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Abstract. The outbreak of COVID-19 caused by SARS-CoV-2 in Wuhan and other cities in China in 2019 has

become a global pandemic as declared by the World Health Organization (WHO) in the first quarter of 2020. The

delay in diagnosis, limited hospital resources and other treatment resources led to the rapid spread of COVID-

19. Optimal control dynamical models with time-dependent functions are very powerful mathematical modeling

tools to investigate the transmission of infectious diseases. In this study, we have introduced and studied a new

mathematical model for COVID-19 disease using personal protection, hospitalization and treatment of infectious

individuals with early diagnosis, hospitalization and treatment of infectious individuals with delayed diagnosis

and spraying of the environment as time-dependent control functions. This new non-autonomous deterministic

epidemic model for the 2019 coronavirus disease is an extension of a recently constructed and analyzed data-

driven non-optimal control model. We investigated three control strategies for our model problem. From the

numerical illustrations of the various control strategies, we realized that the third strategy, which captures all the

four time-dependent control functions, yields better results.
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1. INTRODUCTION

The recent outbreak of the deadly and highly infectious COVID-19 disease caused by

SARS-CoV-2 in Wuhan and other cities in China in 2019 has become a global pandemic

as declared by the World Health Organization (WHO) in the first quarter of 2020 [1]. The

most vulnerable people to develop serious complications from this dangerous disease are the

elderly with underlying medical problems. According to the WHO weekly epidemiological

update on COVID-19 released on September 14, 2021, around 4 million new cases were re-

ported worldwide, indicating the first major decline in weekly cases in over two months, see [2].

Recently, several peer-reviewed journal publishers such as Wiley, Elsevier, Hindawi,

Springer, Taylor & Francis have made open access to several literature for interested re-

searchers in the epidemiology of COVID-19 disease [3, 4, 5, 6, 7]. The use of mathematical

modeling tools and methods to understand the transmission dynamics and control of infectious

disease spread, which is usually called mathematical epidemiology, is widely studied and

explored [8, 9, 10]. Mathematical modeling of the recent outbreak of the deadly COVID-19

infectious disease has been explored by many authors in the literature, see eg. [11, 12, 13, 14].

An SEIR mathematical model for the transmission dynamics of COVID-19 disease with

data fitting, parameter estimations, and sensitivity analysis has been studied in [15] whiles a

deterministic model for COVID-19 that captures the effect of delayed diagnosis on the disease

transmission has also been presented, see [16]. In [17], the authors explore a statistical analysis

of COVID-19 disease data to estimate the time-delay adjusted risk for death from this deadly

virus in Wuhan, as well as for China excluding Wuhan. Their study suggested that effective

social distancing and movement restriction practices can help minimise disease transmission.

A real-time forecast phenomenological model has also been designed to study the transmission

pattern of COVID-19 infectious disease, see e.g., [18]. Also, an SEIR-type compartmental

modeling concept was applied to design a data-driven epidemic model that incorporates

governmental actions and individual behavioral reactions to the COVID-19 disease outbreak

in Wuhan [19]. The authors in [20] have developed and examined an SEIR deterministic

mathematical model to study the spread dynamics of COVID-19 infections in Indonesia. They
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presented global stability analysis for their COVID-19 epidemic model.

The author in [21] has introduced an SIRI COVID-19 epidemic mathematical model to ex-

plain how a hypothetical vaccine could affect the transmission dynamics of the disease by incor-

porating behavior changes of individuals in response to media coverage concerning the disease

spread. Some basic epidemiological modeling studies on the COVID-19 pandemic that give

useful insight into the dynamics of the infection rate and the recovered rate is presented in

[22]. A deterministic SEIR COVID-19 epidemic model with a nonlinear incidence rate that

captures government actions is proposed and studied [23]. A mathematical model based on epi-

demic modelling conceptual framework with data-driven dynamics is formulated and analysed

to explore the role of individuals and governmental reactions on the transmission dynamics of

COVID-19 [24]. An SEIR-type nonlinear COVID-19 epidemiological model that captures quar-

antine, asymptomatic, and isolation compartments in the modelling framework is constructed

and studied using standard incidence rate [25]. Using an SEIR compartmental modeling ap-

proach and the reported cases of COVID-19 in the Hubei province, the authors in [26] applied

the particle swarm optimization algorithm to estimate their model parameters.

Mathematical modelling of epidemics using deterministic optimal control problems is

widely explored in the literature of mathematical epidemiology. A detailed comprehensive

literature of optimal control models in epidemiological modeling and numerical approximation

techniques can be found in [27, 28]. Several works in the literature reveal that epidemic

models that are constructed with optimal control problems are appropriate and very useful for

suggesting control strategies to curb disease spread, see, e.g., [29, 30, 31, 32, 33].

In this article, we present and analyze control strategies to examine the transmission

dynamics of the 2019 highly infectious coronavirus disease and to determine strategies that are

critical even during instances of delay in diagnosis. The deterministic model of our control

model has recently been considered by [16], where they presented data-driven simulations.
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The rest of the article is organized as follows: In Section 2, we formulate an optimal control

model for COVID-19 with four control measures. In Section 3, we present the numerical results

of the optimal control model. Finally, we conclude in Section 4 with discussions on the control

measures.

2. FORMULATION OF THE OPTIMAL CONTROL PROBLEM

In this section, we formulate an optimal control model for COVID-19 to derive four control

measures with minimal implementation cost to eradicate the disease after a defined period of

time. The deterministic model was introduced in [16] as follows. The population is divided into

susceptible (S(t)), self-quarantine susceptible (Sq(t)), exposed (E(t)), infectious with timely

diagnosis (I1(t)), infectious with delayed diagnosis (I2(t)) usually as a result limited diagnostic

tools or hospitals, hospitalized (H(t)), recovered (R(t)) and the viral spread in the environment

(V (t)). Hence for the total human population at time t we have N = S(t)+Sq(t)+E(t)+ I1(t)+

I2(t)+H(t)+R(t). Following the compartmental transition diagram as shown in Figure 1, the

eight-state dynamical model describing the transmission dynamics of COVID-19 is given by

FIGURE 1. Compartmental diagram for the transmission dynamics of COVID-

19, see also [16].

dS
dt

=−(βeE +βi1I1 +βi2I2 +βvV )S−qS+q1Sq

dSq

dt
= qS−q1Sq

dE
dt

= (βeE +βi1I1 +βi2I2 +βvV )S−ωE

dI1

dt
= φωE− γ1I1−µI1(1)
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dI2

dt
= (1−φ)ωE− γ2I2−µI2

dH
dt

= γ1I1 + γ2I2−mH−µH

dR
dt

= mH

dV
dt

= f1E + f2I1 + f3I2−dvV,

where S(0)≥ 0,Sq(0)≥ 0,E(0)≥ 0, I1(0)≥ 0, I2(0)≥ 0,H(0)≥ 0,R(0)≥ 0 and V (0)≥ 0.

The description of the parameters used in the model for the COVID-19 transmission are given

in Table 1.

TABLE 1. Description of parameters.

Parameter Description

q Self-quarantined rate of the susceptible

q1 Transition rate of self-quarantined individuals to the susceptible

βe Transmission rate from the exposed to the susceptible

βi1 Transmission rate from the infectious with timely diagnosis to the susceptible

βi2 Transmission rate from the infectious with delayed diagnosis to the susceptible

βv Transmission rate from the susceptible to the exposed (infected by virus)

1/ω Incubation period

φ Proportion of the infectious with timely diagnosis

1/γ1 Waiting time of the infectious for timely diagnosis

1/γ2 Waiting time of the infectious for delayed diagnosis

µ Disease-induced death rate

m Recovery rate of the hospitalized

f1 Virus released rate of the exposed

f2 Virus released rate of the infectious with timely-diagnosis

f3 Virus released rate of the infectious with delayed-diagnosis

dv Decay rate of virus in the environment
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2.1. COVID-19 Model Problem with Control Measures. Following from the system (1),

we modified the transmission rate by reducing the factor by (1−u1(t)), where u1(t) measures

the effort of individuals to protect themselves (i.e. personal protection). The control variable

u2(t) measures the treatment rate of timely diagnosed individuals whiles the u3(t) measures the

treatment rate of delayed diagnosed individuals. We assume that u2(t)I1 and u3(t)I2 individuals

are removed from the timely diagnosed class and delayed diagnosed class and added to the

Hospitalized class. The fourth control variable u4(t) measures the spraying of the environment

to prevent viral release. We also assume that u4(t)V virus are removed from the environment.

We further assume that individuals that recovers at any time t after hospitalization and treatment

are removed from the hospitalized class to the recovered class. Therefore, we seek to minimize

a time-dependent functional given by

(2) J (u1,u2,u3,u4) := min
∫ T

0

(
A1E(t)+A2I2(t)+A3V (t)+

1
2

4

∑
i=1

Ciu2
i (t)

)
dt.

subject to the constraint

dS
dt

=−(1−u1(t))(βeE(t)+βi1I1(t)+βi2I2(t)+βvV (t))S(t)−qS(t)+q1Sq(t)

dSq

dt
= qS(t)−q1Sq(t)

dE
dt

= (1−u1(t))(βeE(t)+βi1I1(t)+βi2I2(t)+βvV (t))S(t)−ωE(t)

dI1

dt
= φωE(t)−u2(t)I1(t)−µI1(t)(3)

dI2

dt
= (1−φ)ωE(t)−u3(t)I2(t)−µI2(t)

dH
dt

= u2(t)I1(t)+u3(t)I2(t)−mH(t)−µH(t)

dR
dt

= mH(t)

dV
dt

= f1E(t)+ f2I1(t)+ f3I2(t)−dvV (t)−u4(t)V,

All the control efforts ui(t), i = 1, . . . ,4 are assumed to be bounded and Lebesgue measur-

able time-dependent functions on the interval [0,T ] where T is the final time and where the
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admissible control set is defined as

U := {ui(t) | 0≤ ui(t)≤ 1, t ∈ [0,T ] for i = 1, . . . ,4},(4)

The weight constants A1,A2 and A3 are associated with exposed individuals, infectious

individuals with delayed diagnosis and the environment respectively whiles the weights

C1,C2,C3 and C4 are the balancing cost factors associated with the time-dependent control

functions u1(t),u2(t),u3(t) and u4(t) respectively.

In the next section, we prove the existence of an optimal control for the system (3) and then

derive the optimality system. It is well known that Pontryagin’s maximum principle (PMP) is

required to solve this control problem and the derivation of the necessary conditions [34, 35].

2.2. Existence of an Optimal Control. The necessary conditions include the optimality so-

lutions and the adjoint equations that an optimal control must satisfy which come from Pon-

tryagin’s maximum principle [35]. This principle converts the control model (3) and the ob-

jective functional (2) into a problem of minimizing pointwise Hamiltonian function (6), which

is formed by allowing each of the adjoint variables to correspond to each of the state variables

accordingly and combining the results with the objective functional.

Theorem 1. Given the objective functional J (u1,u2,u3,u4) as in (2), where the control set U

given by (4) is measurable subject to (3) with initial conditions given at t = 0, then there exists

an optimal control u∗ = (u∗1(t),u
∗
2(t),u

∗
3(t),u

∗
4(t)) such that

J (u∗1(t),u
∗
2(t),u

∗
3(t),u

∗
4(t)) := min{J (u1,u2,u3,u4),(u1,u2,u3,u4) ∈U }.

Proof. The existence of an optimal control due to the convexity of the integrand of J with

respect to the control measures ui(t), i = 1, . . . ,4, an a priori boundedness of the solutions of

both the state and adjoint equations and the Lipchitz property of the state system with respect

to the state variables follows from [36]. �
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To find the optimal solution, we need the Lagrangian (L) and Hamiltonian (H) for the optimal

control problem (3) and (2). The Lagrangian of the control problem is given by

L := A1E(t)+A2I2(t)++A3V (t)+
1
2

4

∑
i=1

Ciu2
i (t).(5)

Since we want the minimal value of the Lagrangian, we define the Hamiltonian function for the

system as

H = A1E(t)+A2I2(t)+A3V (t)+
1
2

(
C1u2

1(t)+C2u2
2(t)+C3u2

3(t)+C4u2
4(t)
)(6)

+λS

[
− (1−u1(t))(βeE(t)+βi1I1(t)+βi2I2(t)+βvV (t))S(t)−qS(t)+q1Sq(t)

]
+λSq

[
qS(t)−q1Sq(t)

]
+λE

[
(1−u1(t))(βeE(t)+βi1I1(t)+βi2I2(t)+βvV (t))S(t)−wE(t)

]
+λI1

[
φwE(t)−u2(t)I1(t)−µI1(t)

]
+λI2

[
(1−φ)wE(t)−u3(t)I2(t)−µI2(t)

]
+λH

[
u2(t)I1(t)+u3(t)I2(t)−mH(t)−µH(t)

]
+λRmH(t)+λV

[
f1E(t)+ f2I1(t)+ f3I2(t)−dvV (t)−u4(t)V (t)

]
.

where λ j, j ∈ {S,Sq,E, I1, I2,H,R,V} are the adjoint variables.

Following the popularly known Pontryagin Maximum Principle [35], we determine an opti-

mal solution for a given optimal control problem as follows; Suppose that (ξ ,ϕ) represent an

optimal control solution for a given dynamical optimal control problem, then there exist adjoint

or co-state variables, ω = (ω1, ω2, · · · ,ωn) which satisfies the equation below

(7)
dξ

dt
=

∂H(t, ξ , ϕ, ω)

∂ω
, 0 =

∂H(t, ξ , ϕ, ω)

∂ϕ
, and

dω

dt
=−∂H(t, ξ , ϕ, ω)

∂ξ
.

Then by applying equation (7) and the formulated Hamiltonian function (6), the adjoint or co-

state state system and the optimal control characterisation for our constructed optimal control

dynamical model are given in the following theorem.

Theorem 2. Let (u1
∗, u2

∗,u3
∗, u4

∗) be an optimal control and suppose that

(S∗,Sq
∗,E∗, I1

∗, I2
∗,H∗,R∗,V ∗) is an optimal control solution for the dynamical optimal control
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problem (2)-(3) that minimize J (u1,u2,u3,u4) over U , then there exist co-state or adjoint

variables λS,λSq,λI1,λI2,λH ,λR and λV that satisfies the system below

dλS

dt
= (λS−λE)(1−u∗1(t))

[
βeE∗(t)+βi1I∗1 (t)+βi2I∗2 (t)+βvV ∗(t)

]
+q(λS−λE)

dλSq

dt
= q1(λSq−λS)

dλE

dt
=−A1 +(λS−λE)(1−u∗1(t))βeS∗(t)+wλE −φwλI1− (1−φ)wλI2− f1λV

dλI1

dt
= (λS−λE)(1−u∗1(t))βi1S∗(t)+(λI1−λH)u∗2(t)+λI1 µ− f2λV(8)

dλI2

dt
=−A2 +(λS−λE)(1−u∗1(t))βi2S∗(t)+(λI2−λH)u∗3(t)+λI2 µ− f3λV

dλH

dt
= m(λH−λR)+µλH

dλR

dt
= 0

dλV

dt
=−A3 +(λS−λE)(1−u∗1(t))βvS∗(t)+λV (dv +u∗4(t))

with transversality conditions

(9) λ j(T ) = 0, j ∈ {S,Sq,E, I1, I2,H,R,V}.

and the control functions u∗1,u
∗
2,u
∗
3 and u∗4 satisfies the optimality condition given by

(10)



u∗1(t) = min{1,max{0,Λ1}},

u∗2(t) = min{1,max{0,Λ2}},

u∗3(t) = min{1,max{0,Λ3}},

u∗4(t) = min{1,max{0,Λ4}},

where

Λ1 =

(
λE −λS

)
(βeE∗(t)+βi1I∗1 (t)+βi2I∗2 (t)+βvV ∗(t))S∗(t)

C1
,

Λ2 =

(
λI1−λH

)
I∗1 (t)

C2
, Λ3 =

(
λI2−λH

)
I∗2 (t)

C3
and Λ4 =

λVV ∗(t)
C4

.(11)
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Proof. To deduce the dynamical co-state or adjoint system and the transversality conditions,

we apply the well-known Maximum Principle studied in [35] and the constructed Hamiltonian

function (6) as follows

dλS

dt
=−∂H

∂S
,

dλSq

dt
=− ∂H

∂Sq
,

dλE

dt
=−∂H

∂E

dλI1

dt
=−∂H

∂ I1
,



dλI2

dt
=−∂H

∂ I2
,

dλH

dt
=−∂H

∂H
,

dλR

dt
=−∂H

∂R
,

dλV

dt
=−∂H

∂V
.

(12)

with

(13) λ j(T ) = 0, j ∈ {S,Sq,E, I1, I2,H,R,V}.

Finally, knowing that on the interior of the control set U , we have

(14)
∂H
∂u1

= 0,
∂H
∂u2

= 0,
∂H
∂u2

= 0,
∂H
∂u3

= 0, and
∂H
∂u4

= 0.

Solving equation (14) for u∗1,u
∗
2,u
∗
3 and u∗4 yields the control characterization (10). �

3. NUMERICAL RESULTS OF THE OPTIMAL CONTROL ANALYSIS

This section of the study is concerned with numerical solutions for the constructed optimality

system using an iterative fourth-order Runge-Kutta with a forward-backward sweep method

that is very efficient, useful, and reliable. This useful iterative scheme has widely been applied

by several authors who are interested in optimal control modeling in solving their dynamical

optimality systems, see, e.g. [37, 38, 39, 32, 31]. The details of this scheme can be found in the

monograph [27]. We considered the initial conditions: S(0) = 11081000, Sq(0) = 159, E(0) =

399, I1(0) = 28, I2(0) = 54, H(0) = 41, R(0) = 12 and V (0) = 2108 in [16]. Parameter values

required for simulations are also adapted from the same work [16]. We have further assumed
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A1 = 5,A2 = 5,A3 = 10,C1 = 10,C2 = 30,C3 = 25 and C4 = 30. Figure 2 shows the profiles of

the optimal control functions (u1,u2,u3,u4).

FIGURE 2. Optimal control functions

3.1. Control Strategy I. In this strategy, we consider personal protection (u1 6= 0), hospi-

talization and treatment of infectious individuals with early diagnosis (u2 6= 0), hospitalization

and treatment of infectious individuals with delay diagnosis, (u3 6= 0) as time-dependent con-

trol functions to minimise our objective functional. Our main aim in this control strategy is to

minimise the number of exposed (E), infectious individuals with delayed diagnosis (I2) and

the virus in the environment (V ). In the non-optimal control model (3), hospitalization and

treatment of infectious individuals with early diagnosis (γ1 = u2 = 1
2.9), and hospitalization

and treatment of infectious individuals with delayed diagnosis (γ2 = u3 =
1

10) are captured as

constant controls, see Figures 3 – 5.
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(a) (b)

(c)

FIGURE 3. Solution trajectories for Exposed individuals with varying parameter

φ = 0.4, φ = 0.6 and φ = 0.8. The red line represents the controlled Exposed

population, whiles the blue line represents the uncontrolled exposed population.
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(a) (b)

(c)

FIGURE 4. Solution trajectories for Infectious individuals with delayed diagno-

sis with varying parameter φ = 0.4, φ = 0.6 and φ = 0.8. The red line represents

the controlled delayed diagnosed infectious population whiles the blue line rep-

resents the uncontrolled infectious population.
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(a) (b)

(c)

FIGURE 5. Controlling the viral spread in the environment with varying pro-

portion of sympomatic individuals φ = 0.4, φ = 0.6 and φ = 0.8 where the red

line represents the controlled envrionment and the blue line represents the un-

controlled environment.
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3.2. Control Strategy II. This strategy deals with hospitalization and treatment of infectious

individuals with early diagnosis, (u2 6= 0) and hospitalization and treatment of infectious indi-

viduals with delayed diagnosis (u3 6= 0) to minimise our objective functional. Here, we aim

to minimise the number of exposed (E), infectious with delay diagnosis (I2) and virus in the

environment (V ). In the non-optimal control model (3), hospitalization and treatment of in-

fectious individuals with early diagnosis (γ1 = u2 = 1
2.9) and hospitalization and treatment of

infectious individuals with delay diagnosis (γ2 = u3 =
1

10) are captured as constant controls, see

Figures 6-8.

(a) (b)

(c)

FIGURE 6. Solution trajectories for Exposed individuals with varying parameter

φ = 0.4, φ = 0.6 and φ = 0.8. The red line represents the controlled exposed

population whiles the blue line represents the uncontrolled exposed population.
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(a) (b)

(c)

FIGURE 7. Solution trajectories for Infectious individuals with delayed diagno-

sis with varying parameter φ = 0.4, φ = 0.6 and φ = 0.8. The red line represents

the controlled delayed diagnosed infectious population whiles the blue line rep-

resents the uncontrolled infectious population.
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(a) (b)

(c)

FIGURE 8. Controlling the viral spread in the environment with varying pro-

portion of symptomatic individuals φ = 0.4, φ = 0.6 and φ = 0.8 where the red

line represents the controlled environment and the blue line represents the un-

controlled environment.
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3.3. Control Strategy III. In this strategy as presented in Figures 9-11, all the four time-

dependent control functions (u1 6= 0,u2 6= 0,u3 6= 0,u4 6= 0) proposed in this study are incor-

porated into the optimal control COVID-19 model problem to minimise the objective function.

In the non-optimal control model, treatment with early diagnosis (γ1 = u2 =
1

2.9) and treatment

with delay diagnosis (γ2 = u3 =
1
10) are captured as constant controls.

(a) (b)

(c)

FIGURE 9. Solution trajectories for Exposed individuals with varying parameter

φ = 0.4, φ = 0.6 and φ = 0.8. The red line represents the controlled Exposed

population whiles the blue line represents the uncontrolled exposed population.
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(a) (b)

(c)

FIGURE 10. Solution trajectories for Infectious individuals with delayed diag-

nosis with varying parameter φ = 0.4, φ = 0.6 and φ = 0.8. The red line repre-

sents the controlled delayed diagnosed infectious population whiles the blue line

represents the uncontrolled infectious population.
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(a) (b)

(c)

FIGURE 11. Controlling the viral spread in the environment with varying pro-

portion of symptomatic individuals φ = 0.4, φ = 0.6 and φ = 0.8 where the red

line represents the controlled environment and the blue line represents the un-

controlled environment.
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3.4. Simulations results for all three optimal control strategies. In this subsection, solution

trajectories for the number of exposed, infectious with delay diagnosis and virus in the environ-

ment for all the three control strategies are numerically compared with that of the non-optimal

control model, see Figures 12-14. Our numerical results suggest that, if people can adhere to

effective personal protection practices such as the use of hand sanitizers, washing of hands reg-

ularly and social distancing, there will be fewer infections in the population. From our results,

we can further argue that, effective spraying of the environment and early diagnosis of infected

or infectious individuals and treatment can help reduce the number of COVID-19 infections

significantly.

(a) (b)

(c)

FIGURE 12. Solutions trajectories for Exposed individuals with φ = 0.4, φ =

0.6 and φ = 0.8 .
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(a) (b)

(c)

FIGURE 13. Solutions trajectories for Infectious individuals delayed diagnosis

with φ = 0.4, φ = 0.6 and φ = 0.8 .
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(a) (b)

(c)

FIGURE 14. Solutions trajectories for virus in the environment with φ = 0.4,

φ = 0.6 and φ = 0.8 .

4. CONCLUSION

In this study, we have formulated and studied a new optimal control dynamical model for the

2019 coronavirus disease. Our new non-autonomous mathematical model for the 2019 coron-

avirus disease, which is characterised by a system of nonlinear ordinary differential equations,

is an extension of a recently constructed and analyzed data-driven non-optimal control model

studied [16]. We have presented three control strategies to examine the dynamics of COVID-19

deadly infectious disease. We incorporated four optimal time-dependent control functions into

the nonlinear dynamical optimal control problem. These control functions included personal

protection, hospitalization and treatment with early diagnosis, hospitalization and treatment
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with delayed diagnosis and spraying of the environment, and cleaning possible infected sur-

faces. The numerical simulations reveal that optimal control strategies can yield a significant

reduction in the number of COVID-19 exposed and infectious or infected individuals in the

population. By instituting control strategies, we realized that the number of days required for

the virus to be eliminated from the system is significantly reduced as compared to when there

is no control strategy. The numerical illustrations also show that by increasing φ i.e. improving

the diagnostic resources, and increasing γ2 i.e. improving the diagnostic efficiency, we can con-

trol significantly the number of new confirmed cases, new infections and thus can reduce the

transmission risk. From all the three control strategies considered in this study, we realized that

the third strategy, which captures all the four time-dependent control functions, yields better

results.
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