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Abstract: In this era of big data, considerable amounts of information data are produced daily with the rapid 

development of technology. In various fields, such as engineering, computer science, and finance, several statistical 

and machine learning methods are used to uncover useful information and patterns behind these enormous datasets. 

Neural networks (NN) and random forests (RF) are the common model selection (variable selection) methods in 

machine learning. The least absolute shrinkage and selection operator (LASSO) and principal component analysis are 

the statistical methods. In this study, we propose two methods: a combination of NN and LASSO and a combination 

of NN and RF. We use Monte Carlo simulation and a real data application (air quality data in Italy) to investigate the 

performance of the classical methods (ordinary least square and feed-forward NN) and two proposed methods by the 

goodness of fit criteria. The results showed that the proposed methods perform better than the classical methods. 

Keywords: artificial neural network; random forests; least absolute shrinkage and selection operator; principal 

component analysis. 
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1. INTRODUCTION 

Variable selection methods in regression analysis held statistical value, especially for models with 

multiple independent variables and recent developments in model selection methods for extracting 

useful information from large databases (big data) in all fields. However, traditional statistical 

methods cannot manage big data. Extracting useful information from these complex and 

informative rules has become a major challenge. The commonly used machine learning methods 

are neural network (NN), random forests (RF), and statistical tools, such as robust least absolute 

shrinkage and selection operator (LASSO) and principal component analysis (PCA). This study 

proposes two selection methods by combining NN with LASSO and RF. We compared the 

performance of classical selection methods (ordinary least square (OLS) and feed-forward NN) 

with the proposed methods through simulation methods using and life data application. Finally, 

we concluded that the proposed methods perform better than the classical methods with a minimum 

error. 

Wang et al. [1] used the idea of quantile regression and random LASSO in the case of highly 

correlated variables. Mansoor et al. [2] used a feed-forward Neural networks (FFNN) on a dataset 

concerning commercial buildings because of a possible demand response program application. 

They used the machine learning method that deserves more attention, i.e., the RF method, which 

dominates all other methods. The combination of machine learning methods, i.e., RF with NN and 

LASSO with NN, produces new powerful methods. 

The remainder of the paper is organized as follows: the classical variable selection methods are 

introduced in Section 2. Section 3 presents the proposed methods. In Section 4, we present the 

Monte Carlo simulation. In Section 5, we discuss the application of the proposed methods. Finally, 

Section 6 presents the conclusion. 

 

2. VARIABLE SELECTION METHODS 

2.1. Feed-Forward Neural Networks 

A big deal of hyperbole has been devoted to NNs in their first wave in around 1960 [3,4] and their 

renaissance in around 1985 (inspired by [5]). However, the biologically relevant ideas have been 

detracted from the essence of what is being discussed. They are irrelevant to practical applications 

in pattern recognition. Because NNs have become a popular subject, they have collected numerous 

methods loosely related and not biologically motivated. A formal definition of a feed-forward 



3 

PROPOSED TWO VARIABLE SELECTION METHODS 

network is given in the glossary. They basically contained units that have one-way connections to 

other units; the units can be labeled from inputs (low numbers) to outputs (high numbers) to 

connect to units with higher numbers. The units can always be arranged in layers so that 

connections go from one layer to another. This can be best observed graphically (Fig. 1). Each unit 

sums its inputs and adds a constant (the “bias”) to form a total input xj and applies a 

function fjto xjto output yj. The links have weights wij,which multiply the signals traveling with 

them by that factor. The input units are used to distribute the inputs, so have f ≡1. Thus, a network 

such as that given in Fig.1, represents the function 

                                    𝑦𝑘 = 𝑓𝑘(𝛼𝑘 + ∑ 𝑤𝑗𝑘𝑓𝑗(𝛼𝑗 + ∑ 𝑤𝑖𝑗𝑥𝑖𝑖→𝑗 )𝑗→𝑘 ).                         (1) 

 

Fig. 1: Feed-forward neural network method Source: [7]. 

Fig. 1 shows a generic feed-forward network with a single hidden layer. To avoid overcrowding, 

bias units are shown for each layer; however, they can be the same unit from inputs to outputs. 

The functions fj are almost invariably considered as linear, logistic with f(x)  = ℓ(x)  = 

ex/(1 + ex))or threshold functions with (with f(x) = I(x > 0)). A variant takes hyperbolic tangent 

units with f(x) = tan h(x) = (ex −1)/(ex +1) = 2 ℓ(x)- 1. However, it only introduces a linear 

transformation that can be absorbed into the weights, except at the output units. Only threshold 

units give a genuine multilayer extension of the perceptron, and such networks were considered 

by [4, 6]. The general definition allows more than one hidden layer, and it also allows “skip-layer” 

connections from input to output. If all units in a layer have the same functions fh,f0, we have 
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𝑦𝑘 = 𝑓0(𝛼𝑘 + ∑ 𝑤𝑖𝑘𝑥𝑖 + ∑ 𝑤𝑗𝑘𝑓ℎ𝑗→𝑘 (𝛼𝑗 + ∑ 𝑤𝑖𝑗𝑥𝑖𝑖→𝑗 )𝑖→𝑘 ).                       (2) 

The bias terms can be eliminated by introducing a new unit 0 (the bias unit), which is permanently 

at +1 and connected to all other units. We set w0j = αj. This is the same concept as incorporating 

the constant term in the design matrix of regression by including a column of 1’s. This is shown 

in Fig. 1. The general form is then given as 

              𝑦𝑘 = 𝑓0(∑ 𝑤𝑖𝑘𝑥𝑖 + ∑ 𝑤𝑗𝑘𝑓ℎ𝑗→𝑘 (∑ 𝑤𝑖𝑗𝑥𝑖𝑖→𝑗 )𝑖→𝑘 ).                              (3) 

Notably, if the hidden layer contains logistic units, adding skip-layer connections is not more 

general because we can add another unit per output in the hidden layer with input weights wjk/G 

and output weight G to only unit k. Then, for large G, we only use the central, linear part of the 

range of the logistic function. However, skip-layer connections can be easier to implement and 

interpret. NN with a single logistic output unit is a nonlinear extension of the logistic regression. 

With several logistic output units, it corresponds to linked logistic regressions of each class vs. 

others. The terminology of NNs can be very confusing. Fig. 1 is sometimes considered to have 

three layers (which seems visually correct), two layers (as the input layer does nothing), and one 

hidden layer (as the states of the units in the central layer cannot be inspected from outside the 

“black box”). Che et al. [7] referred to the inputs, outputs, and hidden layer because we will always 

have only one hidden layer. We will extend our notation to allow every unit j to have an input 

xjand output yj. The inputs to the entire network are the inputs to the input units, and the outputs 

from the entire network are those of the output units. The signal paths through the network are 

determined using the following equation: 

                                        𝑦𝑗 = 𝑓𝑗(𝑥𝑗), 𝑥𝑗 = ∑ 𝑤𝑖𝑗𝑦𝑖𝑖→𝑗 .                                                  (4) 

The conditions on the sum can be neglected by defining wij to be zero for all nonexistent links. 

When programming, numbering the units by layer is necessary, so that all units in the first layer 

precede those in the first hidden layer. Then, we know wij = 0, unless i< j. Che et al. [7] briefly 

consider how such functions were suggested and the theory that shows that they form large and 

flexible classes of functions. In practice, the main issues are how the parameters and weights 

should be selected and how the architecture (the number of layers and the number of units in each, 

and which connections to include) should be selected [6]. 
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2.2.  Principal Component Analysis with Neural Network (PCANN) 

This method is based on the spectral analysis of the second-order moment matrix called a 

correlation matrix that statistically characterizes a random vector used by [8] and introduced by 

[6].  

 

Fig. 2: Architecture of the PCA network. Source: [9] 

The single-neuron model was extended from 𝑁 to 𝑃 feed-forward network model to extract the 

first 𝑃 of PCs. Fig. 2 shows the architecture of the PCA network. The output of the network is 

given by 

                                     y = 𝑤𝑇x,                                                           (5) 

where y = (𝑦1, 𝑦2, ⋯ , 𝑦𝑝)
′

, x = (𝑥1, 𝑥2, ⋯ , 𝑥𝑁)′,  W = (𝑤1, 𝑤2, ⋯ , 𝑤𝑃) , and 𝑤𝑖 =

(𝑤1𝑖, 𝑤2𝑖, ⋯ , 𝑤𝑁𝑖)
′; 𝑤𝑗𝑃 is the weight from the jth input to the pth neuron [10]. 

2.3. Least Absolute Shrinkage and Selection Operator 

For a given collection of N predictor-response pairs {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑁 , LASSO obtains the solution 

(𝛽0, 𝛽𝑗) to the following optimization problem: 

𝑀𝑖𝑛
𝛽0,𝛽𝑗

{
1

2𝑁
∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗

𝐾
𝑗=1 𝛽𝑗)

2𝑁
𝑖=1 },   Subject to ∑ |𝛽𝑗|𝐾

𝑗=1 ≤t.               (6) 

The constraint ∑ |𝛽𝑗|𝐾
𝑗=1 ≤ 𝑡 can be written more compactly as the 𝑙1-norm constraint ‖𝛽𝑗‖ ≤ 𝑡. 

Furthermore, (6) is usually represented using matrix-vector notation. Assuming 𝑦 =

(𝑦1, … , 𝑦𝑁)′to be the N-vector of responses, 𝑋 is a 𝑛 × 𝑝 matrix with 𝑥𝑖 ∈ ℝ𝐾 in its 𝑖𝑡ℎ row, and  

𝛽 is a vector of 𝛽𝑗, then the optimization problem (6) can be re-expressed as follows: 

𝑀𝑖𝑛
𝛽0,𝛽

{
1

2𝑁
‖𝑦 − 𝛽0𝟏 − 𝑋𝛽‖2

2},   Subject to ‖𝛽‖1 ≤ t                    (7) 
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where 1 is the vector of N ones, and ‖. ‖2 is the usual Euclidean norm on vectors. The bound t is a 

type of “budget”. It limits the sum of the absolute values of the parameter estimates. Because a 

shrunken parameter estimate corresponds to a more heavily constrained model, this budget limits 

how well we can fit the data [11, 12]. 

2.4.  Random Forests 

Similar to bagging, a large number of tree classification or regression trees are grown with 

bootstrap samples from training data. However, as each tree is grown, a random sample of 

predictors is taken before splitting each node. For example, if there are 20 predictors, a random 

five are selected as candidates for defining the split. Then, the best split is constructed, as usual, 

but it is selected only from the five chosen. This process is repeated for each prospective split 

without pruning. Thus, each tree is produced from a random sample of cases and a random sample 

of predictors at each split. The mean or proportion for each tree’s terminal nodes is determined 

similar to bagging. Finally, for each case, the over trees are averaged as in bagging, but only when 

that case is out-of-bag (OOB). Breiman [13] called such a procedure a “random forest”. This 

method was used by Liu et al. [14] to identify spatial poverty determinants in rural China. Ludwig 

et al. [15] used big data analytics for feature selection to forecast electricity prices using the 

LASSO and RF. 

The RF algorithm is similar to the bagging algorithm. Assuming N to be the number of 

observations in the training data and assuming that the response variable is binary. The RF 

algorithm is designed through the following steps [16]: 

 

Algorithm: Random Forests Method 

Step 1. Taking a random sample of size N with replacement from the data. 

Step 2. Taking a random sample without replacement of the predictors. 

Step 3. Constructing the first recursive partition of the data as usual. 

Step 4. Repeating Step 2 for each subsequent split until the tree is as large as desired. This usually 

leads to one observation in each terminal node. Prune is not done. Computing each terminal node 

proportion as usual. 

Step 5. Dropping the OOB data down the tree. Storing the class assigned to each observation along 

with each observation’s predictor values. 

Step 6. Repeating Steps 1–5 several times (tree = 500). 
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Step 7. Using only the class assigned to each observation when the observation is OOB, counting 

the number of times over trees so that the observation is classified into one category and the 

number of times over trees classified in the other category. 

Step 8. Assigning each case to a category by a majority vote over the set of trees when the case is 

OOB. Thus, if 51% of the time over several trees for a given case is classified as 1, it becomes its 

estimated classification [16]. 

 

3. PROPOSED METHODS 

In this section, we introduce a combination of RF, LASSO, and NN to obtain the two proposed 

methods (RFNN and LASSONN). We hope obtaining a more powerful goodness of fit compared 

with the classical methods (OLS and PCANN). 

3.1.  LASSONN 

In this method, we combine NN and LASSO to obtain a new estimator with a better goodness fit. 

We can simplify this algorithm in the following steps: 

Algorithm 1: LASSONN 

Step 1. Starting with LASSO model 

Step 2. Choosing the selected variables from the LASSO model 

Step 3. Entering the selected variables to NN. 

3.2.  RFNN 

In this method, we combine NN and RF to obtain a new estimator with a better goodness fit. Then, 

we randomly permute the values of 𝑋𝐽 in 𝑂𝑂𝐵𝑡 to obtain a perturbed sample denoted by 𝑂𝑂𝐵𝑡
�̃�
 

and calculate 𝑒𝑟𝑟𝑂𝑂𝐵𝑡
𝐽̃
, the error of the predictor t on the perturbed sample. Variable importance 

of 𝑋𝐽 is expressed as follows: 

                           VI(𝑋𝐽) = 
1

𝑛𝑡𝑟𝑒𝑒
∑ (𝑒𝑟𝑟𝑂𝑂𝐵𝑡

𝑗̃ − 𝑒𝑟𝑟𝑂𝑂𝐵𝑡)𝑡 .                        (8) 

where the sum is over all trees t of RF and ntree denotes the number of RF trees. Notably, we used 

this definition of importance and not the normalized one. Instead of considering that the raw VI 

are independent replicates, normalizing them and assuming the normality of these scores, we prefer 

a fully data-driven solution. This is a key point of our strategy: we prefer directly estimating the 

variability of importance across repetitions of forests instead of using normality when ntree is 
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sufficiently large, which is valid only under specific conditions. We propose the following two-

step procedure. The first one is common, whereas the second one depends on the objective. 

Step 1. Preliminary elimination and ranking: Computing the RF scores of importance, cancelling 

the variables of small importance, and arranging the remaining variables in decreasing order of 

importance. 

Step 2. Variable selection: For interpretation: constructing the nested collection of RF models 

involving the k first variables, for k = 1 to m, and selecting the variables involved in the model 

leading to the smallest OOB error. For prediction: starting from the ordered variables retained for 

interpretation, constructing an ascending sequence of RF models by invoking and testing the 

variables stepwise. The variables of the last model are selected. This is a sketch of the procedure, 

and more details are required for its effectiveness [17]. Then we can use the selected variables 

from RF as input variables in NN. We can simplify this algorithm through the following steps: 

Algorithm 2: RFNN 

Step1. Starting with RF method 

Step2. Choosing the selected variables using RF method 

Step3. Entering the selected variables to NN. 

 

4. MONTE CARLO SIMULATION STUDY 

In this section, we conduct a comparative study between the classical estimator (PCANN) and two 

proposed estimators (LASSONN and RFNN) via the Monte Carlo simulation. In our simulation 

study, we used different simulation factors (see Table 1) to investigate the performance of these 

estimators in different situations. R-software version 4 was used to perform the simulation study, 

see [18, 19]. 

We generate independent variables, as in [18, 20, 21] from a multivariate normal 

distribution 𝑀𝑉𝑁(0, 𝛴𝑋), where diag(𝛴𝑋) = 1 and off–diag (𝛴𝑋) = 𝜌𝑥; 𝜌𝑥 = 0.90 and 0.95 [22, 

23], where 𝜌𝑥 is the correlation coefficient between the independent variables. We also generate 

an error using a standard normal distribution with two outlier rates (OR) of 10% and 15% [19, 24, 

25]. We used a simulation study with different sample sizes N = 75,150 and 300, and independent 

variables K = 10, 20, 30, 40, 60, and 70. The true regression parameter is 0.5 and 0.001 [26]. Then, 

we construct the LASSO, RF, PCANN, and proposed estimators for their comparison. Fig. 3 shows 

the simulation design flowchart. 
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Table 1: Simulation factors 

Factor Values 

𝝆𝒙 0.90 0.95 

OR 0.10 0.15 

N 75 150 300 

K 10, 20, 30 10, 20, 30, 40, 60 10, 20, 70 

 

Fig. 3: Simulation flowchart 
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In our study, we used three goodness of fit criteria for verification: mean square error (MSE), mean 

absolute error (MAE), and root mean square error (RMSE). Furthermore, we presented for each 

method the number of selected variables (#SVs) and the number of principal comments (#PCs). 

The simulation results are presented in Tables 2–13 for a different number of independent variables 

(K = 10, 20, 30, 40, 60, 70) and different sample sizes (N = 75, 150, 300). Two different rates of 

correlation and outliers are (0.9, 0.95), (0.10, 0.15), respectively. Notably, when the sample size 

(N) is 75, independent variables (K) are 10, 20, and 30; when N is 150, K is 10, 20, 30, 40, and 60; 

when N is 300, K is 10, 20, and 70.  

Table 2: Simulation results when N = 75, 𝝆𝒙 = 90%, and OR = 10% 

 K Criteria OLS PCANN   RFNN LASSONN 

10 MAE 2.043 1.853 1.777 1.788 

MSE 8.191 7.193 6.796 6.880 

RMSE 2.861 2.681 2.606 2.622 

#SVs (#PCs) 10 10 (9) 3 4 

20 MAE 2.813 2.334 2.212 2.203 

MSE 13.954 9.771 9.145 9.112 

RMSE 3.735 3.125 3.024 3.018 

#SVs (#PCs) 20 20 (14) 3 7 

30 MAE 4.612 2.811 2.566 2.571 

MSE 37.051 13.632 12.097 12.078 

RMSE 6.086 3.692 3.478 3.475 

#SVs (#PCs) 30 30 (19) 4 10 

 

Table 3: Simulation results when N=75, 𝝆𝒙= 90% and OR = 15% 

K Criteria OLS PCANN RFNN LASSONN 

 10 MAE 2.37 2.133 2.059 2.063 

MSE 10.182 8.675 8.193 8.258 

RMSE 3.19 2.945 2.862 2.873 

#SVs (#PCs) 10 10(9) 2 4 
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 20 MAE 3.139 2.619 2.481 2.478 

MSE 16.821 11.918 10.993 11.01 

RMSE 4.101 3.452 3.315 3.318 

#SVs (#PCs) 20 20(14) 3 7 

 30 MAE 5.125 3.066 2.792 2.839 

MSE 45.571 15.56 13.575 13.963 

RMSE 6.75 3.944 3.684 3.736 

#SVs (#PCs) 30 30(19) 4 9 

 

Table 4: Simulation results when N=75, 𝝆𝒙 = 95% and OR = 10% 

 K Criteria OLS PCANN RFNN LASSONN 

10 MAE 2.119 1.824 1.795 1.8 

MSE 8.704 7.097 6.972 6.992 

RMSE 2.95 2.664 2.64 2.644 

#SVs (#PCs) 10 10(8) 2 4 

20 MAE 2.805 2.247 2.183 2.193 

MSE 13.89 9.423 9.075 9.151 

RMSE 3.726 3.069 3.012 3.025 

#SVs (#PCs) 20 20(11) 3 6 

30 MAE 4.531 2.64 2.493 2.524 

MSE 35.712 12.515 11.782 11.932 

RMSE 5.975 3.537 3.432 3.454 

#SVs (#PCs) 30 30(15) 4 8 

 

Table 5: Simulation results when N = 75, 𝝆𝒙 = 95%, and OR = 15% 

 K Criteria OLS PCANN RFNN LASSONN 

10 MAE 2.442 2.114 2.073 2.090 

MSE 10.795 8.745 8.457 8.581 

RMSE 3.285 2.957 2.908 2.929 

#SVs (#PCs) 10 10(8) 2 3 
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20 MAE 3.212 2.512 2.451 2.447 

MSE 17.706 11.364 10.881 10.869 

RMSE 4.207 3.371 3.298 3.296 

#SVs (#PCs) 20 20(11) 3 5 

30 MAE 5.089 2.881 2.747 2.759 

MSE 45.324 14.258 13.459 13.530 

RMSE 6.732 3.775 3.668 3.678 

#SVs (#PCs) 30 30(15) 3 8 

 

Table 6: Simulation results when N=150, 𝝆𝒙 = 90% and OR = 10% 

K Criteria OLS PCANN RFNN LASSONN 

10 MAE 1.891 1.899 1.830 1.834 

MSE 7.883 7.890 7.581 7.598 

RMSE 2.807 2.808 2.753 2.756 

#SVs (#PCs) 10 10 (9)  3 5 

20 MAE 2.172 2.281 2.103 2.095 

MSE 9.389 10.034 9.087 9.061 

RMSE 3.064 3.167 3.014 3.01 

#SVs (#PCs) 20 20 (16) 4 8 

30 MAE 2.528 2.677 2.360 2.340 

MSE 11.635 12.947 10.919 10.785 

RMSE 3.411 3.598 3.304 3.284 

#SVs (#PCs) 30 30 (23) 5 11 

40 MAE 2.929 2.981 2.643 2.652 

MSE 14.917 16.103 13.826 13.809 

RMSE 3.862 4.012 3.718 3.716 

#SVs (#PCs) 40 40 (28) 6 14 

60 MAE 4.825 3.892 3.415 3.511 

MSE 38.967 27.962 23.718 24.411 

RMSE 6.242 5.287 4.87 4.94 

#SVs (#PCs) 60 60 (34) 8 20 
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Table 7: Simulation results when N=150, 𝝆𝒙 = 90% and OR = 15% 

 K Criteria OLS PCANN RFNN LASSONN 

10 MAE 2.304 2.296 2.211 2.212 

MSE 10.294 10.201 9.709 9.717 

RMSE 3.208 3.193 3.115 3.117 

#SVs (#PCs) 10 10 (9) 3 4 

20 MAE 2.605 2.702 2.487 2.486 

MSE 12.372 12.989 11.505 11.555 

RMSE 3.517 3.604 3.391 3.399 

#SVs (#PCs) 20 20 (16) 4 7 

30 MAE 2.937 3.047 2.666 2.68 

MSE 14.896 15.806 12.861 12.936 

RMSE 3.859 3.975 3.586 3.596 

#SVs (#PCs) 30 30 (23) 4 10 

40 MAE 3.421 3.364 2.937 2.944 

MSE 19.601 19.483 15.873 15.876 

RMSE 4.427 4.413 3.984 3.984 

#SVs (#PCs) 40 40 (28) 5 13 

60 MAE 5.304 4.124 3.606 3.703 

MSE 46.949 30.663 25.395 26.243 

RMSE 6.851 5.537 5.039 5.122 

#SVs (#PCs) 60 60 (33) 7 19 
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Table 8: Simulation results when N=150, 𝝆𝒙 = 95% and OR = 10% 

K Criteria OLS PCANN RFNN LASSONN 

10 MAE 1.911 1.854 1.822 1.821 

MSE 8.026 7.726 7.586 7.587 

RMSE 2.833 2.779 2.754 2.754 

#SVs (#PCs) 10 10 (8) 3 4 

20 MAE 2.191 2.186 2.071 2.066 

MSE 9.519 9.552 8.969 8.974 

RMSE 3.085 3.09 2.994 2.995 

#SVs (#PCs) 20 20 (14) 4 7 

30 MAE 2.518 2.474 2.296 2.295 

MSE 11.632 11.631 10.619 10.586 

RMSE 3.41 3.41 3.258 3.253 

#SVs (#PCs) 30 30 (19) 4 9 

40 MAE 2.968 2.779 2.598 2.606 

MSE 15.3 14.835 13.761 13.78 

RMSE 3.911 3.851 3.709 3.712 

#SVs (#PCs) 40 40 (22) 5 12 

60 MAE 4.839 3.528 3.348 3.45 

MSE 39.286 24.971 23.739 24.41 

RMSE 6.267 4.997 4.872 4.94 

#SVs (#PCs) 60 60 (25) 7 17 
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Table 9: Simulation results when N=150, 𝝆𝒙 = 95% and OR = 15% 

 K Criteria OLS PCANN RFNN LASSONN 

10 MAE 2.4 2.219 2.182 2.197 

MSE 10.593 9.454 9.172 9.262 

RMSE 3.254 3.074 3.028 3.043 

#SVs (#PCs) 10 10 (8) 3 4 

20 MAE 2.61 2.562 2.414 2.431 

MSE 12.252 11.975 10.995 11.102 

RMSE 3.5 3.46 3.315 3.331 

#SVs (#PCs) 20 20 (14) 3 6 

30 MAE 2.932 2.871 2.640 2.654 

MSE 14.894 14.429 12.802 12.892 

RMSE 3.859 3.798 3.577 3.59 

#SVs (#PCs) 30 30 (19) 4 9 

40 MAE 3.429 3.142 2.905 2.949 

MSE 19.688 17.746 15.931 16.233 

RMSE 4.437 4.212 3.991 4.029 

#SVs (#PCs) 40 40 (22) 5 11 

60 MAE 5.477 3.815 3.596 3.683 

MSE 50.206 27.778 25.934 26.585 

RMSE 7.085 5.27 5.092 5.156 

#SVs (#PCs) 60 60(25) 7 16 
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Table 10: Simulation results when N=300, 𝝆𝒙 = 90% and OR = 10% 

 K Criteria   OLS PCANN RFNN LASSONN 

10 MAE 1.874 1.927 1.876 1.870 

MSE 8.347 8.584 8.344 8.315 

RMSE 2.889 2.929 2.888 2.883 

#SVs (#PCs)  10 10 (9) 3 5 

20 MAE 2.010 2.138 2.045 2.026 

MSE 8.850 9.613 9.137 9.042 

RMSE 2.974 3.1 3.022 3.006 

#SVs (#PCs)  20 20 (17) 4 9 

70 MAE  2.901 3.910 3.258 3.239 

MSE 15.045 28.705 21.150 21.061 

RMSE  3.878 5.357 4.598 4.589 

#SVs (#PCs)   70 70 (47) 9 28 

 

Table 11: Simulation results when N=300, 𝝆𝒙 = 90% and OR = 15% 

 K Criteria   OLS PCANN RFNN LASSONN 

10 MAE 2.372 2.417 2.361 2.355 

MSE 11.233 11.522 11.144 11.11 

RMSE 3.351 3.394 3.338 3.333 

#SVs (#PCs) 10 10 (9) 3 5 

20 MAE 2.521 2.639 2.511 2.505 

MSE 12.139 12.963 12.061 12.031 

RMSE 3.484 3.6 3.472 3.468 

#SVs (#PCs) 20 20(17) 4 8 

70 MAE 3.427 4.372 3.574 3.573 

MSE 19.822 34.096 23.824 23.9 

RMSE 4.452 5.839 4.88 4.888 

#SVs (#PCs)  70 70 (48) 9 26 
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Table 12: Simulation results when N=300, 𝝆𝒙= 95% and OR = 10% 

 K Criteria OLS PCANN RFNN  LASSONN 

10 MAE 1.869 1.887 1.852 1.849 

MSE 8.241 8.345 8.181 8.163 

RMSE 2.87 2.888 2.86 2.857 

#SVs (#PCs)  10 10 (8) 3 5 

20 MAE 2.026 2.096 2.024 2.015 

MSE 9.056 9.557 9.186 9.156 

RMSE 3.009 3.091 3.03 3.025 

#SVs (#PCs)  20 20 (15) 4 8 

70 MAE 2.87 3.334 3.17 3.167 

MSE 14.621 22.135 20.677 20.585 

RMSE 3.823 4.704 4.547 4.537 

#SVs (#PCs) 70 70 (37) 9 23 

 

Table 13: Simulation results when N=300, 𝝆𝒙= 95% and OR = 15% 

K Criteria OLS PCANN RFNN LASSONN 

10 MAE 2.362 2.378 2.341 2.337 

MSE 11.087 11.187 10.925 10.920 

RMSE 3.329 3.344 3.305 3.304 

#SVs (#PCs)   10 10 (8) 3 4 

20 MAE 2.528 2.597 2.507 2.502 

MSE 12.361 12.887 12.231 12.240 

RMSE 3.515 3.589 3.497 3.498 

#SVs (#PCs)   20 20 (15) 4 7 

70 MAE 3.451 3.732 3.531 3.516 

MSE 20.133 25.685 23.783 23.546 

RMSE 4.486 5.068 4.876 4.852 

#SVs (#PCs)   70 70 (37) 7 21 
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We obtain the following results from the simulation: From Table 2, we can concluded that RFNN 

method is more effective than PCANN and LASSONN methods because it has the least MSE, 

MAE, and RMSE and selects fewer variables compared with LASSONN. From Table 5, increasing 

the correlation between independent variables and outliers in the error term with the same sample 

size, OLS and PCANN selected all variables 10, 20, and 30, and PCANN had a number of PCs 8, 

11, and 15. LASSONN selected variables 3, 5, and 8. RFNN selected 2, 3, and 3. As K increases, 

the error increases. RFNN method is more effective than PCANN and LASSONN methods 

because it had a minimum MSE, MAE, and RMSE and selected fewer variables than LASSONN. 

From Table 13, the increase in sample size, the correlation of 0.95 between independent variables, 

and percentage of outliers 0.15 in error term OLS and PCANN selected all variables 10, 20, and 

70, and PCANN had a number of PCs 8, 15, and 37. LASSONN selected variables 4, 7, and 21. 

RFNN selected 3, 4, and 7. As K increases, the error increases. RFNN method is more powerful 

than PCANN and LASSONN methods because it had a minimum MSE, MAE, and RMSE and 

selected fewer variables than LASSONN. 

Finally, the simulation results showed that the values of MSE, MAE, and RMSE for all methods 

increased when the sample size, the correlation between independent variables, and outliers in the 

error term are increasing. However, the proposed methods (RFNN and LASSONN) had a 

minimum MSE, MAE, and RMSE compared with the classical methods (OLS and PCANN). And 

the RFNN has minimum selected variables in all cases as well as minimum MSE, MAE, and 

RMSE. 

 

5. APPLICATION: AIR QUALITY 

In this section, we present the application to air quality dataset and compare the variable selection 

methods (FFNN and proposed methods LASSONN and RFNN). 

The dataset contains 250 instances of hourly averaged responses from an array of five metal oxide 

chemical sensors embedded in an Air Quality Chemical Multisensory Device. Data were recorded 

from March 2004 to February 2005. The device was located on the field in a significantly polluted 

area, at road level, within an Italian city. The dataset comprises one response variable and 12 

independent variables [27] (see Table 14). 

The aim of our analysis is to underline the independent variables that are most relevant for 

predicting response variable. Thus, we use the model selection (variable selection) methods. 
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However, we first analyze the dataset for a better understanding of the data. As presented in Table 

15, some correlations between variables are stronger than the other. From Table 15, the correlation 

coefficients indicate that there are strong relationships (more than 0.8) between some independent 

variables. Then, we obtained variance inflation factors (VIF) to ensure the existence of 

multicollinearity, which is not normal for some variables greater than 10. It means that a 

multicollinearity problem exists between independent variables. 

Table 14: Variables description 

Variable  Description 

Y True hourly averaged concentration CO in mg/m3 (reference analyzer) 

𝐗𝟏 PT08.S1 (tin oxide) hourly averaged sensor response (nominally CO targeted) 

𝐗𝟐 True hourly averaged overall Non-Methane  HydroCarbons concentration in micro 

g/m3 (reference analyzer) 

𝐗𝟑 True hourly averaged Benzene concentration in micro g/m3 (reference analyzer) 

𝐗𝟒 PT08.S2 (titania) hourly averaged sensor response (nominally NMHC targeted) 

𝐗𝟓 True hourly averaged NOx concentration in ppb (reference analyzer) 

𝐗𝟔 PT08.S3 (tungsten oxide) hourly averaged sensor response (nominally NOx 

targeted) 

𝐗𝟕 True hourly averaged NO2 concentration in micro g/m3 (reference analyzer) 

𝐗𝟖 PT08.S4 (tungsten oxide) hourly averaged sensor response (nominally NO2 

targeted) 

𝐗𝟗 PT08.S5 (indium oxide) hourly averaged sensor response (nominally O3 targeted) 

𝐗𝟏𝟎 Temperature in Â°C 

𝐗𝟏𝟏 Relative Humidity (%) 

𝐗𝟏𝟐 AH Absolute Humidity 

 

In this section, we compare three variable selection methods: PCA with FFNN and two proposed 

methods (LASSO with FFNN and RF with FFNN). Table 16 shows the goodness of fit measures 

for variable selection methods. 

From Table 16, we conclude that OLS and PCANN consider all independent variables and 

PCANN had 7 PCs. The proposed methods (RFNN and LASSONN) perform better than the 

classical methods (OLS and PCANN) with a minimum MSE, MAE, and RMSE. RFNN is better 
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than all methods that exhibited minimum MSE, MAE, and RMSE but LASSONN selected less 

independent variables compared with all methods. 

Table 15: Correlation matrix and variance inflation factor (VIF) values 

  𝐗𝟏   𝐗𝟐 𝐗𝟑 𝐗𝟒 𝐗𝟓 𝐗𝟔 𝐗𝟕 𝐗𝟖 𝐗𝟗 𝐗𝟏𝟎 𝐗𝟏𝟏 𝐗𝟏𝟐 

𝐗𝟏 1 
 

𝐗𝟐 0.491 1 
 

𝐗𝟑 0.938 0.521 1 
 

𝐗𝟒 0.953 0.484 0.984 1 
 

𝐗𝟓 0.809 0.478 0.802 0.816 1 
 

𝐗𝟔 −0.87 −0.30 −0.84 −0.91 −0.73 1 
 

𝐗𝟕 0.570 0.280 0.534 0.576 0.879 −0.55 1 
 

𝐗𝟖 0.945 0.481 0.979 0.971 0.801 −0.88 0.519 1 
 

𝐗𝟗 0.913 0.557 0.896 0.914 0.770 −0.89 0.537 0.900 1 
 

𝐗𝟏𝟎 0.400 0.122 0.415 0.462 0.289 −0.49 0.348 0.368 0.405 1 
 

𝐗𝟏𝟏 −0.38 −0.21 −0.42 −0.46 −0.30 0.403 −0.36 −0.32 −0.38 −0.92 1 
 

𝐗𝟏𝟐 0.120 −0.23 0.042 0.043 0.012 −0.27 −0.01 0.187 0.158 0.074 0.280 1 

VIF 18.70 2.77 188.71 314.54 29.77 35.18 11.88 132.44 14.63 24.32 30.52 11.32 

 

Table 16: Goodness of fit measures for variable selection methods 

Criteria OLS PCANN RFNN LASSONN 

MAE 26.668 19.214 16.654 17.979 

MSE 2594.126 2203.824 1774.062 2178.518 

RMSE 50.932 46.944 42.119 46.674 

#SVs (#PCs) 12 12 (7) 4 3 

 

6. CONCLUSIONS 

We investigated the efficiency of the model selection (variable selection) methods for a higher 

multicollinearity and outlier effect. The proposed methods include LASSONN and RFNN. We 

used the Monte Carlo simulation study and application to compare the performance of the proposed 

and classical methods. We summarized the main results of the simulation study as follows: 1) The 

proposed estimators have powerful goodness fit than the classical methods OLS and PCANN in 
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all cases. 2) RFNN is better than PCANN and LASSONN and has the least values of MSE, MAE, 

and RMSE. 3) PCANN and OLS have selected all variables but selected more variables than 

RFNN in the case of the proposed LASSONN. 

We used classical variable selection methods (OLS and PCANN) and proposed methods 

(LASSONN and RFNN) in the real dataset (air quality). We computed the correlation matrix and 

obtained a higher correlation between independent variables and a higher correlation between the 

independent variables. Thus, we had multicollinearity and computed the variance inflation factor. 

To ensure multicollinearity, we obtained some variables greater than 10. Finally, we applied all 

methods to the dataset and summarized some results of the application: 1) OLS and PCANN 

selected all independent variables (K) in the analysis (full model). 2) OLS and PCANN have higher 

values of MSE, MAE, and RMSE. 3) The proposed methods perform better than classical methods 

(PCANN and OLS). 4) RFNN method is better than all methods with the least values of MSE, 

MAE, and RMSE. 5) We recommend using the two proposed methods (RFNN and LASSONN) 

because they had a less MSE, RMSE, and MAE compared with the classical methods (OLS and 

PCANN). 

In future work, we can study another variable selection method for handling multicollinearity and 

outliers problems in different regression models. Also, we can study another estimation method 

for handling multicollinearity and outlier together without selection, such as [28, 29], and extend 

this estimation to the case of high-dimensional data (when the number of independent variables is 

greater than the sample size). 
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