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Abstract: This study aims to present a comparison of deterministic and stochastic approaches on the interaction of 

HIV and CD4+ T-cells with effects of HAART treatment. A three-dimensional nonlinear model is formulated with 

randomness that is considered as a Brownian motion coming from the uncertainty of the death rate of cells and viruses. 

We establish sufficient conditions for stability of endemic and nonendemic solutions that associate with an early 

reproductive threshold value of HIV infection which is linearly negative depending on the HAART treatment 

parameters. Non-negative stochastic solutions are also analysed. Numerical simulations show that HAART parameters 

have a significant effect in reducing HIV infection. The smaller value of treatment parameter, the more infected cells, 

which is also indicated by a threshold value that is greater than one. It also results in high fluctuations in the stochastic 

solutions. If the treatment parameter increases due to regular treatment, the number of infected cells and viruses 

decreases. It also reduces high fluctuations in the stochastic solutions which on average follow the decreasing trend 
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of deterministic solutions. These results provide an overview of the intervals of the number of viruses and infected 

cells produced before and after being given treatment. 

Keywords: HIV; HAART; stochastic and deterministic models; non-negativity solution; Euler Maruyama 

method. 

2010 AMS Subject Classification: 34K50, 34F05, 60H10. 

 

1. INTRODUCTION 

Acquired Immunodeficiency Syndrome (AIDS) is caused by a virus known as Human 

Immunodeficiency Virus (HIV). Since 1981, more than three decades, HIV still remains the public 

health threat [1]. Nearly 79.3 million people worldwide have been infected with HIV with around 

36.3 million people worldwide have already lost their lives [1]. According to World Health 

Organization (WHO), there are still around 37.7 million people in the world living with HIV, 1.5 

million people were newly infected with HIV, and 680 thousand people died of HIV-related causes 

in 2020 [1]. After being infected with HIV for a long time, humans will suffer from AIDS. The 

disease can be transmitted quickly in several ways including through sexual intercourse, children 

born to mothers with AIDS or drinking breast milk from mother with AIDS, and the use of syringes 

that have been used by people with AIDS or people living with HIV/AIDS [2].  

HIV infection is primarily through direct infection of CD4+ T-cells by the HIV through 

exploitation of the CCR5 and CXCR4 co-receptors expressed on their surfaces. The major 

hallmarks of HIV infection include the destruction of helper CD4+ T lymphocytes and subsequent 

loss of immune competence [3],[4]. HIV infection impairs cell function by destroying cells 

required to build a robust immune response [4]. Depletion of the CD4+ T-cells results in a 

weakened immune system. Then the infection progresses slowly to cause the condition AIDS in 

which the immune system is vulnerable to opportunistic infections. The rate of infection 

progression depends on the robustness of human immune mechanisms that are mounted. The 

depletion of CD4+ T cells and the rate of viral mutation determine the extent of the immune 

compromise caused by HIV infection [5]. HIV causes a decrease in the number of functional CD4+ 
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T cells, thereby reducing the competence of the body's defense mechanisms to fight cell infection 

[6].  

Not only prevention but also treatment is the best way to reduce the risk of HIV infection. 

Currently, the most efficacious method for inducing a decline in the number of HIV virus and 

effecting immune system reconstitution is by using Highly Active Antiretroviral Therapy (HAART) 

[7],[8]. A typical HAART treatment protocol consists of combinations of protease inhibitors (Pis) 

and types of reverse transcriptase inhibitors (RTIs) which are fabricated as a compact matrix tablet 

[7], [9], [10]. Nowadays HAART treatment generates several significant advantages, but it has 

certain drawbacks too. In short term, the beneficial effect of HAART on the survival and 

development of an AIDS-defining illness is well established [11], [12], [13], [14]. Not only has the 

life expectancy of HIV-infected patients increased but also their quality of life has improved [15], 

[16]. In addition, the spectrum of causes of mortality is changing as the number of deaths related 

to opportunistic infections has diminished [16], [17]. However, it was clinically observed that the 

HAART treatment regimen had associated side effects such as gastro-intestinal toxicity, 

lipodystrophy, anemia, thrombocytopenia, and renal failure [7], [18], [19].  

Several mathematical models have been developed to describe the effect of therapy on 

HIV infection. Deterministic model is mainly used to study the problem theoretically. For instance, 

Ye et al. [8] constructed and elaborated mathematical model which described the reconstitution of 

thymic function in HIV-I patients during HAART therapy. Deterministic models also proposed by 

[20]-[30] typically consider the dynamic of the CD4+ T-cell and virus populations as well as the 

effects of drug therapy. Kirschner and Webb [20], [31] constructed models that described viral 

dynamics and drug resistance during monotherapy of HIV infection. Perelson et al. [23] explored 

the decay characteristics of HIV infected compartments during combination therapy. Abdel-Aty et 

al. [29] investigated the exact traveling wave solutions of the fractional model of the human 

immun-odeficiency virus (HIV-1) infection for CD4+ T-cells and treats the effect of antiviral drug 

therapy. In 2020, Ali et al. [28] analyzed the benefit of antiviral drug theraphy of HIV-1 infection 

of CD4+ T-cell through analytical and numerical study. A large number of other analytical and 
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numerical schemes was employed in order to find out the approximate solution of the effect of 

HAART on HIV-1 infection (see for instance [9], [11], [32]-[40] for details). Although the 

proposed models are mainly deterministic models, it cannot be denied that in reality most of the 

biological phenomena are more stochastic rather than deterministic. This is due to different 

infectious cells and viruses reacting in the same environment can produce different results. 

Therefore, the stochastic model will be more precise. The stochastic model can build a distribution 

of the results that allows to identify the number of infected at a given time, whereas for the 

deterministic model it will get a single result. The stochastic model has a more flexible distribution 

of results so that it can examine the variance of the number of infectious virus particles at a certain 

time that cannot be checked using a deterministic model [10]. In this study, an elaborate clinically 

plausible mathematical model is constructed to describe the effects of HAART therapy in 

controlling the infection rate of the HIV virus. Stochastic model is also formulated by considering 

the randomness coming from the uncertainty of the death rate of cells and the viruses. The 

generated model is in term of three-dimensional nonlinear stochastic differential equation. Non-

negative solution is analysed for the stochastic model by referring the method explained in [45] 

and some numerical solutions are given using the Euler Maruyama method (see [46] for detail 

about the method). 

 

2. METHODS 

2.1 Deterministic Model  

In this section, a simple HIV model with HAART on the dynamics of HIV virus and CD4+ T-cell 

is introduced. This model is divided into three compartments, namely, 𝑥1 represents the number 

of suspectible cells, 𝑥2 represents the number of cells infected with HIV virus, and 𝑥3 represents 

the total of HIV virus in human body. The specific interaction between the cells and HIV viruses 

is depicted in Figure 1. We assume that all parameters in the model are positive. According to Fig. 

1, we define 𝜆 as the number of healthy cells produced by the body per day, 𝛼1 is the number of 

healthy cells that will decrease due to natural damage or death per day. Initially, when the body is 
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not infected by the HIV virus, all cells in the human body are in a good condition. When a small 

amount of HIV viruses enters the body, several healthy cells are successfully infected by the HIV 

virus where 𝛽 expresses the success of the virus in infecting healthy cells per day. We assume 

that apart from the HIV virus, there are no other dangerous foreign pathogens that enter the body. 

The success of viruses in infecting healthy cells per day increases the number of infected cells. On 

the other hand, the infected cells will decrease due to self-damage or die naturally per day by 𝛼2.  

 

Figure 1. Interaction diagram of the model (2.1). 

It is known that each virus has an equal chance of infecting cells and a small number of 

infected cells will produce the number of viruses in the body. Infected cells that produce virus per 

day are expressed as 𝑘. Furthermore, HAART, as treatment protocol that consists of combinations 

of protease inhibitors (Pis) and types of reverse transcriptase inhibitors (RTIs), is modeled as a 

constant function that will inhibit infected cells from producing virus by 𝛾. Virus will decrease 

due to natural damage or death per day by 𝛼3 and due to viral invasion of healthy cells per day 

which is stated to be 𝛽. Based on these assumptions and interaction diagram in Fig 1, we have 

following deterministic model: 

𝑑𝑥1(𝑡)

𝑑𝑡
= 𝜆 − 𝛽𝑥1(𝑡)𝑥3(𝑡) − 𝛼1𝑥1(𝑡),  

 
𝑑𝑥2(𝑡)

𝑑𝑡
= 𝛽𝑥1(𝑡)𝑥3(𝑡) − 𝛼2𝑥2(𝑡),  (2.1) 

𝑑𝑥3(𝑡)

𝑑𝑡
= (1 − 𝛾)𝑘𝑥2(𝑡) − 𝛼3𝑥3(𝑡) − 𝛽𝑥1(𝑡)𝑥3(𝑡),  

with initial conditions: 𝑥1(0) = 𝑥𝑎 , 𝑥2(0) = 𝑥𝑏 , 𝑥3(0) = 𝑥𝑐 , 𝑥𝑎, 𝑥𝑏 , 𝑥𝑐 > 0.  Definition of each 

parameter in equation (2.1) is summarized in Table 2.1.  
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Table 2.1. Definition of Model Parameters in Equations (2.1). 

Variable/ 

Parameter 
Definition Term Unit 

𝑥1 Concentration of uninfected or healthy cells 𝑥1 ≥ 0 dm−3 

𝑥2 Concentration of infected cells 𝑥2 ≥ 0 dm−3 

𝑥3 Concentration of HIV viruses 𝑥3 ≥ 0 dm−3 

𝜆 
Number of healthy cells produced by the body per unit 

of time 
𝜆 > 0 day−1dm−3 

𝛽 

The rate of success of the virus infecting cells or 

transmission between uninfected cells and infectious 

HIV virus 

𝛽 > 0 day−1dm−3 

𝑘 Number of viruses produced by infected cells 𝑘 > 0 day−1 

𝛼1 Natural death rate of healthy cells 𝛼1 > 0 day−1 

𝛼2 Natural death rate of infected cells 𝛼2 > 0 day−1 

𝛼3 Natural death rate of HIV viruses 𝛼3 > 0 day−1 

𝛾 The effect of HAART  0 ≤ 𝛾 < 1  

 

2.1.1. Stability Analysis of Deterministic Model 

Consider the HAART model in equation (2.1). The equilibrium point can be obtained by 

taking the first derivative equals to zero, i.e., 
𝑑𝑥1(𝑡)

𝑑𝑡
= 0,

𝑑𝑥2(𝑡)

𝑑𝑡
= 0, and 

𝑑𝑥3(𝑡)

𝑑𝑡
= 0. Obviously, 

the system (2.1) has two equilibria. The first equilibrium namely 𝐸1  with  𝐸1 = (
𝜆

𝛼1
, 0,0)  is 

called the virus-free equilibrium point because in this condition the virus and infected cells do not 

exist in the human body. The second solution is 𝐸2 = (𝑥1
∗, 𝑥2

∗, 𝑥3
∗) with 

𝑥1
∗ =

𝛼2𝛼3

(1−𝛾)𝑘𝛽−𝛼2𝛽
, 𝑥2

∗ =
(1−𝛾)𝑘𝜆𝛽−𝛼1𝛼2𝛼3−𝛼2𝛽𝜆

𝛼2𝛽((1−𝛾)𝑘−𝛼2)
, 𝑥3

∗ =
(1−𝛾)𝑘𝜆𝛽−𝛼1𝛼2𝛼3−𝛼2𝛽𝜆

𝛼2𝛼3𝛽
. 

The equilibrium point 𝐸2 is called the virus-infected equilibrium point because in this condition 
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there are a number of viruses and infected cells in the human body meaning that virus and infected 

cells always remain in the human body. In other word, the first equilibrium point is a non-endemic 

equilibrium point and the second equilibrium point is an endemic equilibrium point. Furthermore, 

the basic reproduction number (𝑅0) of the model is determined using the Next Generation Matrix 

(NGM) method. By definition 𝑅0  is the spectral radius of eigenvalues of the NGM. The 

calculation of the basic reproduction number 𝑅0 is based on the linearization of the system of 

differential equations near the virus-free equilibrium point 𝐸1 = (
𝜆

𝛼1
, 0,0). Since 𝑅0 is a spectral 

radius, then we get 𝑅0 =
(1−𝛾)𝑘𝛽𝜆

𝛼2𝛽𝜆+𝛼1𝛼2𝛼3
. 

The stability of system (2.1) will be carried out by investigating the stability of 

equilibrium point 𝐸𝑖. The Jacobian matrix, which is the result of the linearization of the system 

(2.1) around the equilibrium point 𝐸𝑖, is given by, 

𝐽 = [

−𝛼1 − 𝛽𝑥3 0 −𝛽𝑥1

𝛽𝑥3 −𝛼2 𝛽𝑥1

−𝛽𝑥3 (1 − 𝛾)𝑘 −𝛼3 − 𝛽𝑥1

]. 

For 𝐸1 = (
𝜆

𝛼1
, 0,0) , we get the eigenvalues of matrix 𝐽(𝐸1)  which are the solutions of the 

characteristic equation det(𝑧𝐼 − 𝐽(𝐸1)) = 0, i.e. 

𝑧11 = −𝛼1, 

𝑧12,13 = −
1

2
(𝛼3 +

𝛽𝜆

𝛼1
+ 𝛼2) ±

1

2
√(𝛼3 +

𝛽𝜆

𝛼1
+ 𝛼2)

2

− 4(𝛼2𝛼3 +
𝛼2𝛽𝜆

𝛼1
− (

(1 − 𝛾)𝑘𝛽𝜆

𝛼1
)). 

Since the value of model parameter is positive then 𝑧11 < 0. So, the equilibrium point 𝐸1 will be 

stable if 𝑅𝑒(𝑧12,13) < 0 . Based on 𝑧12,13 , it is found that the non-endemic point 𝐸1  will be 

asymptotically stable when 𝑅0 < 1. For 𝐸2, we have the Jacobian matrix 𝐽(𝐸2) as follows, 

𝐽(𝐸2) =

[
 
 
 
 
 
 

−(1 − 𝛾)𝑘𝜆𝛽 + 𝛼2𝛽𝜆

𝛼2𝛼3
0 −

𝛼2𝛼3

(1 − 𝛾)𝑘 − 𝛼2

(1 − 𝛾)𝑘𝜆𝛽 − 𝛼1𝛼2𝛼3 − 𝛼2𝛽𝜆

𝛼2𝛼3
−𝛼2

𝛼2𝛼3

(1 − 𝛾)𝑘 − 𝛼2

−(1 − 𝛾)𝑘𝜆𝛽 + 𝛼1𝛼2𝛼3 + 𝛼2𝛽𝜆

𝛼2𝛼3

(1 − 𝛾)𝑘
−(1 − 𝛾)𝑘𝛼3

(1 − 𝛾)𝑘 − 𝛼2 ]
 
 
 
 
 
 

. 
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The eigenvalues of 𝐽(𝐸2)  are the solutions of the characteristic equation det(𝑧𝐼 − 𝐽𝐸2
) = 0 , 

namely 

𝑧21 = −𝛼1, 

𝑧22 = −
(1 − 𝛾)𝑘𝜆𝛽 − 𝛼2𝛽𝜆

𝛼1𝛼3
, 

𝑧23 = −𝛼3 (
(1 − 𝛾)𝑘𝜆𝛽 − (𝛼2𝛽𝜆 + 𝛼1𝛼2𝛼3)

(1 − 𝛾)𝑘𝜆𝛽 − 𝛼2𝛽𝜆
) = −

𝛼3(𝑅0 − 1)

(1 − 𝛾)𝑘𝜆𝛽 − 𝛼2𝛽𝜆
. 

Since the model parameter are assumed positive then the endemic equilibrium point 𝐸2 will be 

asymptotically stable when 𝑅0 > 1. 

2.2. Stochastic Model 

The death of CD4 T lymphocyte cell or CD4+ T-Cell is caused by various things. Firstly, 

CD4 T lymphocyte cell death which is influenced by the formation of syncytium tissue. In addition, 

the death of CD4+ T-Cell occurs because the mature of age of the cells (the end of its lifetime). 

Moreover, the death of CD4+ T-Cell occurs when the cells no longer work or no needed by the 

body. As well as CD4+ T-Cell, the death rate of the HIV virus can be caused by several factors, 

including when the virus infects healthy cells, it is eliminated by the body's defense cells. Because 

the death rate of cells and HIV viruses is influenced by many factors then these biological 

phenomena can be considered as a randomness that occurs in the death rate of cells and the HIV 

virus in the human body. Biological phenomena factors that have a random effect on cell and virus 

death in the human body are involved in the model by adding randomness to the cell and virus 

death parameters. In equation (2.1), there is a parameter of number of healthy cells that will 

decrease due to damage or die naturally per day with a rate constant of 𝛼1. If the intensity of 

randomness in healthy cells is added with a Brownian motion per day of 𝜎1�̇�1(𝑡)  then 𝛼1 

becomes 𝛼1 + 𝜎1�̇�1(𝑡). Then a stochastic model can be formulated by considering �̇�1(𝑡) which 

is a free Brownian motion with �̇�1(𝑡) =
𝑑𝐵1(𝑡)

𝑑𝑡
 . Similarly for the parameter of the number of 

infected cells that will decrease due to natural damage or death per day with a rate constant of 𝛼2. 

If the intensity of randomness in the infected cells is added with Brownian motion per day of 

𝜎1�̇�1(𝑡) then 𝛼2 becomes 𝛼2 + 𝜎1�̇�1(𝑡). If we assume that the biological factors of healthy cells 

and infected cells are the same, then the intensity of randomness in healthy cells and infected cells 
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is the same. 

Whereas for the parameters of the number of viruses that will decrease due to damage or 

naturally die per day with a rate constant of 𝛼3, if the intensity of randomness in the virus with 

Brownian motion per day is added as 𝜎2�̇�2(𝑡), then 𝛼3 becomes 𝛼3 + 𝜎2�̇�2(𝑡). If it is estimated 

that the biological factors of the HIV virus are different from cells in the human body, the intensity 

of randomness in the virus is different from that of healthy cells and infected cells. By considering 

�̇�2(𝑡) which is a free Brownian motion with �̇�2(𝑡) =
𝑑𝐵2(𝑡)

𝑑𝑡
, equation (2.1) can be written as a 

stochastic differential equation as follows: 

 𝑑𝑥1(𝑡) = (𝜆 − 𝛽𝑥1(𝑡)𝑥3(𝑡) − 𝛼1𝑥1(𝑡))𝑑𝑡 − 𝜎1𝑥1(𝑡)𝑑𝐵1(𝑡), 

 𝑑𝑥2(𝑡) = (𝛽𝑥1(𝑡)𝑥3(𝑡) − 𝛼2𝑥2(𝑡))𝑑𝑡 − 𝜎1𝑥2(𝑡)𝑑𝐵1(𝑡), 

 𝑑𝑥3(𝑡) = ((1 − 𝛾)𝑘𝑥2(𝑡) − 𝛽𝑥1(𝑡)𝑥3(𝑡) − 𝛼3𝑥3(𝑡))𝑑𝑡 − 𝜎2𝑥3(𝑡)𝑑𝐵2(𝑡). 

2.2.1. Non-negative Analysis of Stochastic model 

For the stochastic differential equation model, it is necessary to show that the solution is 

a non-negative solution. Suppose that (Ω,ℱ, 𝑃) is a complete probability space with filtration 

{ℱ𝑡}𝑡≥0  which has fulfilled conditions such as the probability space (Ω,ℱ, 𝑃)  will be 

monotonically ascending and continuous to the right while ℱ0 contains all the empty sets of 𝑃. 

Also, let 𝐵(𝑡) be a one-dimensional Brownian motion defined in the probability space (Ω,ℱ, 𝑃). 

Let 𝑅++
3 = {𝒙 ∈ 𝑅3: 𝑥𝑖 > 0, for 1 ≤ 𝑖 ≤ 3}  and 𝒙(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)) . The proof of a 

non-negative solution of the stochastic model (2.2) is given in Theorem 1. However, previously 

we defined a lemma that will be used in the process of proving Theorem 1. 

Lemma 1 [10]  

𝑢 ≤ 2(𝑢 + 1 − 𝑙𝑜𝑔(𝑢)) − (4 − 2 𝑙𝑜𝑔 2)   ∀𝑢 > 0. 

Proof. 

Suppose for every 𝑢 > 0 a function is defined as follows: 

𝑓(𝑢) = 𝑢 + 2 − 2 log(𝑢). 

To determine the minimum value of the function 𝑓(𝑢), we will use a stationary condition, namely 

𝑓′(𝑢) = 0 such that 𝑓(𝑢) has a minimum value when 𝑢 = 2 or 

(2.2) 
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                      𝑓(2) ≤ 𝑓(𝑢), ∀𝑢 > 0 

        4 − 2 log(2) ≤ 𝑢 + 2 − 2 log(𝑢), 

𝑢 + 4 − 2 log(2) ≤ 2(𝑢 + 1 − log(𝑢)), 

  𝑢 ≤ 2(𝑢 + 1 − log(𝑢)) − (4 − 2 log(2)). 

Therefore, the inequality in Lemma 1 holds. 

Furthermore, we analyse the positivity of the solution of model (2.2).  

Theorem 1. Assume 0 < 𝛾 < 1  and the parameters 𝜆, 𝛼1, 𝛼2, 𝛼3, 𝑘  and 𝛽  are positive real 

numbers. For any initial value of 𝒙𝟎 ∈ 𝑅+
3 , there is a single 𝒙(𝑡) solution of equation (2.2) for 

𝑡 ≥ 0 , and that solution will remain at 𝑅+
3   with a probability of 1 , such that 𝒙(𝑡) ∈ 𝑅+

3   is 

guaranteed for all 𝑡 ≥ 0. 

Proof. 

Based on equation (2.2) it can be written as follows: 

 𝑑𝑥1(𝑡) = 𝑓1(𝑥)𝑑𝑡 − 𝑔1(𝑥)𝑑𝐵1(𝑡), 

 𝑑𝑥2(𝑡) = 𝑓2(𝑥)𝑑𝑡 − 𝑔2(𝑥)𝑑𝐵1(𝑡),                                                                                         

 𝑑𝑥3(𝑡) = 𝑓3(𝑥)𝑑𝑡 − 𝑔3(𝑥)𝑑𝐵2(𝑡). 

Since 𝑓𝑖(𝑥), 𝑖 = 1,2,3 and 𝑔𝑖(𝑥), 𝑖 = 1,2,3 are locally continuous Lipschitz functions then for 

any initial value given at 𝒙𝟎 ∈ 𝑅++
3  there is a local solution 𝒙(𝑡) where 𝑡 ∈ [0, 𝜏𝑒) with 𝜏𝑒 is 

called the explosion time. To prove that the local solution obtained is valid for the global solution, 

it is necessary to show 𝜏𝑒 = ∞. 

Suppose that 𝐾0 > 0 is a large enough number such that each initial value of 𝒙𝟎 is in the interval 

[1 𝐾0⁄ , 𝐾0] for each integer 𝐾 > 0, i.e 

1

𝐾0
< min(𝒙𝟎) < max(𝒙𝟎) < 𝐾0. 

Consequently, for each integer 𝐾 ≥ 𝐾0 the stopping time can be defined as follows: 

𝜏𝐾 = inf{ 𝑡 ∈ [0, 𝜏𝑒)|𝑥𝑖(𝑡) ∉ [1 𝐾⁄ , 𝐾] with 1 ≤ 𝑖 ≤ 3}. 

It is known that for inf ∅ = ∞ where ∅ is an empty set and 𝜏𝐾 monotonically increases with 

𝐾 → ∞ . Let 𝜏∞ = lim
𝐾→∞

𝜏𝐾 , where 𝜏∞ ≤ 𝜏𝑒 . It will be shown that 𝜏∞ = ∞ , obtained 𝜏𝑒 = ∞ 

and 𝒙(𝑡) ∈ 𝑅+
3  for each 𝑡 ≥ 0. If 𝜏∞ = ∞ is false, then there is a pair of constants 𝑇 > 0 and 

(2.3) 
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𝜖 ∈ (0,1) such that the value of 𝑃{𝜏∞ ≤ 𝑇} > 𝜖. If there is an integer 𝐾1 ≥ 𝐾0 such that it can 

be defined  

                                                         𝑃{𝜏𝐾 ≤ 𝑇} ≥ 𝜖  for all 𝐾 ≥ 𝐾1.                                                    

Given a function 𝐶2𝑉: 𝑅+
3 → 𝑅+ with                                                                    

                                                     𝑉(𝒙) = ∑(𝑥𝑖 + 1 − log(𝑥𝑖))

3

𝑖=1

.                                                          

If the function 𝑉(𝒙)  can be written as 𝑢 + 1 − log(𝑢)  then the non-negative value of the 

function 𝑉(𝒙)  can be viewed as 𝑢 + 1 − log(𝑢) ≥ 0 , ∀𝑢 > 0 . Hence, to solve the 𝑉(𝒙) 

function which has three variables, the Ito's multidimensional formula is used. Based on equation 

(2.2) and equation (2.5), three equations are obtained in the form 𝑑𝒙(𝑡) = 𝒇(𝑡)𝑑𝑡 + 𝒈(𝑡)𝑑𝑩𝑡 

with 

𝒇(𝑡) = (

(𝜆 − 𝛽𝑥1(𝑡)𝑥3(𝑡) − 𝛼1𝑥1(𝑡))

(𝛽𝑥1(𝑡)𝑥3(𝑡) − 𝛼2𝑥2(𝑡))

((1 − 𝛾)𝑘𝑥2(𝑡) − 𝛽𝑥1(𝑡)𝑥3(𝑡) − 𝛼3𝑥3(𝑡))

) = (

𝑢1

𝑢2

𝑢3

),   

𝒈(𝑡) = (
−𝜎1𝑥1 0
−𝜎1𝑥2 0

0 −𝜎2𝑥3

)   and  𝑑𝑩𝑡 = (
𝑑𝐵1

𝑑𝐵2
). 

By using the Ito's multidimensional formula, we get  

𝑑𝑉(𝒙(𝑡), 𝑡) = [𝜆 − 𝛽𝑥1(𝑡)𝑥3(𝑡) − 𝛼1𝑥1(𝑡) − (
𝜆 − 𝛽𝑥1(𝑡)𝑥3(𝑡) − 𝛼1𝑥1(𝑡)

𝑥1
) + 𝛽𝑥1(𝑡)𝑥3(𝑡) − 𝛼2𝑥2(𝑡)

− (
𝛽𝑥1(𝑡)𝑥3(𝑡) − 𝛼2𝑥2(𝑡)

𝑥2
) + (1 − 𝛾)𝑘𝑥2(𝑡) − 𝛽𝑥1(𝑡)𝑥3(𝑡)       − 𝛼3𝑥3(𝑡)

− (
(1 − 𝛾)𝑘𝑥2(𝑡) − 𝛽𝑥1(𝑡)𝑥3(𝑡) − 𝛼3𝑥3(𝑡)

𝑥3
) + 𝜎1

2 +
1

2
𝜎2

2] 𝑑𝑡

+ 𝜎1(2 − (𝑥1 + 𝑥2))𝑑𝐵1 + 𝜎2(1 + 𝑥3)𝑑𝐵2,               

 

                         = [𝜆 + 𝛽𝑥3(𝑡) + 𝛼1 + 𝛼2 + (1 − 𝛾)𝑘𝑥2(𝑡) + 𝛽𝑥1(𝑡) + 𝛼3 + 𝜎1
2 +

1

2
𝜎2

2

− 𝛼1𝑥1(𝑡) −
𝜆

𝑥1
− 𝛼2𝑥2(𝑡) −

𝛽𝑥1(𝑡)𝑥3(𝑡)

𝑥2
− 𝛽𝑥1(𝑡)𝑥3(𝑡) − 𝛼3𝑥3(𝑡)

−
(1 − 𝛾)𝑘𝑥2(𝑡)

𝑥3
] 𝑑𝑡 + 𝜎1(2 − (𝑥1 + 𝑥2))𝑑𝐵1 + 𝜎2(1 − 𝑥3)𝑑𝐵2. 

(2.6) 

(2.8) 

(2.5) 

(2.7) 

(2.4) 
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(2.12) 

(2.13) 

(2.11) 

(2.9) 

(2.10) 

From equation (2.8), we obtain 

𝑑𝑉(𝒙(𝑡), 𝑡) ≤ [𝜆 + 𝛽𝑥3(𝑡) + 𝛼1 + 𝛼2 + (1 − 𝛾)𝑘𝑥2(𝑡) 

+𝛽𝑥1(𝑡) + 𝛼3 + 𝜎1
2 +

1

2
𝜎2

2] 𝑑𝑡 + 𝜎1(2 − (𝑥1 + 𝑥2))𝑑𝐵1

+ 𝜎2(1 − 𝑥3)𝑑𝐵2. 

The right-hand side of (2.9) will be simplified by defining the variables 𝑐1 = 𝜆 + 𝛼1 + 𝛼2 +

+𝛼3 + 𝜎1
2 +

1

2
𝜎2

2 and 𝑐2 = 2(1 − 𝛾)𝑘 + 2𝛽. Based on Lemma 1, if 𝑥𝑖 ≤ 2(𝑥𝑖 + 1 − log(𝑥𝑖)) 

then  

(1 − 𝛾)𝑘𝑥2(𝑡) + 𝛽𝑥1(𝑡) + 𝛽𝑥3(𝑡) ≤ (2(1 − 𝛾)𝑘 + 2𝛽) (∑(𝑥𝑖 + 1 − log(𝑥𝑖))

3

𝑖=1

), 

(1 − 𝛾)𝑘𝑥2(𝑡) + 𝛽𝑥1(𝑡) + 𝛽𝑥3(𝑡) ≤ (2(1 − 𝛾)𝑘 + 2𝛽)𝑉(𝒙), 

(1 − 𝛾)𝑘𝑥2(𝑡) + 𝛽𝑥1(𝑡) + 𝛽𝑥3(𝑡) ≤ 𝑐2𝑉(𝒙). 

Therefore, we have 

𝑑𝑉(𝒙(𝑡), 𝑡) ≤ (𝑐1 + 𝑐2𝑉(𝒙))𝑑𝑡 + 𝜎1(2 − (𝑥1 + 𝑥2))𝑑𝐵1 + 𝜎2(1 − 𝑥3)𝑑𝐵2. 

If 𝑐3 = max{𝑐1, 𝑐2} is defined, then equation (2.10) can be written as follows: 

𝑑𝑉(𝒙(𝑡), 𝑡) ≤ (𝑐3 + 𝑐3𝑉(𝒙))𝑑𝑡 + 𝜎1(2 − (𝑥1 + 𝑥2))𝑑𝐵1 + 𝜎2(1 − 𝑥3)𝑑𝐵2, 

𝑑𝑉(𝒙(𝑡), 𝑡) ≤ 𝑐3(1 + 𝑉(𝒙))𝑑𝑡 + 𝜎1(2 − (𝑥1 + 𝑥2))𝑑𝐵1 + 𝜎2(1 − 𝑥3)𝑑𝐵2. 

Furthermore, if 𝑡1 ≤ 𝑇 and both sides of equation (2.11) are integrated, we obtain the following 

expression, 

∫ 𝑑𝑉(𝒙(𝑡))

𝜏𝐾∧𝑡1

0

≤ ∫ 𝑐3(1 + 𝑉(𝒙))𝑑𝑡

𝜏𝐾∧𝑡1

0

+ ∫ 𝜎1(2 − 𝑥1(𝑡) − 𝑥2(𝑡))𝑑𝐵1(𝑡)

𝜏𝐾∧𝑡1

0

 

+∫ 𝜎2(1 − 𝑥3(𝑡))𝑑𝐵2(𝑡)
𝜏𝐾∧𝑡1
0

, 

𝑉(𝒙(𝜏𝐾 ∧ 𝑡1)) − 𝑉(𝒙0) ≤ ∫ 𝑐3(1 + 𝑉(𝒙))𝑑𝑡

𝜏𝐾∧𝑡1

0

+ ∫ 𝜎1(2 − 𝑥1(𝑡) − 𝑥2(𝑡))𝑑𝐵1(𝑡)

𝜏𝐾∧𝑡1

0

 

+ ∫ 𝜎2(1 − 𝑥3(𝑡))𝑑𝐵2(𝑡)

𝜏𝐾∧𝑡1

0

, 
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(2.14) 

 

𝑉(𝒙(𝜏𝐾 ∧ 𝑡1)) ≤ 𝑉(𝒙0) + ∫ 𝑐3(1 + 𝑉(𝒙))𝑑𝑡

𝜏𝐾∧𝑡1

0

+ ∫ 𝜎1(2 − 𝑥1(𝑡) − 𝑥2(𝑡))𝑑𝐵1(𝑡)

𝜏𝐾∧𝑡1

0

 

+ ∫ 𝜎2(1 − 𝑥3(𝑡))𝑑𝐵2(𝑡)

𝜏𝐾∧𝑡1

0

. 

If we evaluate the expected of the both sides of integration (2.14), we have 

𝐸(𝑉(𝒙(𝜏𝐾 ∧ 𝑡1) )) ≤ 𝐸(𝑉(𝒙0)) + 𝐸 ( ∫ 𝑐3(1 + 𝑉(𝒙))𝑑𝑡

𝜏𝐾∧𝑡1

0

) 

+𝐸 ( ∫ 𝜎1(2 − 𝑥1(𝑡) − 𝑥2(𝑡))𝑑𝐵1(𝑡)

𝜏𝐾∧𝑡1

0

) + 𝐸 ( ∫ 𝜎2(1 − 𝑥3(𝑡))𝑑𝐵2(𝑡)

𝜏𝐾∧𝑡1

0

). 

It is known that if 𝑉(𝒙0)  is a constant then 𝐸(𝑉(𝒙0)) = 𝑉(𝒙0) . It is also known from the 

definition of Brownian motion that Brownian motion has a normal distribution with zero mean. 

This property causes the expectation of Brownian motion is also to be zero. So, we have 

𝐸 (∫ 𝜎1(2 − 𝑥1(𝑡) − 𝑥2(𝑡))𝑑𝐵1(𝑡)
𝜏𝐾∧𝑡1
0

) = 0  and 𝐸 (∫ 𝜎2(1 − 𝑥3(𝑡))𝑑𝐵2(𝑡)
𝜏𝐾∧𝑡1
0

) = 0. 

Hence, equation (2.15) can be written as follows: 

𝐸 (𝑉(𝒙(𝜏𝐾 ∧ 𝑡1))) ≤ 𝑉(𝒙0) + 𝐸 ( ∫ 𝑐3(1 + 𝑉(𝒙))𝑑𝑡

𝜏𝐾∧𝑡1

0

)

≤ 𝑉(𝒙0) + 𝐸 ( ∫ 𝑐3𝑑𝑡

𝜏𝐾∧𝑡1

0

) + 𝐸 ( ∫ 𝑐3𝑉(𝒙)𝑑𝑡

𝜏𝐾∧𝑡1

0

)

≤ 𝑉(𝒙0) + 𝐸[𝑐3(𝜏𝐾 ∧ 𝑡1) − 𝑐3(0)] + 𝐸 ( ∫ 𝑐3𝑉(𝒙)𝑑𝑡

𝜏𝐾∧𝑡1

0

)

≤ 𝑉(𝒙0) + 𝐸[𝑐3(𝜏𝐾 ∧ 𝑡1)] + 𝐸 ( ∫ 𝑐3𝑉(𝒙)𝑑𝑡

𝜏𝐾∧𝑡1

0

). 

(2.15) 

(2.16) 
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Since 𝑐3  is a constant then 𝐸[𝑐3(𝜏𝐾 ∧ 𝑡1)] = 𝑐3𝑡1  and 𝐸 (∫ 𝑐3𝑉(𝒙)𝑑𝑡
𝜏𝐾∧𝑡1
0

) =

𝑐3𝐸 (∫ 𝑉(𝒙)𝑑𝑡
𝜏𝐾∧𝑡1
0

). Hence, equation (2.16) can be written as follows: 

𝐸 (𝑉(𝒙(𝜏𝐾 ∧ 𝑡1))) ≤ 𝑉(𝒙0) + 𝑐3𝑡1 + 𝑐3 (𝐸 ∫ 𝑉(𝒙)𝑑𝑡

𝜏𝐾∧𝑡1

0

). 

Since 𝜏𝐾  is the infimum of 𝑡 ∈ [0, 𝜏𝑒)  for each integer 𝐾 > 0 , then 𝑡1 ≤ 𝑇  such that the 

results of 𝜏𝐾 ∧ 𝑡1 is 𝑡1 and equation (2.17) can be written as  

𝐸 (𝑉(𝒙(𝜏𝐾 ∧ 𝑡1))) ≤ 𝑉(𝒙0) + 𝑐3𝑡1 + 𝑐3 (𝐸 (∫ 𝑉(𝒙(𝜏𝐾 ∧ 𝑡))𝑑𝑡
𝑡1
0

)) ≤ 𝑉(𝒙0) + 𝑐3𝑇 +

𝑐3𝐸 (∫ 𝑉(𝒙(𝜏𝐾 ∧ 𝑡))𝑑𝑡
𝑡1
0

), 

or  

𝐸 (𝑉(𝒙(𝜏𝐾 ∧ 𝑡1))) ≤ 𝑉(𝒙0) + 𝑐3𝑇 + 𝑐3 ∫ 𝐸(𝑉(𝒙(𝜏𝐾 ∧ 𝑡)))𝑑𝑡

𝑡1

0

. 

Furthermore, the Gronwall inequality will be applied in equation (2.18) by assuming several 

variables. Let 𝑢(𝑡) = 𝐸 (𝑉(𝒙(𝜏𝐾 ∧ 𝑡1))) , 𝑐 = 𝑉(𝒙0) + 𝑐3𝑇, 𝑣(𝑠) = 𝑐3  and ∫ 𝑢(𝑠)𝑑𝑠
𝑡

0
=

 ∫ 𝐸(𝑉(𝒙(𝜏𝐾 ∧ 𝑡)))𝑑𝑡
𝑡1
0

. The Gronwall inequality expresses, if 𝑢(𝑡) ≤ 𝑐 + ∫ 𝑣(𝑠)𝑢(𝑠)𝑑𝑠
𝑡

0
 then 

𝑢(𝑡) ≤ 𝑐 exp( ∫ 𝑣(𝑠)𝑑𝑠
𝑡

0
) . Then by applying that inequality into equation (2.18), we have the 

following results. 

If 

𝐸 (𝑉(𝒙(𝜏𝐾 ∧ 𝑡1))) ≤ 𝑉(𝒙0) + 𝑐3𝑇 + 𝑐3 ∫ 𝐸 (𝑉(𝒙(𝜏𝐾 ∧ 𝑡))) 𝑑𝑡

𝑡1

0

, 

then 

𝐸𝑉(𝒙(𝜏𝐾 ∧ 𝑡1)) ≤ ((𝑉(𝒙0) + 𝑐3𝑇)) exp∫ 𝑐3𝑑𝑡

𝑡1

0

. 

Previously it was known that if 𝑡1 ≤ 𝑇  and assuming 𝑐4 = (𝑉(𝒙0) + 𝑐3𝑇) exp 𝑐3𝑇 , then the 

solution of equation (2.19) follows this expression: 

(2.17) 

(2.19) 

(2.18) 
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𝐸𝑉(𝒙(𝜏𝐾 ∧ 𝑡1)) ≤ (𝑉(𝒙0) + 𝑐3𝑇) exp[𝑐3(𝑡1) − 𝑐3(0)] 

    ≤ (𝑉(𝒙0) + 𝑐3𝑇) exp[𝑐3(𝑡1)] 

                                                         ≤ (𝑉(𝒙0) + 𝑐3𝑇) exp 𝑐3𝑇        

 ≤ 𝑐4. 

Suppose Ω𝐾 = {𝜏𝐾 ≤ 𝑇}  for  𝐾 ≥ 𝐾1  and there exists 𝑃{𝜏𝐾 ≤ 𝑇} ≥ 𝜖  for all 𝐾 ≥ 𝐾1  then 

𝑃(Ω𝐾) ≥ 𝜖 . Notice that for each 𝜔 ∈ Ω𝐾 , there is an 𝑖  with 1 ≤ 𝑖 ≤ 3  so that 𝑥𝑖(𝜏𝐾, 𝜔)  is 

equal to 𝐾  or 1 𝐾⁄  . So, 𝑉(𝒙(𝜏𝐾, 𝜔))  is not less than the smallest [𝐾 + 1 − log(𝐾)]  and 

[(1/𝐾) + 1 − log(1/𝐾)], which can be written as follows: 

𝑉(𝒙(𝜏𝐾, 𝜔)) ≥ [𝐾 + 1 − log(𝐾)] ∧ [ (
1

𝐾
) + 1 + log(𝐾)]. 

Therefore (2.20) has the following solution: 

𝑐4 ≥ 𝐸[𝑉(𝒙(𝜏𝐾 ∧ 𝑇))], 

𝑐4 ≥ 𝐸[1Ω𝐾
(𝜔)𝑉(𝒙(𝜏𝐾, 𝜔))], 

𝑐4 ≥ ∫ 𝑉(𝒙(𝜏𝐾, 𝜔))𝑓(𝑡)𝑑𝑡
∞

𝜏𝐾

. 

It is known that 1Ω𝐾
  is an indicator function of Ω𝐾 . If 𝑃{𝜏𝐾 ≤ 𝑇} = ∫ 𝑓(𝑡)𝑑𝑡

∞

𝜏𝐾
  and 

𝑃{𝜏𝐾 ≤ 𝑇} ≥ 𝜖 then equation (2.22) can be written as follows: 

𝑐4 ≥ 𝑉(𝒙(𝜏𝐾, 𝜔))∫ 𝑓(𝑡)𝑑𝑡
∞

𝜏𝐾

, 

𝑐4 ≥ 𝜖 (𝑉(𝒙(𝜏𝐾, 𝜔))), 

𝑐4 ≥ 𝜖 ([𝐾 + 1 − log(𝐾)] ∧ [ (
1

𝐾
) + 1 + log(𝐾)]). 

For example, if 𝐾 increases and goes to infinity then it produces a value of 𝑐4 which is an infinite 

value as well. This leads us to have 𝜏∞ = ∞. However, 𝑐4 is a finite value, thus the statement 

produces a contradiction statement. Therefore, Theorem 1 is satisfied and the stochastic differential 

equation (2.2) has a non-negative solution. 

 

(2.20) 

(2.21) 

(2.22) 

(2.23) 
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3. NUMERICAL SIMULATION AND DISCUSSION 

In this section, numerical simulations are carried out to determine the behaviour of system 

solutions and the effects of HAART parameters to inhibit the number of replicating viruses and 

infected cells in the patient's body such that patients can live longer. Numerical simulation was 

carried out by controlling the value of the HAART parameter (𝛾)  while the value of other 

parameters is measured daily. The set of parameter values from [10] are employed to illustrate the 

numerical simulation. The data is presented in Table 2.2.  

Table 2.2. Parameters of the model. 

Variable/Parameter Description Estimated Value Ref. 

𝑥1(0) Initial value of uninfected or healthy cells 107dm−3 Estimated 

𝑥2(0) Initial value of infected cells 2 𝑥 105dm−3 Estimated 

𝑥3(0) Initial value of HIV virus 105dm−3 Estimated 

𝜆 
The number of healthy cells produced by 

the body per unit time 
106d𝑎𝑦−1dm−3 [10] 

𝛽 

The success rate of the virus infecting cells 

or transmission between uninfected cells 

and infectious HIV virus 

10−8d𝑎𝑦−1dm−3 [10] 

𝑘 
The number of viruses produced by 

infected cells 
50 d𝑎𝑦−1 [10] 

𝛼1 Natural death rate of healthy cells 0.1 d𝑎𝑦−1 [10] 

𝛼2 Natural death rate of infected cells 0.5 d𝑎𝑦−1 [10] 

𝛼3 Natural death rate of HIV viruses 5 d𝑎𝑦−1 [10] 

Numerical simulation of all related populations is observed both before and after HAART, 

in order to gain an insight into all the processes of what actually is occurring. We use 250 days as 

initial observation. Firstly, assuming there is no HAART in these patients, 𝛾 = 0. Here we show 

the solution both deterministic and stochastic model with 𝛾 = 0 depicted in Figures 1-3. Figures 

1-3 show the condition without HAART where blue line represents the solution of the deterministic 

model of equation (2.1) and the red line represents the solution of the stochastic model of equation 

(2.2). Fig. 1 shows that healthy cells in the patient's body have decreased from the initial state in 

both the deterministic model and the stochastic model solutions. Fig. 2 shows the condition of the 
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number of infected cells in the patient's body coming from the deterministic and stochastic 

solutions showing that infected cells are still exist in the patient's body without HAART by looking 

at equilibrium conditions at the 250-day review time. Fig. 3 also shows the number of viruses in 

the patient's body that still exists by looking at the equilibrium state at the 250-day review time. 

This is because the virus continues to grow and there is no treatment that prevents the virus from 

reproducing or spreading to other healthy cells. 

 

Figure 1. Solutions of deterministic and 

stochastic models with values of  𝛾 = 0  

and 𝑥1(0) = 107 for uninfected cells with 

observation time 250 days 

Figure 2. Solutions of deterministic and 

stochastic models with values of  𝛾 = 0  

and 𝑥2(0) = 2 × 105 for infected cells with 

observation time 250 days 

 

Figure 3. Solutions of deterministic and stochastic models with values of γ = 0 and x3(0) =

105 for HIV viruses with observation time 250 days 
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The solution of the deterministic model of equation (2.1) with value of 𝛾 = 0  has basic 

reproduction number 𝑅0 = 1.96 > 1 indicating a stability of the endemic equilibrium point. The 

solution of the deterministic model not only shows the state of the endemic equilibrium point but 

also illustrates those infected cells and virus will continue to exist in the patient's body without 

HAART. 

 

 

 

Figure 4. Solutions of deterministic and 

stochastic models with values of  γ = 0.25  

and x1(0) = 107 for uninfected cells with 

observation time 250 days 

Figure 5. Solutions of deterministic and 

stochastic models with values of  𝛾 = 0.25  

and 𝑥2(0) = 2 × 105 for infected cells with 

observation time 250 days

 

 

Figure 6. Solutions of deterministic and stochastic models with values of γ = 0.25 and 

x3(0) = 105 for HIV viruses with observation time 250 days 
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The second case, we assume that there is HAART in the patient's body, but the treatment 

is not carried out routinely. Suppose 𝛾 = 0.25 and other parameters are still the same. Figures 4-

6 show the dynamic of cells with small treatment effects. Fig. 4 shows a decrease in the number 

of healthy cells as in the first case, but the effect of HAART gives a difference in the number of 

healthy cells per day as well as the time of increasing and decreasing in the number of cells per 

day. Fig. 5 and Fig. 6 respectively illustrate infected cells and HIV viruses in human body with the 

effects of non-routine treatment. The two pictures show the difference in the number of infected 

cells and HIV viruses that decrease per day. The solutions of both deterministic and stochastic 

models show that the infected cells and viruses are still exist in the bodies by looking at its number 

at 250 days. The solution of the deterministic model of equation (2.1) with a value of  𝛾 = 0.25 

has a basic reproduction number 𝑅0 = 1.47 > 1 indicating that an endemic equilibrium point 

exists and asymptotically stable. The solution of the deterministic model that not only shows the 

state of the endemic equilibrium point but also illustrates those infected cells and viruses will 

continue to exist in the body of patients who are taking HAART irregularly. Irregular HAART 

treatment is described by stopping treatment which makes the virus resistant to the effects of 

HAART treatment, thus the virus continues to reproduce in the patient's body. The difference 

between taking HAART irregularly and without HAART is in the number of healthy cells that has 

increased, the number of infected cells or HIV viruses has decreased. 

The third case assumes that there is regular HAART treatment for patient's body with 𝛾 =

0.5. The solution for this case is depicted in Figures 7-9. Fig. 7 illustrates that regular HAART 

treatment causes the number of healthy cells to be more constant. Fig. 8 shows that the number of 

infected cells decreased daily starting from the time of the first review. The solutions of both 

deterministic and stochastic models show that infected cells continued to decline in the bodies of 

patients taking HAART regularly. Fig. 9 also interprets the amount of HIV virus in the patient's 

body has decreased per day starting from the time of the first review. The impact of regular HAART 

treatment results in a reduction of the number of HIV viruses. Compared with Fig. 3 and Fig. 4 

which show the HIV virus continues to reproduce in the patient's body, Fig. 9 shows that the virus 

can be inhibited from reproducing by taking HAART regularly. The solution of the deterministic 

model (2.1) with 𝛾 = 0.5 has a basic reproduction number, 𝑅0 = 0.98 < 1 indicating a stability 
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for the non-endemic equilibrium point. The solution of a deterministic model that not only shows 

a non-endemic equilibrium point but also illustrates those infected cells and viruses are no longer 

replicating in the patient's body. This result differs from the scenario without HAART and irregular 

HAART that has 𝑅0 > 1  meaning that those solutions towards endemic equilibrium point.     

This difference is in view of the fact that regular HAART will inhibit viral growth and decrease 

the number of infected cells. Reduction of HIV virus causes the number of healthy cells that is 

infected with the virus decreases as well. Therefore, the healthy cells continue to grow in the 

patient's body. This condition makes PLWHA get over and can live longer. 

 

 

 

 

 

 

 

 

Figure 7. Solutions of deterministic and 

stochastic models with values of  𝛾 = 0.5  

and 𝑥1(0) = 107 for uninfected cells at 

250 days 

Figure 8. Solutions of deterministic and 

stochastic models with values of  𝛾 = 0.25  

and 𝑥2(0) = 2 × 105 for infected cells at 

250 days 

 

Figure 9. Solutions of deterministic and stochastic 

models with values of 𝛾 = 0.5 and 𝑥3(0) = 105 

for HIV viruses at 250 days 
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4. CONCLUSION 

In this paper, we have constructed and derived an epidemic model HIV/AIDS using 

deterministic and stochastic modeling approaches.  In deterministic model, we considered the 

existence and stability of equilibrium points. With the help of Next Generation Matrix (NGM) 

method, we obtained the basic reproduction number 𝑅0, and derived the dynamical stability of the 

model. When the basic reproduction number 𝑅0 is less than one, the non-endemic equilibrium is 

asymptotically stable meaning that the disease will be extinct. When the basic reproduction 

number 𝑅0 is greater than one, the endemic equilibrium is locally asymptotically stable meaning 

that the disease will be permanent in the system. For the stochastic model, we presented an analysis 

for the non-negative solution. Numerical simulations show that the HAART parameters have 

significant effects on the dynamics of deterministic and stochastic solutions. The HAART 

parameter indicated that when the value of treatment parameter is small enough, the infected cells 

and virus will continue to replicate in the patient's body, which is also indicated by 𝑅0 > 1. While 

if the value of the treatment parameter is high enough then the number of infected cells and viruses 

will continue to decrease until they no longer replicate in the patient’s body, which are also 

indicated by 𝑅0 < 1. In the stochastic solution, there is continuous randomness caused by the 

average parameter of death of healthy cells, infected cells, and viruses. The randomness will have 

a pattern at a certain time interval. In conclusion, HAART has considerable benefit as treatment. 

Our model predicted, both deterministic model and stochastic model that using HAART 

continuously is the best scenario for reducing the replication of the viruses in the system.  
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