(A1 +A2) (defined in

4), and thus move to the exposed mosquito population. This population is decreased by the

movement rate of exposed mosquitoes to the infectious population at a rate σm. The infectious

mosquito population is generated by the progression of exposed mosquitoes to their infectious

state at a rate σm. The awareness compartment A is populated by a saturated function F(Ih),

given by F(Ih) =
a0Ih

a1+a2Ih
, where a0, a1, and a2 are information growth rate. This class is re-

duced by fading of memory about awareness, or human sentiment about awareness information

at a rate a3. The saturated function F(Ih) depends on the infectious human population density

since the awareness about the disease and the need to protect individuals is proportional to the

number of infected humans. This kind of function has been used in [50] to model the role of

information in disease prevalence.

Following the above model formulation descriptions and assumptions, the deterministic model

used in studying the dynamics of malaria in this study is given as

dSh

dt
= πh +ωRh−λh(A1 +A2)Sh−µhSh

dEh

dt
= λh(A1 +A2)Sh− (µh +σh)Eh

dIh

dt
= σhEh− (τh(A3)+µh +δh) Ih

dRh

dt
= τh(A3)Ih− (µh +ω)Rh

dMm

dt
= πm(A2)− (φ +µm(A2))Mm(3)

dSm

dt
= φMm−λm(A1 +A2)Sm−µm(A1 +A2)Sm

dEm

dt
= λm(A1 +A2)Sm−σmEm−µm(A1 +A2)Em
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dIm

dt
= σmEm−µm(A1 +A2)Im

dA
dt

=
a0Ih

a1 +a2Ih
−a3A

with the initial conditions Sh(0) > 0,Eh(0) ≥ 0, Ih(0) ≥ 0,Rh ≥ 0,A(0) ≥ 0,Mm > 0,Sm >

0,Em(0)≥ 0, and Im ≥ 0. The description of the model variables and parameters are presented

in Table 1 and Table 2 respectively, while the schematic illustration is provided in Figure 1.

Following the approach in [46] and [51], we define the forces of infection λh(A1 +A2) and

λm(A1 +A2) as a function of the level of awareness such that

λh(A1 +A2) =
βhmε(A1 +A2)Im

Nh
, λm(A1 +A2) =

βmhε(A1 +A2)(ηEh + Ih)

Nh
(4)

where βhm is the likelihood that a susceptible individual will be infected due to a bite by infec-

tious mosquitoes, βmh is the likelihood that a susceptible mosquito will be infected as a result

of contact with infectious human, and ε(A1+A2) is the contact rate of humans and mosquitoes,

which is dependent on awareness about bed-net usage and residual spray respectively. The con-

tact rate associated with awareness on bed-net usage ε(A1) is given by a decreasing function

ε(A1)≡ ε(b) = εmax−
(εmax− εmin)bA1

1+A1
, 0≤ b≤ 1, 0≤ A1 ≤ 1

where b represents the proportion of bed-net usage, and εmin and εmax are the minimum and

maximum mosquito biting rate respectively. Note that bed-net usage is expected to decrease the

contact rate to its minimum such that if the proportion of bed-net usage b = 0, then transmission

would be at its maximum level εmax. In addition, the saturated function for the awareness of

bed-net usage reduces the contact rate as the awareness increases. Similarly, the contact rate

associated with awareness on the use of outdoor or indoor residual spray ε(A2) is given by a

decreasing function

ε(A2)≡ ε(p) = εmax−
(εmax− εmin) pA2

1+A2
, 0≤ p≤ 1, 0≤ A2 ≤ 1

where εmin and εmax are the minimum and maximum mosquito biting rate respectively, and p is

the proportion of residual spray. Note that residual spraying is expected to reduce the contact

rate to its minimum such that if the proportion of residual spray p = 0, then transmission would

be at its maximum level (εmax). The saturated function for the awareness of residual spraying
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Figure 1: The schematic illustration of the malaria model (3).

reduces the contact rate as the awareness increases. We define the mosquito death µm(A1 +A2)

as a function of awareness such that, µm(A1) and µm(A2) are the mosquitoes death rate as a

result of awareness about bed-net usage and residual spray respectively. Mosquitoes hunting

for blood meal can die as a result of contact with the insecticide on treated net. Thus, we model

the mosquito’s death rate as a result of bed-net usage as

µm(A1)≡ µm(b) = µm +
µmaxbA1

1+A1
, 0≤ b≤ 1(5)

Similarly, the mosquito’s death rate as a result of residual spray is given as

µm(A2)≡ µm(p) = µm +
µmax pA2

1+A2
, 0≤ p≤ 1(6)

where µm is the natural death rate of mosquito, while µmaxb and µmax p are the death rate as a

result of insecticide on bed-nets and residual spray respectively.
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Variable Description

Sh Susceptible humans

Eh Exposed humans

Ih Infectious humans

Rh Recovered humans

Mm Immature mosquitoes

Sm Susceptible mosquitoes

Em Exposed mosquitoes

Im Infectious mosquitoes

{A1,A2,A3} ∈ A Level of awareness (Bed-nets, Residual Spray, and Treatment respectively)

Table 1: Description of the state variables of the model (3).

2.1. Properties of the model: (Positivity and boundedness). The fundamental properties of

model (3) will be examined in this section. For the model (3) to be epidemiologically mean-

ingful, it is necessary to show that its state variables are positive for all time t > 0 and that Ω is

bounded. Thus, we claim the following

Theorem 1. The solutions of system (3) with positive initial conditions Sh(0); Eh(0); Ih(0);

Rh(0); Mm(0); Sm(0); Em(0); Im(0); A(0), will remain positive for all time t > 0.

Proof. Let t1 = sup{t > 0 : Sh(0) > 0,Eh(0) > 0, Ih(0) > 0,Rh(0) > 0,Mm(0) > 0,Sm(0) >

0,Em(0) > 0, Im(0) > 0,A(0) > 0 ∈ [0, t]}. Hence, t1 > 0. The first equation of the system (3)

is written as

dSh

dt
= πh +ωRh−λh(A1 +A2)Sh−µhSh ≥ πh−λh(A1 +A2)Sh−µhSh(7)

By using the integrating factor method, the above expression is further given as

d
dt

(
Sh(t)exp

[
µht +

∫ t

0
λh(A1 +A2)(x)dx

])
≥ πhexp

[
µht +

∫ t

0
λh(A1 +A2)(x)dx

]
Hence,

Sh(t1)exp
[

µht1 +
∫ t1

0
λh(A1 +A2)(x)dx

]
−Sh(0)≥

∫ t1

0
πh

(
exp
[

µhy+
∫ y

0
λh(A1 +A2)(x)dx

])
dy
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Parameter Description

πh Recruitment rate of humans

ω Immunity waning rate of humans

σh Disease progression rate from exposed to infectious human

σm Disease progression rate from exposed to infectious mosquito

τh Recovery rate of infectious humans

τmaxq Recovery rate of infectious humans due to awareness on treatment care

η Disease modification parameter

µh Natural death rate of humans

δh Death rate due to disease for humans

βhm Probability of effective transmission from human to mosquito

βmh Probability of effective transmission from mosquito to human

εmax Maximum mosquito biting rate

εmin Minimum mosquito biting rate

b Proportion of bed-net usage

p Proportion of residual spray indoor or outdoor

πmax Maximum egg deposition rate

πmin Minimum egg deposition rate

φ Maturation rate of immature mosquitoes

µm Natural death rate of mosquitoes

µmaxb Mosquitoes death rate as a result of bed-net usage

µmaxq Mosquitoes death rate as a result of residual spray

a0,a1, a2 Awareness information growth rate

a3 Fading of awareness memory

Table 2: Description of the parameters of the model (3).

so that,

Sh(t1) ≥ Sh(0)exp
[
−µht1−

∫ t1

0
λh(A1 +A2)(x)dx

]
+ exp

[
−µht1−

∫ t1

0
λh(A1 +A2)(x)dx

]
×
∫ t1

0
πh

(
exp
[

µhy+
∫ y

0
λh(A1 +A2)(x)dx

])
dy > 0.
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In the same way, it can be shown that Eh(t) > 0, Ih(t) > 0, Rh(t) > 0, Mm(t) > 0, Sm(t) > 0,

Em(t)> 0, Im(t)> 0, and A(t)> 0 for all time t > 0. �

Furthermore, for the malaria model (3) to be mathematically and epidemiologically mean-

ingful, it is necessary to analyze system (3) in a biologically feasible region Ω = Ωh×Ωm ∈

R5
+×R4

+ such that

Ωh =

{
(Sh,Eh, Ih,Rh,A) ∈R5

+ : Sh +Eh + Ih +Rh ≤
πh

µh
, A≤ a0πh

a3(a1µh +a2πh)

}
and

Ωm =

{
(Mm,Sm,Em, Im) ∈R4

+ : Mm +Sm +Em + Im ≤
πm(A2)

µm

}
where µm = min{µm(A2),µm(A1 +A2)}. Using the standard technique (see [50, 52]), the feasi-

ble region Ω can be shown to be positively invariant. Hence, all the solutions are in the feasible

region Ω where the malaria model (3) is said to be mathematically and epidemiologically well-

posed [53, 52]. We claim the following result in the theorem below

Theorem 2. The biological feasible region Ω = Ωh ∪Ωm ⊂ R5
+×R4

+ is positively invariant

for the malaria model (3) with non-negative initial conditions in R9
+.

3. MODEL ANALYSIS

Here, we investigate the existence and stability of the steady states, and the nature of bifur-

cation exhibited by system (3) is examined. The model presented in (3) has two steady states

namely; the disease-free equilibrium (henceforth refer to as malaria-free equilibrium), and the

endemic equilibrium. The malaria-free steady-state solution describes the population without

malaria infection, while the endemic equilibrium steady-state solution exists at any positive

prevalence of malaria in the population.

3.1. Existence and stability of the malaria-free equilibrium (MFE). The malaria-free equi-

librium of the system (3), represented by M0 is obtained as

M0 = (S∗h,E
∗
h , I
∗
h ,R
∗
h,M

∗
m,S
∗
m,E

∗
m, I
∗
m,A

∗)

=

(
πh

µh
,0,0,0,

πm(A2)

(φ +µm(A2))
,

φπm(A2)

µm(A1 +A2)(φ +µm(A2))
,0,0,0

)
(8)
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We compute the reproduction number R0 to study the stability of the model. Using the approach

and notations in [52, 54], the matrix F (new infections) and matrix V (transition terms) are

respectively given as

F =


0 0 0 βhmε(A1 +A2)

0 0 0 0
ηβmhε(A1+A2)S∗m

S∗h
βmhε(A1+A2)S∗m

S∗h
0 0

0 0 0 0


and

V =


k1 0 0 0

−σh k2 0 0

0 0 µm(A1 +A2)+σm 0

0 0 −σm µm(A1 +A2)


where k1 = µh +σh, and k2 = τh(A3)+δh +µh. The next generation matrix (NGM) with large

domain KL = FV−1 is given below as

KL =


0 0 βhmσmε(A1+A2)

(µm(A1+A2)+σm)µm(A1+A2)
βhmε(A1+A2)
µm(A1+A2)

0 0 0 0
βmhε(A1+A2)S∗m(ηk2+σh)

k1k2S∗h
βmhε(A1+A2)S∗m

k2S∗h
0 0

0 0 0 0

(9)

It is obvious from the model equation (3) that, there are only two states-at-infection among the

four infected states. This can also be seen by looking at matrix F and observing that the entire

second and fourth row contains zeros. Hence, the NGM K for the small domain is therefore

two-dimensional. Thus, using the approach of [55] with an auxiliary matrix E, the NGM K is

obtained as

K = ET KLE = ET FV−1E =


0 βhmσmε(A1+A2)

(µm(A1+A2)+σm)µm(A1+A2)

βmhε(A1+A2)S∗m(ηk2+σh)
k1k2S∗h

0

(10)
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Thus, it follows that the reproduction number for the system (3), which is the spectral radius of

K given by R0 = ρ(K), is obtained as

R0 =
√

RhRm =

√
βmhβhmσm(ηk2 +σh)ε2(A1 +A2)S∗m

k1k2S∗h {(µm(A1 +A2)+σm)µm(A1 +A2)}
(11)

where

Rh =
βmhε(A1 +A2)S∗m(ηk2 +σh)

k1k2S∗h
, Rm =

βhmσmε(A1 +A2)

(µm(A1 +A2)+σm)µm(A1 +A2)
.

The reproduction number R0 is a threshold quantity that characterizes the average number of

new secondary infections generated by a single infected individual during an infectious period,

in a completely susceptible population [41, 54]. Consequently, the threshold quantity given

in equation (11) represents the average number of malaria infections that one malaria-infected

individual can reproduce in an entirely susceptible population. Using Theorem 2 in [56], the

local stability of the malaria-free equilibrium M0 is summarized in the theorem below.

Theorem 3. The malaria-free equilibrium M0, of the model (3) is locally asymptotically stable

in the biological feasible region Ω if R0 < 1 and unstable if R0 > 1.

Proof. To establish Theorem 3, we obtain the Jacobian matrix of system (3) at malaria free-

equilibrium M0 as

J (M0) =



−µh 0 0 ω 0 0 0 −k8 0

0 −k1 0 0 0 0 0 k8 0

0 σh −k2 0 0 0 0 0 0

0 0 τh(A3) −k3 0 0 0 0 0

0 0 0 0 −k4 0 0 0 0

0 −k5η −k5 0 φ −k6 0 0 0

0 k5η k5 0 0 0 −k7 0 0

0 0 0 0 0 0 σm −k6 0

0 0 a0
a1

0 0 0 0 0 −a3



(12)

Such that k1 = µh + σh, k2 = τh(A3) + δh + µh, k3 = ω + µh, k4 = φ + µm(A1 + A2), k6 =

µm(A1 +A2), k7 = µm(A1 +A2)+σm, k8 = βhmε(A1 +A2) and k5 =
S∗mβmhε(A1+A2)

S∗h
. From (12),
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we can show that all the eigenvalues of J (M0) are negative. The first five eigenvalues are

obtained as, −µh, −k3, −k4, −k6 and −a3. Thus, the remaining four eigenvalues are obtained

from the sub-matrix S , given as

S =


−k1 0 0 k8

σh −k2 0 0

k5η k5 −k7 0

0 0 σm −k6

(13)

As stated by the Routh-Hurwitz criterion, the matrix S will be real and negative if

(i) Tr (S )< 0

(ii) Det (S )> 0

From 13,

Tr(S ) =−(k1 + k2 + k7 + k6)< 0

and

Det(S ) = k1k2k6k7(1−R0)> 0 i f R0 < 1

All the eigenvalues of the matrix (12) are real and negative if R0 < 1, thus, the malaria-free

equilibrium M0 is locally asymptotically stable and unstable otherwise. �

Theorem 3 suggests that malaria can be controlled in the population whenever R0 < 1 if the

initial sizes of the sub-population of system (3) are in the basin of attraction of M0.

3.2. Existence of endemic equilibria and backward bifurcation. Here, we examine the

possibilities of the existence of endemic equilibria and a backward bifurcation. A model is

known to exhibit the phenomenon of backward bifurcation when a small positive unstable equi-

librium appears while the disease-free equilibrium and a larger positive equilibrium are locally

asymptotically stable when the threshold quantity is less than unity. In other words, this phe-

nomenon is possible when the stable disease-free equilibrium coexists with a stable endemic

equilibrium, under some given values for which the reproduction number is less than unity.

The endemic equilibria denoted by M1 = (S∗∗h ,E∗∗h , I∗∗h ,R∗∗h ,M∗∗m S∗∗m ,E∗∗m , I∗∗m ,A∗∗) represents
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the steady-state solution in the presence of malaria, and is obtained as

S∗∗h =
k1k2k3πh

k1k2k3
[
λ ∗∗h (A1 +A2)+µh

]
−ωσhτh(A3)λ

∗∗
h (A1 +A2)

E∗∗h =
k2k3πhλ ∗∗h (A1 +A2)

k1k2k3
[
λ ∗∗h (A1 +A2)+µh

]
−ωσhτh(A3)λ

∗∗
h (A1 +A2)

I∗∗h =
k3πhσhλ ∗∗h (A1 +A2)

k1k2k3
[
λ ∗∗h (A1 +A2)+µh

]
−ωσhτh(A3)λ

∗∗
h (A1 +A2)

R∗∗h =
πhσhτh(A3)λ

∗∗
h (A1 +A2)

k1k2k3
[
λ ∗∗h (A1 +A2)+µh

]
−ωσhτh(A3)λ

∗∗
h (A1 +A2)

(14)

M∗∗m =
πm(A2)

k4
, S∗∗m =

φπm(A2)

k4 [λ ∗∗m (A1 +A2)+ k6]

E∗∗m =
φπm(A2)λ

∗∗
m (A1 +A2)

k4k7 [λ ∗∗m (A1 +A2)+ k6]
, I∗∗m =

φσmπm(A2)λ
∗∗
m (A1 +A2)

k4k6k7 [λ ∗∗m (A1 +A2)+ k6]

A∗∗ =
a0πhσhk3λ ∗∗h (A1 +A2)

a3
{

a1k1k2k3
[
µh +λ ∗∗h (A1 +A2)

]
+σhλ ∗∗h (A1 +A2) [a2k3πh−a1ωτh(A3)]

}

with the force of infections given as

λ
∗∗
h (A1 +A2) =

βhmε(A1 +A2)I∗∗m

N∗∗h
, λ

∗∗
m (A1 +A2) =

βmhε(A1 +A2)(ηE∗∗h + I∗∗h )

N∗∗h
(15)

substituting equation 14 and the value of λ ∗∗m (A1+A2) into (15) and expanding in λ ∗∗h (A1+A2)

results to the following polynomial equation

z1 [λ
∗∗
h (A1 +A2)]

2 + z2λ
∗∗
h (A1 +A2)+ z3 = 0(16)

where the polynomial coefficients zi for i = 1...,3 are given as

z1 = P1P6P8πh, z2 = P2
6 (P8 +P1µmπh)−P2P3P7, z3 = µm (πhk1k2k3)

3 (1−R2
0
)

(17)
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where: P1 = k2k3 + k3σh + σhτh(A3), P2 = k8σmφπm(A2), P3 = k1k2k3−ωσhτh(A3), P4 =

πhk1k2k3, P5 = πhk3βmh(ηk2 +σh)ε(A1 +A2), and P6 = P1πhµm(A1 +A2)+P5. From the poly-

nomial (16) above, the coefficient z1 is always positive, and the constant term z3 is negative

or positive depending on the value of R0. This implies that, if R2
0 > 1, z3 is negative and if

R2
0 < 1,then z3 is positive. Thus, the following result hold.

Theorem 4. The malaria model given by equation (3) has

(i) exactly one unique endemic equilibrium if z3 < 0 or R0 > 1,

(ii) exactly one unique endemic equilibrium if z2 < 0, and either z3 = 0 or z2
2−4z1z3 = 0,

(iii) exactly two endemic equilibria if z3 > 0, z2 < 0 and z2
2−4z1z3 > 0,

(iv) no endemic equilibrium otherwise.

It is obvious from case (i) of Theorem 4 that the malaria model (3) has a unique equilibrium

point represented by M1, whenever R0 > 1. In addition, case (iii) of Theorem 4 shows the

possibility of backward bifurcation in the malaria model (3) when R0 < 1. To check for the

possibility of backward bifurcation when R0 < 1, we set the discriminant z2
2− 4z1z3 = 0 and

solve for the critical value of R0 denoted by Rc
0, such that

Rc
0 =

√
1−

z2
2

4z1µm (πhk1k2k3)
3(18)

Hence, backward bifurcation will occur for the value Rc
0 such that R0 < 1. The result is sum-

marized in the theorem below.

Theorem 5. The malaria model (3) undergoes a backward bifurcation when case (iii) of Theo-

rem 4 holds and Rc
0 < R0 < 1.

Following the result above, the backward bifurcation phenomenon implies that the epidemi-

ological condition of having the reproduction number less than unity to eradicate a disease

although necessary is no longer enough for disease eradication. Thus, to effectively control

malaria in the population, additional control measures will be needed to enable epidemic con-

trol. That is, the condition R0 < Rc
0 < 1 must be satisfied.
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4. NUMERICAL RESULTS AND DISCUSSION

We examine the effect of control interventions (bed-net usage, residual spray, and treatment)

and their level of awareness on the dynamics of malaria. To accomplish this, we performed a

sensitivity analysis to investigate the impact of control interventions on the reproduction num-

ber. Furthermore, we simulate the proposed model (3) under different scenarios, using the

baseline parameter values as given in Table 3, except otherwise stated.

4.1. Impact of interventions on R0. Since the threshold quantity R0 given in (11) deter-

mines the control of malaria in the population (except for scenario where the bifurcation phe-

nomenon occurs), we assess the impact of the interventions (bed-net usage, insecticide residual

spray, and treatment) on the reproduction number R0. To accomplish this, we use the normal-

ized forward sensitivity indices to investigate the relationship of each parameter on R0. Using

the method in [59, 60], the normalized forward sensitivity index X R0
i for each of the interven-

tion parameter {b, p,q ∈ i}, is defined as

X R0
i =

∂R0

∂ i
× i

R0
(19)

By using the formula presented in (19), the numerical values for the normalized forward sen-

sitivity indices of the three intervention parameters are given in Table 3. It must be noted that,

X R0
b < 0, X R0

p < 0, and X R0
q < 0. This implies that an increase in the respective interven-

tion parameters will reduce the value of the reproduction number. For instance, increasing the

number of individuals who use bed-net will reduce the reproduction number and vice versa.

In Figure 2, we simulate the effect of each intervention on the reproduction number. Figure 2

shows a decrease in the reproduction number with increasing interventions as expected. How-

ever, Figure 2(c) shows that the proportion of treatment is less significant on the reproduction

number. Thus, control interventions such as residual spray, and bed-net usage should be priori-

tized in reducing the burden of malaria in the population.

To examine the effect of control intervention and awareness on malaria burden, we obtained

some contour plots for the reproduction number R0, as a function of control interventions and

their respective level of awareness. As shown in Figure 3, an increase in control interventions

with the level of awareness reduces the reproduction number. Specifically, Figure 3(a) show
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Parameters Baseline value Range Dimension Reference

πh

(
103

65×365

) (
103

80×365 −
103

58×365

)
Day−1 [41, 26]

ω 0.0005275
(
5.5×10−5−1.1×10−2) Day−1 [41, 26]

σh 0.058824
(

67
103 − 2

10

)
Day−1 [57, 11, 2]

σm 0.05555
(

29
103 − 33

102

)
Day−1 [57, 11, 2]

τh 0.0092
(

14
104 − 17

103

)
Day−1 [41, 26]

τmaxq τh×q
(

14
104 − 17

103

)
× q Day−1 Estimated

η 0.5 (0.1−1) Dimensionless [41]

µh
( 1

65×365

) ( 1
80×365 −

1
58×365

)
Day−1 [41, 26]

δh 0.0003454
(
1×10−15−4.1×10−4) Day−1 [41, 26]

βhm
22
103

(
1

102 − 27
102

)
Dimensionless [58, 57]

βmh
48
102

(
72
103 − 64

102

)
Dimensionless [58, 57]

εmax 0.5 (0.1−1) Day−1 [58, 57]

εmin 1×10−2 (0−0.1) Day−1 [58, 57]

b 0.250 (0≤ b≤ 1) Dimensionless Variable

p 0.250 (0≤ p≤ 1) Dimensionless Variable

q 0.250 (0≤ q≤ 1) Dimensionless Variable

πmax
104

14

(
104

21 −
104

14

)
Day−1 [57, 58]

πmin
10
14

(10
21 −

10
14

)
Day−1 [57, 58]

φ 0.343 (0.333−1) Day−1 [41]

µm
1

18

( 1
21 −

1
3

)
Day−1 [41, 26]

µmaxb µm×b
( 1

21 −
1
3

)
× b Day−1 Estimated

µmax p µm× p
( 1

21 −
1
3

)
× p Day−1 Estimated

a0,a1, a2 0.03 0.01−0.05 Dimensionless Assumed

a3 0.01 0.00−0.02 Dimensionless Assumed

{A1,A2,A3} ∈ A 0.25 (0≤ A≤ 1) Dimensionless Variable

Table 3: Parameter values of the malaria model.
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Parameter b p q

Sensitivity Index −0.38807 −0.61054 −0.06805

Table 4: Sensitivity indices of the intervention parameters.
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Figure 2: Reproduction number R0 of malaria model (3), with respect to (a) Proportion of bed-net usage

(b); (b) Proportion of residual spray (p); and (c) Proportion of treatment (q). The parameter values used

are given in Table 3 except for δh = 0.0003454×103, to facilitate R0 = 1.41.

that increase in the proportion of bed-net usage (b) and its level of awareness (A1) decrease the

reproduction number, while Figure 3(b) show that increase in the proportion of residual spray

(p) and its level of awareness (A2) decrease the reproduction number. It must be noted that in

Figure 3(a) and Figure 3(b), as control interventions with their level of awareness converge to
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one, the reproduction number reduces below unity. This implies that, if 100% of the population

are aware and uses either of the control interventions strategies (bed-net or residual spray),

malaria is expected to be eradicated in the population in the absence of backward bifurcation

phenomenon. Figure 3(c) show that increase in the proportion of treatment (q) and its level of

awareness (A3) decreases the reproduction number. However, unlike the result from Figure 3(a)

and Figure 3(b), as the proportion of treatment (q) and its level of awareness (A3) converges to

one, the reproduction number fails to reduce below unity. This means that, even if all infected

individuals are treated for malaria, the disease will not be eliminated in the population. This

result is expected since the model allows reinfection of recovered humans due to the loss of

immunity.

4.2. Impact of interventions and awareness on infected population. We examine the be-

havior of infected human and mosquito populations under different scenarios to predict the

elimination of malaria in the population. Since malaria exposed individuals can transfer the

infection, we defined the total infected human population as the summation of exposed hu-

mans and infectious humans (Eh + Ih). Similarly, we considered the total infected mosquito

population as the summation of exposed mosquitoes and infectious mosquitoes (Em + Im). To

investigate the impact of control interventions and their level of awareness on the infected popu-

lation, we simulate model (3) under three different scenarios. For the first scenario, we simulate

the impact of single control intervention such as bed-net usage only, residual spray only, and

treatment only. For the second scenario, we simulate the impact of double control interven-

tion such as (bed-net usage and residual spray) only, (bed-net usage and treatment) only, and

(residual spray and treatment) only. For the last scenario, we simulate the impact of all the

control interventions (bed-net usage, residual spray, and treatment) on the infected population.

Throughout the simulation, we assumed that the proportion of control interventions usage is

equivalent to their level of awareness since realistically the proportion of control intervention

usage is dependent on the level of awareness.

Figure 4 depicts the effect of single control interventions with their respective level of aware-

ness on the infected human and mosquito population. From Figure 4(a) and Figure 4(b), the
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Figure 3: Contour plot of the reproduction number R0 of malaria model (3), (a) varying proportion

of bed-net usage (b) with respect to level of bed-net usage awareness (A1); (b) varying proportion of

residual spray (p) with respect to level of residual spray awareness (A2); (c) varying proportion of

treatment (q) with respect to level of treatment awareness (A3). Parameter values used are given in

Table 3 except for δh = 0.0003454×103, to facilitate R0 = 1.41.

result shows that increase in bed-net usage and its level of awareness reduces the infected hu-

man and mosquito population respectively. Similarly, from Figure 4(c) and Figure 4(d) result

shows that increase in residual spray and its level of awareness reduces the infected human and

mosquito population respectively. In Figure 4(c) and Figure 4(d), it is obvious that residual

spray reduces the burden of malaria faster than bed-net usage. This supports the result from

the sensitivity analysis as presented in Table 4. From the result, it is noted that increasing the
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Figure 4: Simulations of the malaria model (3) showing the effects of intervention and respective to level

of awareness on the total infected human population (Eh + Ih) and total infected mosquito population

(Em + Im). (a,b) Bed-net usage only (p = q = A2 = A3 = 0); (c,d) residual spray only (b = q = A1 =

A3 = 0); and (e,f) treatment only (b = p = A1 = A2 = 0). The parameter values used are as given in

Table 3.
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Figure 5: Simulations of the malaria model (3) showing the effects of combined intervention and respec-

tive to level of awareness on the total infected human population (Eh + Ih) and total infected mosquito

population (Em + Im). (a,b) Bed-net usage and residual spray only (q = A3 = 0); (c,d) bed-net usage and

treatment only (p = A2 = 0); and (e,f) residual spray and treatment only (b = A1 = 0). The parameter

values used are as given in Table 3.



ASSESSING THE IMPACT OF CONTROL INTERVENTIONS AND AWARENESS ON MALARIA 25

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

(a)

0 200 400 600 800 1000 1200
0

500

1000

1500

2000

2500

3000

(b)

Figure 6: Simulations of the malaria model (3) showing the effects of all the intervention and respective

awareness on the total infected human population (Eh+ Ih) and total infected mosquito population (Em+

Im). The parameter values used are as given in Table 3

proportion of bed-net usage or residual spray to 100% will effectively reduce the burden of

malaria to the barest minimum. Since it is not realistic for the total human population to use a

single control strategy, we simulate the impact of double control interventions on the infected

population in Figure 5. We simulate the effect of treatment and its level of awareness on the

total infected human and mosquito population in Figure 4(e) and Figure 4(f) respectively. The

result shows that there is an insignificant effect of treatment on the total infected population.

This result is similar to the one in Figure 3(c). Since bed-net usage and residual spray are

preventive healthcare, the results from Figure 4 show that preventive healthcare is better than

treatment healthcare. Thus, to reduce the burden of malaria, it is important to facilitate the use

of preventive healthcare such as bed-net usage or residual spray among the populace.

In Figure 5 we simulate the effect of double control interventions with their respective level

of awareness on the infected human and mosquito population. Overall, the result shows that

combined control interventions reduce the total human and mosquito population faster than

the use of single control intervention. Particularly, it is obvious from Figure 5(a) and Figure

5(b) that a combination of bed-net usage and the residual spray reduces the burden of malaria

faster than any other double combined intervention. In Figure 6, we simulate the effect of all

the control interventions with their respective level of awareness on the infected human and
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mosquito population. It is noted that the result is alike to the one presented in Figure 5(a)

and Figure 5(b). Thus, it is recommended that awareness and proportion of bed-net usage

and residual spray should be priorities to mitigate the burden of malaria in the population. In

addition, it is recommended that the proportion of bed-net usage and residual spray should be

increased to at least 75% to eliminate malaria in the population.

5. CONCLUSIONS

Malaria is one of the deadliest diseases with highly challenging health issues in tropical re-

gions. It is highly endemic in Sub-Saharan Africa, especially in an improvised and low-hygiene

environment. Malaria is an infectious disease that is preventable, treatable, and curable in the

human population, thus, understanding the influence of mitigation strategies such as bed-net

usage, residual spray and treatment can help us inform public health policy. In this study, we

developed a deterministic model to investigate the dynamical features of malaria in the pop-

ulation, and we assessed the impacts of control interventions with their level of awareness to

effectively mitigate the burden of the disease. We obtained the malaria-free equilibrium and

the endemic equilibrium of the model. The malaria-free equilibrium is shown to be locally

asymptotically stable whenever the reproduction number R0 is less than unity, and unstable

otherwise. Epidemiologically, this result implies that malaria can be effectively controlled in

the population whenever the reproduction number is less than unity if the initial sub-populations

of the infected compartments of the model system (3) are small enough. In other words, malaria

can be effectively controlled in the population if the control strategies implemented can reduce

and maintain the reproduction number below unity. We obtained the endemic equilibrium of

the model, and the criteria for the existence of the phenomenon of bifurcation are investigated.

The model is said to undergo a backward bifurcation phenomenon when the critical value of

Rc
0 < R0 < 1. The existence of the backward bifurcation phenomenon suggests that reducing

reproduction number R0 below unity is not enough to eliminate malaria, thus, a combination of

control strategies may be needed to control the spread of malaria in the population. A sensitivity

analysis was performed to examine the effect of bed-net usage, residual spray, and treatment on

the reproduction number. The result shows that increase in any of the control interventions will

decrease the reproduction number. Furthermore, the result shows that residual spray is the most
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influential intervention in reducing the reproduction number as presented in Table 4. Following

this result, we simulate the effect of control interventions and their level of awareness on the in-

fected human and mosquito population, under three different scenarios. The overall result from

the numerical simulations is that combining bed-net usage and residual spray as a preventive

healthcare measure will reduce the burden of malaria faster. Particularly, results suggest that

awareness and proportion of bed-net usage and residual spray should be priorities and increased

to at least 75% for the possibilities of eliminating malaria. Thus, we recommend that malaria

control programs should focus on increasing bed-net usage to reduce the bite of humans by

an infected mosquito. In addition, the use of residual spray should be encouraged to reduce

the mosquito population. All these can be achieved by increasing awareness about preventive

care for malaria and increasing the distribution of bed-net and residual spray in regions where

malaria is endemic.
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