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Abstract: Dengue hemorrhagic fever (DHF) is a seasonal disease that has quickly spread throughout the world in the 

past few years. It is caused by the dengue virus that is transmitted by a biological vector in the form of mosquitoes. In 

DKI Jakarta, the capital of Indonesia, there were 970 DHF cases at the beginning of 2020, thus placing Jakarta in the 

red zone for the spread of DHF. Besides, DHF can emerge due to various weather and climate factors such as humidity, 

rainfall, and temperature. With a significant increase in the number of potentially fatal DHF cases in DKI Jakarta, 

preventing DHF outbreaks is recommended. This research aims to predict the number of DHF cases in DKI Jakarta 

using weather and DHF case data. Three machine learning models were employed to predict DHF case numbers: 

Elman neural network (ENN), long short-term memory (LSTM), and gated recurrent unit (GRU). ENNs have a 

simplified recurrent neural network (RNN) structure, LSTM is a modified RNN with long-range memory and an 

activation function for deciding which information should be retained or discarded, and GRUs are modified RNNs 

that are slightly simpler than LSTMs. These methods were implemented in three different data sets as follows: one 

with 90% training data and 10% testing data, another with 80% training data and 20% testing data, and finally, one 

with 70% training data and 30% testing data. A grid search is used to determine the best hyperparameter from all three 
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methods. This will determine the best model for predicting the number of DHF cases in DKI Jakarta (excluding 

Kepulauan Seribu Regency) according to the data used, RMSE values, and the simulation results. Based on these 

criteria, LSTM is better suited to predicting the number of DHF cases than ENN or GRU in almost every district in 

DKI Jakarta. 

Keywords: dengue hemorrhagic fever; machine learning; recurrent neural network; elman neural network; long short-

term memory; gated recurrent unit. 

2010 AMS Subject Classification: 68T05, 92B99. 

 

1. INTRODUCTION 

Dengue hemorrhagic fever (DHF) is a disease that is transmitted by mosquitoes. Over the past 

few years, DHF has rapidly spread throughout the world [1]. Every year, around 400 million people 

are infected by this climate-sensitive disease, among whom 22,000 die. According to CDC reports 

[2], this disease is common in more than 100 countries, including Indonesia, where cases are either 

“frequent or continuous.” Indonesia has the second highest number of cases out of the 30 countries 

where DHF is endemic [3]. The sheer number of DHF incidents has placed DKI Jakarta, the capital 

of Indonesia, in the red zone of DHF [4]. 

DHF is caused by the dengue virus and spread by the Aedes aegypti mosquito. The dengue virus 

is commonly found in tropical and subtropical regions, especially cities and suburbs. Indonesia 

has a tropical climate that is conducive to the growth of mosquito vectors [4]. In severe cases, DHF 

can cause a decrease in red blood cell (thrombocyte) count, the loss of blood plasma, and severe 

hemorrhages that can be fatal. DHF emerges due to various environmental factors such as humidity, 

rainfall, temperature, and so on. For example, increasing temperature and precipitation make Aedes 

larvae mature into pupae more rapidly, thereby increasing the Aedes population. On the other hand, 

a temperature above 35°C combined with low humidity will decrease the Aedes population [5]. 

The Indonesian government has made several efforts to reduce the number of DHF incidents in 

Indonesia, such as controlling the insects that act as vectors through fumigation, use of bio-

larvicides, etc. The budget dedicated to DHF control is a key issue for the government. If an 
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outbreak is known through accurate prediction of case numbers, the budget can then be safely 

controlled. 

Certain research that predicted DHF cases by considering climate factors were published in the 

past, including the results of developing a DHF prediction model in China using long short-term 

memory (LSTM) by calculating measurements based on related weather variables [5]. In addition, 

there is a DHF prediction model in Yogyakarta that employs climate and surveillance data as 

predictor variables [6]. A neural network is used to predict the number of DHF sufferers in 

Semarang [7]. An extreme learning machine in the form of a neural network with exactly one  

hidden layer is used to predict the number of DHF cases in Tembalang Municipality, Semarang 

using weather factors [8]. 

Murphy [9] defines machine learning as a method that can automatically recognize patterns in 

data and then use them to predict new data. In machine learning, predictive analysis can be 

conducted with a supervised learning method whose task is to provide predictions by extracting 

the necessary knowledge or information from the processed data [10]. The neural network is a 

machine learning model that attempts to replicate the nervous system to simulate learning 

mechanisms in living things. In its application, the simple neural network (NN) model has a limited 

ability in certain complex problems such as mining time-series data, text data, and audio data [11]. 

One type of NN is the recurrent neural network (RNN) which is a neural network that contains at 

least one loop connection, so that activation is applied repeatedly on the loop, and that uses time-

series input data. The simplest RNN architecture, commonly used by researchers for making 

predictions, is the Elman Neural Network (ENN) [12]. ENNs are often used for predicting time-

series data. The ENN is employed to predict wind speeds [13] and [14] implemented ENNs to 

predict the optimum fermentation time for black tea. 

One of the modified versions of the RNN is Long Short-Term Memory (LSTM) [15]. This 

model is classified in deep learning based on the complexity of its architecture [16] and can solve 

problems beyond the capability of a standard RNN [15]. It has been proven to be capable of 

determining influenza and foot-and-mouth disease trends among others [17]. 
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Cho et al. [18] proposed research on a Gated Recurrent Unit (GRU) that could adaptively 

remember and forget information based on input data obtained from gates. GRU is a modified 

RNN that is slightly simpler than LSTM and offers comparable performance. It is significantly 

faster to compute across multiple datasets. However, it is not certain which one is better [19]. The 

main difference between RNN and both LSTM and GRU is that the architecture of the former is 

supported by the gating role of the hidden state. These three machine learning methods are part of 

predictive analysis that employs supervised learning methods that can predict knowledge or 

information required from scientific data [10]. 

Based on the urgency for predicting the number of DHF cases accurately and the suspicion of 

a relation between weather factors and the widespread incidence of DHF, this research employs 

several machine learning methods, namely ENN, GRU, and LSTM, to predict DHF incidents based 

on weather and DHF incidence data.  

The data used in this research originates from DHF incidents in DKI Jakarta (excluding 

Kepulauan Seribu Regency) obtained from the Epidemiology Surveillance section of the Health 

Ministry of DKI Jakarta [20] and we obtain a weather data from the Meteorology, Climatology 

and Geophysics Board (BMKG). It includes temperature, rainfall, and humidity data. 

The paper is categorized as follows: Section 2 discusses the methods used, section 3 covers the 

results and discussion, and finally, section 4 provides a conclusion. 

 

2. METHODS 

2.1. Elman Neural Network 

The basic concept of the Elman neural network (ENN) model was developed by Jeffrey L. 

Elman in 1990 [21]. An ENN has one of each input, hidden, output, and context layers. The context 

layer in an ENN stores the results of the previous calculation in the hidden layer. These results 

form the memory in the network. This memory is required for implicitly representing the time 

required for calculation, thereby yielding a better prediction result. The diagram of an ENN is as 

follows:  
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FIGURE 1. ENN Architecture ([21] has been reprocessed) 

According to Figure 1, there is a connection between every neuron in the hidden layer and every 

neuron in the context layer, and vice versa. A neuron in the context layer stores the result of the  

calculation from one neuron in the hidden layer. Therefore, the weight of each connection from 

the hidden layer to the context layer remains one during the learning process. The context layer 

does not conduct an activation process on the calculation results from the hidden layer and only 

propagates from the input layer to the hidden layer. 

Based on Figure 1., an ENN has an input layer that consists of 𝑚 neurons, where 𝑥𝑖(𝑡), 𝑖 ∈

{1,2, … , 𝑚} denotes the ith element of the tth input pattern vector. The hidden layer consists of 𝑛 

neurons, where ℎ𝑖(𝑡), 𝑖 ∈ {1,2, … , 𝑛} denotes the ith element from the activation result vector in 

the hidden layer. The output layer consists of 𝑞 neurons, where 𝑦𝑖(𝑡), 𝑖 ∈ {1,2, … , 𝑞} denotes the 

ith element from the activation result vector in the output layer, and the context layer has the same 

number of neurons 𝑛  as the hidden layer. The notation 𝑥𝑐(𝑡) denotes a vector that stores the 

activation results of the hidden layer on the calculation of the (𝑡 − 1)th input pattern. The notations 

𝑊ℎ𝑖, 𝑊ℎ𝑐, and 𝑊𝑜ℎ denote the connection weight sets from the input layer to the hidden layer, 

the context layer to the hidden layer, and the hidden layer to the output layer respectively. 

Given an input pattern 𝒙(𝑡) ∈ 𝑅𝑚×1 and a context layer vector 𝒙𝒄(𝑡) ∈ 𝑅𝑛×1, the input network 

in the hidden layer 𝒏𝒆𝒕𝒉(𝑡) ∈ 𝑅𝑛×1 is defined as follows: 

 

(1) 𝒏𝒆𝒕𝒉(𝑡) = 𝑊ℎ𝑖(𝑡)𝒙(𝑡) + 𝑊ℎ𝑐(𝑡)𝒙𝒄(𝑡),  

where 𝑊ℎ𝑖 ∈ 𝑅𝑛×𝑚, 𝑊ℎ𝑐 ∈ 𝑅𝑛×𝑛. 
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The input network on the hidden layer is then activated with the activation function 𝑓𝑎𝑐𝑡. Based 

on the experiments from [22], the activation function on the hidden layer of ENN is the sigmoid 

function. The activation result on the hidden layer is the vector 𝒉(𝑡) ∈ 𝑅𝑛×1, where: 

 

(2) ℎ𝑖(𝑡) = 𝑓𝑎𝑐𝑡 (𝑛𝑒𝑡𝑖
ℎ(𝑡)) , ∀𝑖 ∈ {1,2, … , 𝑛}.  

The activation results on the hidden layer, 𝒉(𝑡), are then propagated to the output layer to form 

an output network, 𝒏𝒆𝒕𝒐(𝑡) ∈ 𝑅𝑞×1, which is defined as follows: 

 

(3) 𝒏𝒆𝒕𝒐(𝑡) = 𝑊𝑜ℎ(𝑡)𝒉(𝑡),  

 

with 𝑊𝑜ℎ ∈ 𝑅𝑞×𝑛. In addition, 𝒉(𝑡) is stored in the context layer, therefore: 

 

(4) 𝒙𝒄(𝑡 + 1) = 𝒉(𝑡).  

 

In prediction problems, the best activation function for the output layer of an ENN is the identity 

function [22]. Consequently, the output of the ENN model, 𝒚(𝑡), can be stated as follows: 

 

(5) 𝒚(𝑡) = 𝒏𝒆𝒕𝒐(𝑡).  

 

In this research, the learning process on the ENN uses the Mean Sum Squared Error (RMSE) 

function:  

(6) 𝐸(𝑡) = RMSE = √
∑ (𝑦𝑑𝑘

(𝑡) − 𝑦𝑘(𝑡))
2𝑞

𝑘=1

𝑞
,  

 

where 𝒚(𝑡) denotes the output of the ENN on the 𝑡𝑡ℎ input pattern, and 𝒚𝒅(𝑡) denotes the target 

value on the 𝑡𝑡ℎ input pattern. 

Changing the weight during the learning process of an ENN occurs on the weight of the 

connection from the input layer to the hidden layer, denoted by 𝑊ℎ𝑖 ∈ 𝑅𝑛×𝑚, the weight of the 

connection from the context layer to the hidden layer, denoted by 𝑊ℎ𝑐 ∈ 𝑅𝑛×𝑛, and the weight of 

the connection from the hidden layer to the output layer, denoted by 𝑊𝑜ℎ ∈ 𝑅𝑞×𝑛. Weight changes 

𝑊ℎ𝑖, 𝑊ℎ𝑐, and 𝑊𝑜ℎ are calculated by counting the gradient of the error function 𝐸(𝑡) with respect 

to 𝑊ℎ𝑖, 𝑊ℎ𝑐, and 𝑊𝑜ℎ respectively, which are determined as follows: 
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(7a) 𝑊𝑜ℎ(𝑡 + 1) = 𝑊𝑜ℎ(𝑡) − 𝜂 ∙ (𝒚(𝑡) − 𝒚𝒅(𝑡)) ∙ 𝒉𝑇(𝑡),  

(7b) 𝑊ℎ𝑖(𝑡 + 1) = 𝑊ℎ𝑖(𝑡) − 𝜂 ∙ (𝛿𝑓𝑎𝑐𝑡
′ (𝑡) ⊙ (𝑊𝑜ℎ(𝑡))

𝑇

∙ (𝒚(𝑡) − 𝒚𝒅(𝑡))) ∙ 𝒙𝑇(𝑡),  

(7c) 𝑊ℎ𝑐(𝑡 + 1) = 𝑊ℎ𝑐(𝑡) − 𝜂 ∙ (𝛿𝑓𝑎𝑐𝑡
′ (𝑡) ⊙ (𝑊𝑜ℎ(𝑡))

𝑇

∙ (𝒚(𝑡) − 𝒚𝒅(𝑡))) ∙ 𝒙𝑐
𝑇(𝑡),  

 

where the constant 𝜂 is the learning rate, 𝛿𝑓𝑎𝑐𝑡
′ (𝑡) = [𝑓𝑎𝑐𝑡

′ (𝑛𝑒𝑡1
ℎ(𝑡)) ⋯ 𝑓𝑎𝑐𝑡

′ (𝑛𝑒𝑡𝑛
ℎ(𝑡)) ]𝑇, and ⊙ 

denotes a Hadamard operation. The weight of the connection between the hidden and context 

layers is always one; the weight of the connection from the context layer to itself is always 𝛼.  

The number of input patterns that are processed before changing the weight is called the batch 

size. Obtaining a model with a sufficiently small error function 𝐸(𝑡) usually requires a learning 

process in which the entire input pattern is undertaken more than once. The number of times a 

learning process is repeated in the entire input pattern is called an epoch. The combination of batch 

size and epoch determines how much the weight changes during a learning process. 

2.2. Gated Recurrent Unit 

A Gated Recurrent Unit (GRU) consists of feed-forward and back-propagation processes. The 

feed-forward process in a GRU has four gate functions (update gate, reset gate, candidate hidden 

state, and hidden state as outputs) which continue the error calculation using a loss function. The 

weight parameter that minimizes the loss function during the training stage is determined during 

back-propagation [23]. The loss/error function used in this research is Root Mean Squared Error 

(RMSE). It is employed to measure the difference between the predicted and actual values of a 

model. According to [24], there are several optimization algorithms generally employed to reduce 

the loss function in a neural network, such as Stochastic Gradient Descent (SGD); its derivatives 

include Adagrad, RMSProp, AdaDelta, and Adam. This study uses the Adaptive Moment 

Estimation (Adam) optimization method as shown in [25]. 
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FIGURE 2. GRU Architecture 

 

Figure 2 shows the architecture of a GRU that illustrates the feed-forward process which begins 

with an input process for the update gate with an input vector on timestep 𝑡, denoted by 𝐱(𝑡) ∈

𝑅𝑛×1,  where 𝑛 is the number of features and input vectors of the hidden state from timestep 𝑡 −

1,, where 𝒉(𝑡 − 1) ∈ 𝑅𝑑×1. The output of this stage is provided by a layer that is fully connected 

to the sigmoid function as the activation function, and the output vector is the hidden state 𝒉(𝑡) ∈

𝑅𝑑×1 on timestep 𝑡, where 𝑡 = 1,2, . . . , 𝑛.  

The update gate 𝒛(𝑡) aims to determine how much information from the previous timestep 

must be carried into the next timestep as follows:  

(8) 𝒛(𝑡) = 𝜎(𝑊𝒙𝒛 𝐱(𝑡) + 𝑊𝒉𝒛𝒉(𝑡 − 1),  

 

where 𝑊𝒙𝒛 ∈ 𝑅𝑑×𝑛 and 𝑊𝒉𝒛 ∈ 𝑅𝑑×𝑑  are the weight matrices of 𝐱(𝑡) and 𝒉(𝑡 − 1) respectively 

on the update gate, and 𝝈 is a sigmoid activation function. When the vector 𝒛(𝑡) approaches one, 

the model will store a significant amount of information in the previous timestep; when the 

vector 𝒛(𝑡) approaches zero, the model will ignore information in the previous timestep. The reset 

gate 𝒓(𝑡) decides how much information from the past must be ignored. The value of 𝒓(𝑡) is 

determined as follows: 
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(9) 𝒓(𝑡) = 𝝈 (𝑊𝒙𝒓𝐱(𝑡) + 𝑊𝒉𝒓𝒉(𝑡 − 1)),  

 

where 𝑊𝒙𝒓 ∈ 𝑅𝑑×𝑛 and 𝑊ℎ𝑟 ∈ 𝑅𝑑×𝑑 are the weight matrices of 𝐱(𝑡) and 𝒉(𝑡 − 1)  respectively 

on the reset gate. The candidate hidden state 𝒉(𝑡)′ uses the results of the reset gate to store relevant 

information from the past. The value of 𝒉(𝑡)′ is determined as follows: 

 

(10) 𝒉(𝑡)′ = 𝑡𝑎𝑛ℎ(𝑊𝑥ℎ 𝐱(𝑡) + (𝑊ℎℎ𝒉(𝑡 − 1))⨀ 𝒓(𝑡)),  

 

where 𝑊𝒙𝒓 ∈ 𝑅𝑑×𝑛 and 𝑊ℎ𝑟 ∈ 𝑅𝑑×𝑑 are the weight matrices of 𝐱(𝑡) and 𝒉(𝑡 − 1)  respectively 

on the candidate hidden state, ⊙ denotes a Hadamard product [26], and tanh is the activation 

function. When 𝒓(𝑡)  approaches one, 𝒉(𝑡)′  stores a temporary output value; when 

𝒓(𝑡) approaches zero, 𝒉(𝑡) tends to only accept or process the input. Finally, the hidden state 𝒉(𝑡)′ 

stores the output on timestep t to pass to the next GRU. This process updates the output value on 

the new hidden state (𝒉(𝑡)) from the previous hidden state (𝒉(𝑡 − 1)) and stores the results in 

𝒉(𝑡)′. The output on timestep t is determined by 𝒉(𝑡) as follows: 

(11) 𝒉(𝑡) =  𝒛(𝑡)⨀𝒉(𝑡 − 1) + (𝟏 − 𝒛(𝑡))⨀𝒉(𝑡)′.  

 

Every time 𝒛(𝑡) approaches one, the information for the previous hidden state 𝒉(𝑡 − 1) is 

retained. However, when 𝒛(𝑡) approaches zero, 𝒉(𝑡) will approach 𝒉(𝑡)′, indicating a significant 

change in the output value at timestep 𝑡 . This allows the GRU to overcome long-term 

dependencies for a time series in the long term, accelerating the computation process in a network 

[19].  

After obtaining output 𝒉(𝑡), calculate the loss function on timestep t as follows: 

 

(12) 𝐸(𝑡) =
1

2
(𝒚(𝑡) − 𝒉(𝑡))

𝟐
.  

In the equation above, 𝒉(𝑡) is the predicted output and 𝒚(𝑡) is the actual output. After the feed-

forward phase, commence back-propagation to find the gradient error on the weight of the model 

and then fix the weight. The GRU and LSTM models use the Adam method for weight change 

optimization; therefore, the discussion of back-propagation for GRU can be found in the 

explanation of the LSTM model, with the only difference being found in their weight values. 
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2.3. Long-Short-Term Memory 

The LSTM model is derived from a modified RNN model with long-term memory. It was 

established by [15]. The difference between the LSTM and RNN models is found in the use of a 

combination of activation functions that determines which information should be stored or 

discarded. This LSTM model has three gate functions which are denoted by input gate 𝑖𝑡, forget 

gate 𝑓𝑡, and output gate 𝑜𝑡. Below is a diagram of LSTM architecture and its related mathematical 

equations [27]: 

 

FIGURE 3. LSTM Architecture 

(Source: [27] has been reprocessed) 

 

(13a) 𝑖𝑡 = 𝜎(𝑊𝑖. 𝑥𝑡 + 𝑈𝑖 . ℎ𝑡−1 + 𝑏𝑖),  

(13b) 𝑓𝑡 = 𝜎(𝑊𝑓 . 𝑥𝑡 + 𝑈𝑓 . ℎ𝑡−1 + 𝑏𝑓),  

(13c) 𝑜𝑡 = 𝜎(𝑊𝑜. 𝑥𝑡 + 𝑈𝑜 . ℎ𝑡−1 + 𝑏𝑜),  

(13d) �̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐̃. 𝑥𝑡 + 𝑈𝑐̃. ℎ𝑡−1 + 𝑏𝑐̃),  

(13e) 𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ �̃�𝑡,  

(13f) ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡).  

In the series of equations above, 𝑖𝑡  is the input gate variable at time t, 𝑓𝑡  is the forget gate 

variable at time t, 𝑜𝑡 is the output gate variable at time t, 𝑐𝑡 is the cell state variable at time t, ℎ𝑡 is 

the hidden state variable at time t, 𝑊𝑖 is the weight variable on the input gate, 𝑊𝑓 is the weight 

variable on the forget gate, 𝑊𝑜 is the weight variable on the output gate, 𝑊𝑐̃ is the weight variable 

on the cell state, 𝑥𝑡 is an input variable, 𝑦𝑡 is a target variable, 𝑈𝑖 is the hidden state weight variable 
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on the input gate, 𝑈𝑓 is the weight variable of the hidden state on the forget gate, 𝑈𝑐̃ is the weight 

variable of the hidden state on the cell state, 𝑏𝑜 is the weight variable bias on the output gate, 𝑏𝑓 is 

the weight variable bias on the forget gate, 𝑏𝑖 is the weight variable bias on the input gate, 𝑏𝑐̃ is 

the weight variable bias on the cell state, and 𝑈𝑜 is the hidden state weight variable on the output 

gate [10]. 

As with GRU, LSTM begins with a feed-forward process and ends with back-propagation. The 

inputs for a LSTM are 𝒙(𝑡) = [𝑥1(𝑡) 𝑥2(𝑡) ⋯  𝑥𝑛(𝑡) ]𝑇 , 𝑊 = [𝑊𝑐̃ 𝑊𝑖 𝑊𝑓  𝑊𝑜 ]
𝑇

, 𝑈 =

[𝑈𝑐̃ 𝑈𝑖 𝑈𝑓  𝑈𝑜 ]
𝑇

, 𝒃 = [𝑏𝑐̃ 𝑏𝑖 𝑏𝑓  𝑏𝑜 ]
𝑇

, and 𝐻(𝑡) = [ℎ1(𝑡) ℎ2(𝑡) ⋯ ℎ𝑚(𝑡) ]𝑇 . The feed-forward 

phase counts forward from the first hidden state to the last hidden state by using equations (13a) 

through (13f) for every timestep t. With regard to GRU, this stage aims to obtain the error value 

from feed-forward at each tth timestep to obtain the total error as shown below. 

 

(14) 𝐸(𝑡𝑜𝑡𝑎𝑙) = 𝐸(1) + 𝐸(2)+. . . +𝐸(𝑛).  

 

The back-propagation phase aims to obtain a gradient change for every weight in the LSTM 

model for use in updating the weight in the LSTM model. This model has 12 weights 

( 𝑊𝑖, 𝑊𝑓 , 𝑊𝑜 , 𝑊𝑐̃, 𝑈𝑖, 𝑈𝑓 , 𝑈𝑜 , 𝑈𝑐̃, 𝑏𝑖, 𝑏𝑓 , 𝑏𝑜 , 𝑏𝑐̃) from which the error change gradient must be 

determined, whereas the GRU model requires six error change gradients 

(𝑊𝒙𝒛, 𝑊𝒉𝒛, 𝑊𝒙𝒉, 𝑊ℎℎ , 𝑊𝒙𝒓, 𝑊ℎ𝑟).  These gradients are obtained from a partial derivative of 𝐸(𝑡) 

on each weight for every value of t = 1,2, …n.. Refer to [11] for the rules of differential chains for 

calculating the gradients of error functions. 

As with GRU, the Adam optimization method for weight changes will be used. Adam is a 

stochastic optimization method that conceals the drawbacks of the Stochastic Gradient Descent 

(SGD) optimization method, that has drawbacks in adaptive learning and momentum. The 

equations of the Adam optimization are as follows: [25].  

(15a) 𝜃𝑡 = 𝜃𝑡−1 − 𝛼.
𝑚�̂�

√𝑉�̂� + 𝜖
 ,  

(15b) 𝑔𝑡 = ∇𝜃𝑓𝑡(𝜃𝑡−1),  
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(15c) 𝑚�̂� =
𝑚𝑡

(1 − 𝛽1
𝑡)

 ,  

(15d) 𝑣�̂� =
𝑣𝑡

(1 − 𝛽2
𝑡)

,  

(15e) 𝑚𝑡 = 𝛽1. 𝑚𝑡−1 + (1 − 𝛽1). 𝑔𝑡,  

(15f) 𝑣𝑡 = 𝛽2. 𝑣𝑡−1 + (1 − 𝛽2). 𝑔𝑡
2.  

Here, 𝑚𝑡 is the second bias variable, 𝑣𝑡 is the first bias variable, 𝑣�̂� is the fixed first bias variable, 

𝑚�̂� is the fixed second bias variable, 𝑔𝑡 is the loss function gradient on  𝜃𝑡−1,  𝜃𝑡 is the weight on 

the tth epoch, 𝑓(𝜃) is a stochastic function with parameter 𝜃, 𝛽1 is the first momentum variable, 𝛼 

is the learning rate variable, and 𝛽2  is the second momentum variable. In this research, the 

parameter values used are the same as those proposed by [25] for machine learning problems, that 

is, 𝛼 = 0,001, 𝛽1 = 0,9,  𝛽2 = 0,999, and 𝜖 = 10−8.  𝛽1
𝑡,  and 𝛽2

𝑡  are the notation for 𝛽1 and 𝛽2 

respectively to the power of 𝑡, with the initial parameter values of 𝑚0 = 0 and  𝑣0 = 0. 

Suppose the gradients of the 12 weights above were obtained. Then, continue the process using 

Adam to obtain new weights that minimize the error. For example, the weight gradient obtained 

is on weight 𝑊𝑜 , that is, 𝛿𝑊𝑜; according to the Adam method, it is calculated as follows: 

 

(16a) 𝑚1 = 𝛽1. 𝑚0 + (1 − 𝛽1). 𝛿𝑊𝑜,  

(16b) 𝑣1 = 𝛽2. 𝑣0 + (1 − 𝛽2). (𝛿𝑊𝑜)2,  

(16c)  �̂�1 =
𝑚1

(1 − 𝛽1
1)

,  

(16d) 𝑣1 =
𝑣1

(1 − 𝛽2
1)

,  

(16e) 𝑊𝑜𝑁𝐸𝑊
= 𝑊𝑜 − 𝛼.

𝑚1̂

√𝑣1 + 𝜖
.  

Repeat this process for the remaining 11 weights. The feed-forward and back-propagation 

processes must be repeated until they reach the desired level of accuracy. For GRU and LSTM, 

the tanh activation function is used and is written as follows: 

(17) 𝑡𝑎𝑛ℎ (𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
, 𝑧 ∈ 𝑅, −1 < ℎ(𝑧) < 1.  
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Both methods also use the sigmoid activation function as follows: 

 

(18) 𝛷(𝑧) =
1

1 + 𝑒−𝑧
=

𝑒𝑧

𝑒𝑧 + 1
, 𝑧 ∈ 𝑅, 0 < 𝛷(𝑧) < 1.  

 

For GRU and LSTM, the loss function uses RMSE as stated in equation (6). 

 

3. RESULTS AND DISCUSSION 

The data used is DHF incidents data from DKI Jakarta, excluding Kepulauan Seribu Regency. 

Moreover, daily weather data was utilized: specifically, the total rainfall, average relative 

humidity, and average air temperature from weather stations in Cengkareng (Jakarta Barat), 

Kemayoran (Jakarta Pusat), Pondok Betung (Jakarta Selatan), Halim (Jakarta Timur), and Tanjung 

Priok (Jakarta Utara). The data is taken from daily weather samples from January 2009 to 

September 2017. DHF incidents data is measured from the number of infected patients [28].  

The implementation process begins with pre-processing of DHF incidents and weather data. It 

consists of mean imputation, conversion of daily data to weekly data, development of input pattern 

and target data, and data normalization. Mean imputation on weather data is only necessary due to 

the presence of empty or unusual (outlier) data. The outliers in question have a value of -999 or 

8888 and are replaced with means from other data that are neither empty nor outliers. Then, the 

results of the mean imputation are converted from daily data to weekly data to reduce complex 

patterns in daily data, thereby improving the model’s performance in making predictions [29]. 

DHF incidents and rainfall data conversion involves the addition of data for seven days; converting 

average air temperature and humidity data involves the calculation of a seven-day average for the 

said data. The data from the results of imputation and conversion consists of 455 weekly 

observations. This data is then arranged in the form of input patterns and target vectors. 

Each input pattern, as a predictor variable, consists of a DHF incidents value, a rainfall value, 

an average air temperature value, and an average humidity value, while each target vector is a DHF 

incidents value. Time lag analysis was performed to determine the cross-correlation value between 

the number of weekly DHF incidents and predictor variables in the range of one to eight weeks 
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earlier based on the mosquito life cycle [30]. The time lag between predictor variables with weekly 

case totals is determined from the highest correlation value as performed by [31]. The linear 

correlation of two types of data with 𝑁 observation values, such as 𝒘 =  [𝑤(0), 𝑤(1), … , 𝑤(𝑁 −

1)]𝑇  and 𝒉 =  ⌈ℎ(0), ℎ(1), … , ℎ(𝑁 − 1)⌉𝑇 , is measured using linear correlation coefficients as 

follows [31]: 

(19) 𝝆 =

1
𝑁

∑ (𝑤(𝑖) − �̅�) ∙ (ℎ(𝑖) − ℎ̅)𝑁−1
𝑖=0

√(
1
𝑁

∑ (𝑤(𝑖) − �̅�)2𝑁−1
𝑖=0 ) ∙ (

1
𝑁

∑ (ℎ(𝑖) − ℎ̅)
2𝑁−1

𝑖=0 )

,  

where 𝜌 is the linear correlation coefficient, �̅� =
1

𝑁
∑ 𝑤(𝑖)𝑁−1

𝑖=0  and ℎ̅ =
1

𝑁
∑ ℎ(𝑖).  𝑁−1

𝑖=0 Based on the 

results of the correlation coefficient calculations, lag is chosen based on the highest absolute value 

as shown in Table 1 below. 

 

TABLE 1. Results of Lag Selection based on Linear Correlation 

Lag Value of Cumulative DHF incidents with Predictor Variables 

Regency 
Avg. 

Temperature 
Avg. Rainfall Avg. Humidity 

Weekly 

Dengue Cases  

East Jakarta 8 weeks 7 weeks 8 weeks 1 week 

West Jakarta 8 weeks 7 weeks 7 weeks 1 week 

Central Jakarta 8 weeks 8 weeks 7 weeks 1 week 

South Jakarta 5 weeks 7 weeks 6 weeks 1 week 

North Jakarta 1 week 6 weeks 8 weeks 2 weeks 

 

Normalization aims to place weather and case data in similar value intervals. If the value 

interval used has a sufficiently large difference, the learning process becomes overly sensitive to 

at least one data type and is unable to yield a good model [11]. The normalization function used is 

the z-score function which is as follows: 

 

(20) 𝑓𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑥𝑖) =
𝑥𝑖−𝜇

𝜎
,  

 

where 𝑓𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑥𝑖) denotes the z-score normalization function for a value 𝑥𝑖, 
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𝜇 =
1

𝑇
∑ 𝑥𝑖

𝑇
𝑖=1 , 𝜎 = √

1

𝑛
∑ (𝑥𝑖 − 𝜇)2𝑇

𝑖=1 , and 𝑇  denotes the amount of training data [32]. The 

opposite of normalization is called denormalization. 

 

Simulations were conducted in each region using three methods (ENN, GRU, and LSTM) with 

the number of epochs set at 300 and 400, each using the following training/testing data 

compositions: 70/30, 80/20, and 90/10. This was done to obtain the RMSE values for training and 

testing data as well as the denormalized DHF case data. RMSE for denormalized data is obtained 

for seeing the prediction results from all three methods on actual DHF case data. For the ENN 

method, the number of neurons in the hidden layer tested are 4, 8, 16, 32, and 64, and the learning 

rate is 0.001. For the LSTM method, the number of units is 400 and 450, learning rate is 0.001, 

drop-out parameters are 0.0 and 0.4, batch sizes are 32 and 64, and recurrent dropout parameters 

are 0.0 and 0.4. For the GRU method, the number of units is 300 and 350, learning rate is 0.001, 

drop-out parameters are 0.0 and 0.3, batch sizes are 32 and 64, and recurrent dropout rates are 0.0 

and 0.4. The results of the simulation based on the best RMSE of all experiments are obtained 

using a grid search as shown in Tables 1 to 6. The simulation results with 300 epochs on all three 

data compositions are shown in Tables 2 to 4 as follows:  

TABLE 2. RMSE for Each District with 300 Epochs and Data Composition of 70/30 

Method RMSE 
District 

West Jakarta South Jakarta East Jakarta North Jakarta Central Jakarta 

ENN 

Training 0.12062 0.12577 0.14100 0.13818 0.12904 

Testing 0.22722 0.29351 0.41531 0.30613 0.21945 

Denormalization 18.63241 17.02371 12.87465 8.57163 9.43615 

LSTM 

Training 0.08301807 0.053544 0.0429068 0.063513 0.0906752 

Testing 0.13725576 0.0640291 0.133380044 0.0954041 0.1297555 

Denormalization 17.568777 8.131705 13.33800444 5.0564175 8.4341123 

GRU 

Training  0.07720 0.04615 0.04347 0.06220 0.09549 

Testing 0.13508 0.12620 0.13382 0.17249 0.01685 

Denormalization 17.29084 16.02866 13.38213 8.99221 8.43778 
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TABLE 3. RMSE for Each District with 300 Epochs and Data Composition of 80/20 

Method RMSE 
District 

West Jakarta South Jakarta East Jakarta North Jakarta Central Jakarta 

ENN 

Training 0.12030 0.12817 0.14336 0.13711 0.12925 

Testing 0.26549 0.35603 0.48413 0.36957 0.24927 

Denormalization 21.77019 20.64969 15.49225 10.34791 10.71866 

LSTM 

Training 0.083018 0.053684 0.043906 0.063678 0.0834206 

Testing 0.157863 0.076464 0.156622 0.114218 0.146769 

Denormalization 20.20648 9.7109294 15.66229 6.053557 9.5400300 

GRU 

Training  0.07321 0.06115 0.04743 0.08234 0.09555 

Testing 0.18958 0.16032 0.16795 0.20974 0.10386 

Denormalization 24.26675 20.36085 16.79555 11.23732 6.75131 

TABLE 4 RMSE for Each District with 300 Epochs and Data Composition of 90/10 

Method RMSE 
District 

West Jakarta South Jakarta East Jakarta North Jakarta Central Jakarta 

ENN 

Training 0.10214 0.15476 0.07021 0.11326 0.10670 

Testing 0.07399 0.07349 0.08288 0.10172 0.06983 

Denormalization 9.47020 9.33289 8.28839 5.39110 4.53894 

LSTM 

Training 0.11498 0.07383 0.06500 0.07437 0.118713 

Testing 0.07910 0.04427 0.09570 0.10073 0.07369 

Denormalization 10.12496 5.62297 9.57013 5.33869 4.78626 

GRU 

Training  0.07325 0.07700 0.07750 0.07791 0.11135 

Testing 0.09209 0.08614 0.07800 0.10374 0.07160 

Denormalization 11.78858 10.94026 7.65996 5.49867 4.64978 

 

With 300 epochs, the RMSE on testing data with a composition of 90/10 for all three methods 

is less for every regency than that obtained using the 70/30 or 80/20 distributions of testing data. 

In other words, only two RMSEs were larger: those of North Jakarta using LSTM (0.10073) and 

of Central Jakarta using GRU (0.07160). The smallest RMSE obtained using both methods is for 

a 70/30 data composition. Therefore, in general, based on the data used and the RMSE values 

obtained, the simulation results of all three methods with 300 epochs and a 90/10 data composition 

yield the best prediction of DHF cases. 
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The results of the simulation using all three methods with 400 epochs with three data 

compositions are shown in Tables 5 to 7 below.  

 

TABLE 5. RMSE for Each District with 400 Epochs and Data Composition of 70/30 

Method RMSE 
District 

West Jakarta South Jakarta East Jakarta North Jakarta Central Jakarta 

ENN 

Training 0.11985 0.12379 0.13739 0.13600 0.12795 

Testing 0.22586 0.29657 0.42508 0.31161 0.21604 

Denormalization 18.52033 17.20094 13.17738 8.72498 9.28979 

LSTM 

Training 0.0830180 0.05354437 0.042906 0.063513 0.0909285 

Testing 0.134069 0.0689192 0.143492 0.124974 0.131562 

Denormalization 17.4677865 13.57540255 14.34929 6.623649 8.5515720 

GRU 

Training  0.07720 0.04604 0.04370 0.06220 0.07905 

Testing 0.13452 0.12604 0.13463 0.17360 0.12839 

Denormalization 17.21947 16.00729 13.46384 9.20116 8.34573 

 

TABLE 6. RMSE for Each District with 400 Epochs and Data Composition of 80/20 

Method RMSE 
District 

West Jakarta South Jakarta East Jakarta North Jakarta Central Jakarta 

ENN 

Training 0.11952 0.12628 0.14035 0.13516 0.13277 

Testing 0.26374 0.36189 0.49568 0.37687 0.24361 

Denormalization 21.62647 20.98975 15.86181 10.55234 10.47504 

LSTM 

Training 0.083096 0.053544 0.042930 0.063513 0.083450 

Testing 0.155666 0.116609 0.182761 0.144559 0.144300 

Denormalization 19.925341 14.80937 18.27261 7.661677 9.739536 

GRU 

Training  0.06204 0.06115 0.04722 0.08330 0.09659 

Testing 0.15551 0.16095 0.16820 0.20533 0.11440 

Denormalization 19.90546 20.44134 17.92285 10.88262 7.43662 
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TABLE 7. RMSE for Each District with 400 Epochs and Data Composition of 90/10 

Method RMSE 
District 

West Jakarta South Jakarta East Jakarta North Jakarta Central Jakarta 

ENN 

Training 0.10091 0.15069 0.06890 0.10714 0.10466 

Testing 0.07440 0.07059 0.08164 0.09939 0.07062 

Denormalization 9.52313 8.96552 8.16379 5.26742 4.59050 

LSTM 

Training 0.11462 0.07420 0.06523 0.07439 0.11930 

Testing 0.08288 0.05344 0.08830 0.12538 0.07061 

Denormalization 10.60690 6.78778 8.83084 6.64546 4.59004 

GRU 

Training  0,10014 0.00590 0.07681 0.09818 0.07943 

Testing 0.08464 0.06480 0.07996 0.10388 0.07160 

Denormalization 10.83509 8.23014 7.99608 5.73116 4.65422 

 

With 400 epochs, the RMSEs for testing data with a composition of 90/10 for all three methods 

were also less than those obtained through data testing with a 70/30 or 80/20 in nearly every district. 

The only exception was that of testing data for North Jakarta using LSTM (0.12538) with a 70/30 

data distribution. 

Based on the data used and the RMSE of testing data from Tables 1 to 6, it can generally be 

stated that all three methods with a 90/10 data composition yield a better DHF case prediction than 

with a 70/30 or 80/20 data composition. 

Through the comparison of the simulation results with two epochs, it can be said that changing 

the epoch from 300 to 400 has little effect on the smallest RMSE for ENN, which always has a 

90/10 data composition. However, it affects the smallest RMSE of the LSTM and GRU methods 

in one or two regions. Moreover, nearly every RMSE on the denormalized data is smallest for a 

90/10 data distribution with 300 or 400 epochs, except for that which was obtained using LSTM 

in North Jakarta (5.0564175), which is smallest for a 70/30 data distribution with 300 epochs. 

Generally, smaller RMSE values for a 90/10 data distribution for denormalized data are made 

possible by all three methods having learned enough from sufficiently fluctuating training data. 

This result shows that, in general, all three methods can predict DHF incidents data best with a 

90/10 data distribution. Therefore, the simulation below only includes this particular distribution. 

To explain the differences between the simulation results from all three methods, Figure 4 

shows the simulation results from data and all three methods with the same data distribution on 
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denormalized DHF case data for all districts. Since no significant differences are expected between 

the results of RMSE testing with 300 and 400 epochs, the results with 300 epochs are chosen for 

the sake of efficiency in each region in Figure 4 as follows: 

  

  

 

 

FIGURE 4. The Simulation Results from Data and all Three Methods with a 90/10 Data Distribution on 

Denormalized DHF Case Data for all Districts. 
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Figure 4 shows the simulation results from all three methods on testing data and DHF case data 

over the same period, where the DHF case data, ENN case data, GRU simulation results, and 

LSTM simulation results are marked in black, red, green, and blue respectively. The results of all 

these simulations are particularly good on training data, although the simulation data for GRU in 

South Jakarta strongly fluctuates on data testing. This is consistent with the results of the 

denormalized RMSE from GRU in South Jakarta, that has the highest value (10.94026) compared 

to denormalized RMSEs from ENN (9.33289) and LSTM (5.62297). 

Based on the simulation results, all three methods with a 90/10 data distribution can produce a 

sufficiently accurate simulation that can follow actual data movements, except for GRU in South 

Jakarta. With regard to the actual DHF case data, the highest number of cases occurs between the 

360th and 380th weeks; this sudden spike in cases is difficult for all three models to predict 

accurately. The information about this spike in cases can be included in training data with a 90/10 

data distribution. For a more detailed view of the simulation results for all three methods on testing 

data, Figure 5. shows the simulation results for all three methods on testing data with 300 epochs 

and with a 90/10 data distribution across all regencies. 
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FIGURE 5. The Simulation Results for All Three Methods on Testing Data with 300 Epochs and with a 90/10 

Data Distribution across All Districts 

For all graphs in Figure 5, the DHF incidents data graph begins from time 𝑡 –  1, while the graph 

for the simulation results for all three methods begins from time 𝑡 on testing data. The DHF case 

data, ENN case data, GRU simulation results, and LSTM simulation results are marked in black, 

red, green, and blue respectively. An interesting phenomenon occurs in the graph for South Jakarta, 

where the LSTM method with RMSE of 0.04427 can predict DHF case data better than the other 

two methods. This is shown in the graph for the results of the simulation using LSTM on testing 
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data, which follows DHF case data more closely than the graphs for the results of the simulation 

using the other two methods, where the RMSEs on testing data from the ENN and GRU methods 

are 0.07349 and 0.08614 respectively. The results of the simulation on the testing data in Central 

and West Jakarta show that all three methods can predict the data reasonably well. However, for 

the simulation results on testing data in East Jakarta, all three methods struggled somewhat in 

predicting a sudden spike in cases near the end of the data. Testing data for East Jakarta yielded 

RMSEs for ENN, LSTM, and GRU of 0.08288, 0.09570, and 0.07800 respectively. Moreover, the 

results of the simulation for all three methods on testing data for North Jakarta fluctuate more than 

those for testing data in all other regions, and all three methods struggle to predict the strongly 

fluctuating case data in North Jakarta. This is borne out by the RMSEs for testing data in North 

Jakarta, where the RMSEs for ENN, LSTM, and GRU are 0.10172, 0.10073, and 0.10374 

respectively. These values are greater than those obtained using the same methods for testing data 

in all other regions. Based on the results of RMSE values and the simulation on the testing data, 

the LSTM method can better predict DHF incident data in almost every district in DKI Jakarta. 

 

4. CONCLUSION 

This research used DHF incidents data in DKI Jakarta (excluding Kepulauan Seribu Regency) 

and weather data consisting of temperature, rainfall, and humidity for predicting DHF incidents 

using ENN, LSTM, and GRU. Based on the data used and the value of the RMSE, a data 

composition with 90% training data and 10% testing data yields a superior prediction than a data 

composition of either 80% training data and 20% testing data or 70% training data and 30% testing 

data. The RMSE value for all three methods is also smallest for a data composition with 90% 

training data and 10% testing data on denormalized data since all three methods have learned 

sufficiently from training data that has already included certain significant fluctuations. Based on 

the results of the DHF case simulation, all three methods with a data composition with 90% 

training data and 10% testing data tended to simulate the growth of DHF cases accurately, except 

for GRU in South Jakarta. Based on the results of the data testing simulation, it can be noted that 
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LSTM best predicts DHF case data when it is either slightly or strongly fluctuating compared to 

the other two methods. Hence, based on the DHF case and the weather data used, the simulation 

results show that LSTM is better suited to predicting DHF case data than ENN or GRU. 
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